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Abstract 15 

Statistical assessment of landslide susceptibility has become a major topic of research in the last decade. Most 16 

progress has been accomplished on producing susceptibility maps at meso-scales (1:50,000-1:25,000). At 17 

1:10,000 scale, which is  the scale of production of most regulatory landslide hazard and risk maps in Europe, 18 

few tests on the performance of these methods have been performed. This paper presents a procedure to identify 19 

the best variables for landslide susceptibility assessment through a bivariate technique (weights of evidence, 20 

WOE) and discusses the best way to minimize conditional independence (CI) between the predictive variables. 21 

Indeed, violating CI can severely bias the simulated maps by over- or under-estimating landslide probabilities. 22 

The proposed strategy includes four steps: (i) identification of the best response variable (RV) to represent 23 

landslide events, (ii) identification of the best combination of predictive variables (PVs) and neo-predictive 24 

variables (nPVs) to increase the performance of the statistical model, (iii) evaluation of the performance of the 25 
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simulations by appropriate tests, and (iv) evaluation of the statistical model by expert judgment. The study site is 26 

the north-facing hillslope of the Barcelonnette Basin (France), affected by several types of landslides and 27 

characterized by a complex morphology. Results ind icate that bivariate methods are powerful to assess landslide 28 

susceptibility at 1:10,000 scale. However, the method is limited from a geomorphological viewpoint when RVs 29 

and PVs are complex or poorly informative. It is  demonstrated that expert knowledge has still to be introduced in 30 

statistical models to produce reliable landslide susceptibility maps. 31 

Keywords: Landslide, Susceptibility assessment, GIS, Statistical modeling, Weights of evidence, Expert 32 

knowledge, French Alps 33 

 34 

 35 
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 38 
 39 

1. Introduction 40 

Assessing landslide hazard and risk with a minimum set of data, a reproducible methodology 41 

and GIS techniques, is a challenge for earth-scientists, government authorities and resource 42 

managers (Glade and Crozier, 2005). Landslide hazard assessment (LHA) estimates the 43 

probability of occurrence of landslides in a territory within a reference period (Varnes, 1984; 44 

Fell, 1994; van Westen et al., 2006). It is deduced from information on (i) landslide 45 

susceptibility expressed as the spatial correlation between predisposing terrain factors (slope, 46 

land use, superficial deposits, etc.) and the distribution of observed landslides in a territory 47 

(Brabb, 1984; Crozier and Glade, 2005) and, (ii) the temporal dimension of landslides related 48 

to the occurrence of triggering events (rainfalls, earthquakes, etc.). In most cases, landslide 49 

frequencies are difficult to obtain due to the absence of historical landslide records. Therefore, 50 

LHA is most of the time restricted to landslide susceptibility assessment (LSA) which is 51 

considered as a ‘relative hazard assessment’, and does not refer to the time dimension of 52 

landslides (Sorriso Valvo, 2002). Landslide susceptibility maps can be obtained by two 53 
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categories of methods: (i) direct approaches based on expert knowledge of the target area, and 54 

(ii) indirect approaches based on statistical algorithms.  55 

The direct approaches are based on expert knowledge about the relation between the 56 

occurrences of landslides and their hypothesized predisposing factors. The approach 57 

necessitates the definition of expert rules leading to different susceptibility degrees (Soeters 58 

and van Westen, 1996). In France, the official methodology to assess landslide susceptibility 59 

and hazard is based on direct approaches. The methodology, called ‘Plans de Prévention des 60 

Risques’ (MATE/MATL, 1999) has been applied at 1:10,000 scale. 61 

The main concept of the indirect approaches is that the controlling factors of future landslides 62 

are the same as those observed in the past (Carrara et al., 1995). Indirect approaches are based 63 

on statistical conditional analyses and on the comparisons of landslide inventories and 64 

predisposing terrain factors. The methods are applied at the scale of the terrain unit (TU) 65 

corresponding to a portion of hillslope possessing a set of predisposing factors, which differs 66 

from that of the adjacent units with definable boundaries (Hansen, 1984; Carrara et al., 1995). 67 

Indirect approaches predict landslide distribution (the response variable, RV) through a set of 68 

a priori independent terrain factors (the predictive variables, PVs).  69 

Several bivariate (certainty factors and weights of evidence) or multivariate (logistic 70 

regression and discriminant analysis) approaches were developed for landslide susceptibility 71 

mapping. A synthesis of the available methods, their applicability and drawbacks, can be 72 

found in Yin and Yan (1988), Carrara et al. (1995), Chung et al. (1995), Soeters and 73 

van Westen (1996), Atkinson and Massari (1998), Aleotti and Chowdury (1999), Guzetti et 74 

al. (1999), Clerici et al. (2002), Dai et al. (2002), van Westen (2004) and van Westen et al. 75 

(2006). In the scientific community it is commonly admitted that statistical analyses are more 76 

appropriate for susceptibility zoning at meso-scales (1:50,000 to 1:25,000) because of their 77 
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potential to minimize expert subjectivity (Soeters and van Westen, 1996; van Westen et al., 78 

2006).  79 

Although the bivariate approaches are considered as more robust and flexible (van Westen et 80 

al., 2003; Süzen and Doruyan, 2004), they present some limitations: 81 

(i) The tendency to over-simplify the (input) thematic data (e.g. predisposing factors) that 82 

condition landslides, by taking only what can be relatively easily mapped or derived 83 

from a DTM (van Westen et al., 2003, 2006).  84 

(ii) The large sensitivity to the quality and accuracy of the thematic data, e.g., imprecision 85 

and incompleteness of landslide information, and limited spatial accuracy of information 86 

on the predisposing factors (Guzzetti et al., 2006). Application of the methods is 87 

relatively limited at large scales because most of thematic data are available only at 88 

meso-scales (1:50,000 to 1:25,000). Especially for most mountain areas a discrepancy 89 

remains between the scale of available data and the scale of landslide occurrence. For 90 

instance, geological maps and land-use maps are available only at scales from 1:50,000 91 

to 1:25,000 for most parts of the French Territory; also, only digital terrain models with 92 

a planimetric resolution of 50 m and a vertical accuracy of 2 to 3 m are available. These 93 

input data are not adapted to the analysis of landslide susceptibility at 1:10,000 scale 94 

(Thiery et al., 2003, 2004).  95 

(iii) The singularity of predisposing factors for each landslide type, which forces us to 96 

analyse them individually in order to have distinct susceptibility maps (Atkinson and 97 

Massari, 1998; Kojima et al., 2000; van Westen et al., 2006).  98 

(iv) The number of landslide events to incorporate in the statistical model in relation to the 99 

size of the study area (Bonham-Carter, 1994; Begueria and Lorente, 1999; van den 100 

Eeckaut et al., 2006).  101 
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(v) The use of statistically independent predictive variables in the application of bivariate 102 

methods. When the influence of a combination of predictive variables on the response 103 

variable is evident, the weight associated to each thematic factor is calculated 104 

independently and combined in a unique equation (Agterberg et al., 1993; Bonham-105 

Carter, 1994). The probabilities computed with this equation may be different from 106 

those calculated directly from the input data. Therefore, applying the method requires to 107 

assume conditional independence (CI) of the dataset (Bonham-Carter et al., 1989; 108 

Agterberg et al., 1993; van Westen, 1993; Agterberg and Cheng, 2002; Thiart et al., 109 

2003).  110 

(vi) The absence of expert opinions if the method is applied by GIS experts and not by earth-111 

scientist. In other words, the model should give satisfactory results in term of degree of 112 

fit, but should also correspond to the ‘real world’ (van Westen et al., 2003, 2006). 113 

Some procedures were proposed to overcome these limitations and increase the robustness of 114 

landslide susceptibility assessments with indirect approaches through: (i) proper validation 115 

and reduction of simulation uncertainty (Chung and Fabbri, 2003; Chung, 2006; Guzzetti et 116 

al., 2006; van den Eeckaut et al., 2006), (ii) reduction of the costs of data acquisition (Greco 117 

et al., 2007), and (iii) introduction of expert knowledge to the statistical models used (van 118 

Westen et al., 2003). 119 

Hence, the aim of this work is to ascertain a reproducible procedure to estimate landslide 120 

susceptibility with a bivariate approach at 1:10,000 scale in a complex mountainous 121 

environment, while limiting the collection of landslide and thematic data. The procedure 122 

adopted for this research includes four steps: 123 

(i) Identification of the best way to calculate landslide probabilities based on the 124 

characteristics of the landslide inventory. 125 
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(ii) Identification of the most relevant combination of predisposing terrain factors avoiding 126 

conditional dependence. 127 

(iii) Evaluation of the degree of model fit by statistical tests and comparisons with the 128 

landslide inventory. 129 

(iv) Evaluation of the best indirect susceptibility map in comparison with a direct 130 

susceptibility map. 131 

The procedure was applied to the north-facing hillslope of the Barcelonnette Basin (South 132 

French Alps) affected by several landslide types (Maquaire et al., 2003; Thiery et al., 2005; 133 

Malet et al., 2005). 134 

 135 

2. Geomorphological settings 136 

2.1. Geomorphology of the Barcelonnette Basin 137 

The Barcelonnette Basin is representative of climatic, lithological, geomorphological and 138 

land-use conditions observed in the South French Alps, and is highly affected by landslide 139 

hazards (Flageollet et al., 1999). It is situated in the dry intra-Alpine zone, characterized by a 140 

mountain climate with a Mediterranean influence. Highly variable rainfall amounts (400 to 141 

1300 mm yr-1) occur with intense storms during summer and autumn. However, as pointed 142 

out by Flageollet et al. (1999), landslides there are not controlled only by climatic conditions; 143 

slope instability can occur after relatively dry periods whether or not preceded by heavy 144 

rainfalls. 145 

The test site extends over an area of about 100 km2. Located on the north-facing hillslope 146 

(Fig. 1), it is characterized by a large variety of active landslides and is representative of the 147 

environmental conditions observed in the Barcelonnette Basin. The Ubaye River depicts the 148 

northern boundary, while the Sauze torrent delimits the western boundary; the southern and 149 
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eastern boundaries are represented by high crests of limestones and sandstones. The test site 150 

can be subdivided into two geomorphological units separated by a major fault in a north/south 151 

direction. The eastern unit is dominated by allochthonous sandstones outcrops, while the 152 

western unit is composed of autochthonous Callovo-Oxfordian marls (BRGM, 1974; 153 

Flageollet et al., 1999; Maquaire et al., 2003). 154 

The eastern unit (ca. 40 km2) is drained by the Abriès torrent which cuts an asymmetric valley 155 

in highly fractured sandstones. The gentle slopes there (10-30°) are covered by moraine 156 

deposits of 2 to 15 m thick and by coniferous forests or grasslands (Fig. 2); these slopes are 157 

affected by shallow rotational or translational slides triggered by the undercutting of torrents. 158 

In contrast, the steep slopes (30-70°) are characterized by bare soils and affected by rockfalls 159 

on sandstones. 160 

The western unit (ca. 60 km2), drained by four main torrents, presents an irregular topography 161 

of alternating steep convex slopes, planar slopes and hummocky slopes. The steepest convex 162 

slopes (>35°) are carved in black marl outcrops, and are very commonly gullied into badlands, 163 

or affected by rock-block or complex slides (Malet et al., 2005). The planar slopes (5-30°) 164 

composed of thick moraine deposits (from 6 to 20 m), are very often cultivated and affected 165 

by rotational or translational slides. The hummocky slopes are generally covered by forests 166 

and/or natural grasslands (Fig. 2), and affected by large relict landslides and/or surficial soil 167 

creep. Most landslides within the western unit are located along streams or on gentle slopes, 168 

where the contact of moraine deposits and black marls creates a hydrological discontinuity 169 

favourable for slope movements. 170 

 171 

2.2. Landslide data 172 
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A landslide inventory was compiled at 1:10,000 scale through air photo-interpretation, field 173 

surveys and analysis of literature in years 2002 and 2003 by a geomorphologist (Thiery et al., 174 

2003, 2004). Air-photo interpretation was carried out on 1:25,000-scale photographs (year 175 

2000) issued from the French Geographical Institute. Fieldwork was carried out between July 176 

2002 and July 2003 to complete the photo-interpretation. To reduce uncertainty linked to an 177 

expert in charge of mapping (Ardizzone et al., 2002; Wills and Mc Crinck, 2002), two 178 

degrees of confidence were defined for the photo-interpretation and information of available 179 

literature (landslide recognition or not), while three degrees of confidence (high, medium and 180 

low) were distinguished for the field survey. A mapping confidence index (MCI) in three 181 

classes (high, medium and low) was derived. Three hundred fourteen landslides were 182 

recognized, with 66% classified with a high MCI , 27% with a medium MCI  and 7% with a 183 

low MCI. Among the 207 landslides with a high MCI, 10% are considered as relict, 8% are 184 

considered as latent, and 82% are considered as active. The active landslides can be grouped 185 

in three types (Table 1) according to the typology of Dikau et al. (1996).  186 

Figs. 3 and 4 present the morphology and morphometric/environmental characteristics of the 187 

landslides. Shallow translational slides are relatively small and mainly located on steep slopes 188 

along streams. They occur on the weathered bedrock or in moraine deposits. Rotational slides 189 

are located along streams but more on gentle slopes than the shallow translational slides. They 190 

occur principally in moraine deposits or at the contact with the bedrock. Translational slides 191 

are located more on gentle slopes at the contact with the bedrock, and their sizes are very 192 

variable (Table 1).  193 

The boundaries of active landslides were classified into two zones and digitized: (i) the 194 

landslide triggering zone (LTZ) and (ii) the landslide accumulation zone (LAZ, Fig. 3). The 195 

geometrical (perimeter, area, and maximal length) and geomorphological characteristics 196 

(typology and state of activity) were stored in a GIS database.  197 
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As the aim of this study is to locate areas prone to failures, only the LTZ of active landslides 198 

were introduced in the analysis (Atkinson and Massari, 1998; van den Eeckhaut et al., 2006). 199 

In statistical models, the total area of landslides (van Westen et al., 2003) or only the 200 

triggering area can be used to compute probabilities of landsliding (Chung and Fabbri, 2003; 201 

Remondo et al., 2003). According to the characteristics of the landslides, especially their run-202 

out distances, a severe bias can occur when the landslide accumulation zone is taken into 203 

account in the model. Indeed, several classes of input data may be included in the probability 204 

calculation process, while in reality they were not the most important controlling factors. 205 

Therefore, Atkinson and Massari (1998), Sterlacchini et al. (2004), and van den Eeckhaut et 206 

al. (2006) proposed to use only one cell at the centre of the triggering zone. This procedure 207 

offers some advantages because it does not take into account the landslide boundaries and it 208 

does not attribute a too large influence to the largest landslides which exhibit more diversity 209 

in predisposing factors. However, if the results based on one cell at the centre of the triggering 210 

zone can be satisfactory, the final probabilities are not necessarily representative of the 211 

predisposing conditions at the onset of the landslide. Defining the most appropriate part of the 212 

landslide to compute the probabilities is therefore a prerequisite to understand how it 213 

influences the model results. 214 

 215 

2.3. Landslide predisposing factors 216 

The statistical analysis of the landslide inventory has outlined the main predisposing factors 217 

(predictive variable) to introduce in the statistical model. The thematic data (Table 2) are 218 

derived from (i) available national databases, (ii) air-photo interpretation analyses, (iii) 219 

satellite imagery analyses, and (iv) field surveys. The DTM (10-m resolution) was constructed 220 

by the kriging interpolation applied to a network of triplets, obtained from the digitisation of 221 
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contour lines in 1:25,000-scale topographic maps which were enlarged by the French 222 

Geographical Institute into 1:10,000 scale. Its accuracy is of about ±1 m for the horizontal 223 

component, and ±2 to 10 m for the vertical component, depending on relief.  224 

The slope gradient map and the slope curvature map were derived from the DTM. The 225 

lithological map is based on the main lithological units described in a geological map 226 

produced by the French Geological Survey (BRGM, 1974) at 1:50,000 scale, and was 227 

completed by fieldwork. The surficial formation map was obtained by the segmentation of the 228 

landscape into homogeneous macro-areas closely associated with sediment facies (van 229 

Westen, 1993). The surficial formation thickness map was derived from direct observations of 230 

outcrops along streams and steep slopes. The land-use map was produced by the analysis of a 231 

Landsat ETM+ image (year 2000) fused with a SPOT-P image (year 1994); the boundaries of 232 

homogeneous land-use units were corrected by air-photo interpretation. 233 

 234 

2.4. Direct landslide susceptibility map 235 

The direct landslide susceptibility map was elaborated with the French legal procedure for 236 

landslide hazard and risk at 1:10,000 scale (MATE/MATL, 1999; Leroi, 2005). This 237 

methodology requires a global overview of the area to identify sectors with homogeneous 238 

environmental characteristics for each landslide type. The methodology advises us to take into 239 

account the possibilities of landslide development for the forthcoming one hundred years. 240 

Four degrees of susceptibility were defined. The expert rules used to define the direct 241 

susceptibility classes are detailed in Table 3. 242 

 243 

3. Methodology and strategy 244 
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3.1. Weights-of-evidence (WOE): background 245 

3.1.1. WOE method 246 

Weights-of-evidence (WOE) is a quantitative ‘data-driven’ method used to combine datasets. 247 

The method, first applied in medicine (Spiegelhater and Kill-Jones, 1984) and geology 248 

(Bonham-Carter, 1994), uses the log-linear form of the Bayesian probability model to 249 

estimate the relative importance of evidence by statistical means. This method was first 250 

applied to the identification of mineral potential (Bonham-Carter et al., 1990) and then to 251 

landslide susceptibility mapping (van Westen, 1993; van Westen et al., 2003; Süzen and 252 

Doruyan, 2004). 253 

Prior probabilities (PriorP) and posterior probabilities (PostP) are the most important concepts 254 

in the Bayesian approach. PriorP is the probability that a TU (terrain unit) contains the RV 255 

(response variable) before taking PVs (predictive variables) into account, and its estimation is 256 

based on the RV density for the study area. This initial estimate can be modified by the 257 

introduction of other evidences. PostP is then estimated according to the RV density for each 258 

class of the PV. The model is based on the calculation of positive W+ and negative W- 259 

weights, whose magnitude depends on the observed association between the RV and the PV. 260 

)RV|(

)RV|(ln
−

=
+

BP

BPW  (1) 261 

)RV|(

)RV|(ln
−−

−

=
−

BP

BPW    (2) 262 
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In Eqs. (1) and (2), B is a class of the PV and the overbar sign ‘–’ represents the absence of 263 

the class and/or RV. The ratio of the probability of RV presence to that of RV absence is 264 

called odds (Bonham-Carter, 1994). The WOE for all PVs is combined using the natural 265 

logarithm of the odds (logit), in order to estimate the conditional probability of landslide 266 

occurrence. When several PVs are combined, areas with high or low weights correspond to 267 

high or low probabilities of presence of the RV. 268 

 269 

3.1.2. Hypothesis of the WOE method 270 

As mentioned by Bonham-Carter (1994), the results of the WOE method are strongly 271 

dependent on the number of events introduced in the model (e.g. on the estimation of 272 

probabilities) and on the quality of the landslide inventory map. Therefore, probabilities are 273 

very low if the area is characterized by rare events, and the results have to be interpreted 274 

cautiously. Nevertheless, if the study area is covered by reasonable samples of events, the 275 

estimated weights can be stable and realistic.  276 

The WOE method requires the assumption that input maps are conditionally independent. To 277 

meet this need, many statistical tests may be used (e.g., χ2-test, omnibus test, and new 278 

omnibus test). A detailed review of the performance of these tests can be found in Agterberg 279 

and Cheng (2002) and Thiart et al. (2003). In case of violation of conditional independence, 280 

PVs which are dependent can be combined into a neo-variable (nPV) which is then used in 281 

the WOE method (Thiart et al., 2003). The weighted-logistic-regression method (WLR) may 282 

also be used to bypass the violation of conditional independence. However, if the density of 283 

the RV is low, this method severely underestimates PostP, and a number of the RV smaller 284 

than the observed value can be predicted (Thiart et al., 2003). Consequently, specific 285 
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procedures have to be used on large areas characterized by a low density of the RV (Begueria 286 

and Lorente, 1999; van den Eeckhaut et al., 2006). 287 

 288 

3.2. Employed methodology 289 

The employed methodology uses the main steps described by van Westen et al. (2003) and 290 

Guzzetti et al. (2006), i.e.: (i) aptitude of thematic data to construct a model, (ii) evaluation of 291 

the uncertainty level of probabilities, (iii) determination of the degree of model fit 292 

(performance) to an indirect landslide susceptibility map, and (iv) evaluation of the indirect 293 

landslide susceptibility map in comparison with a direct susceptibility map.  294 

The first three steps were tested on a ‘sampling area’ of the study site (north-facing hillslope 295 

of the Barcelonnette Basin) characterized by the occurrence of the three types of landslides 296 

(Fig. 1). This test area extends over about 11 km2 and is representative of the western and 297 

eastern terrain units described previously. The upper parts of the hillslopes were not included 298 

in the ‘sampling area’ because the environmental conditions are not representative of the 299 

landslides introduced in the analysis.  300 

The probabilities of future landslide occurrence are calculated for each landslide type (only 301 

LTZs are introduced in the analysis) and a susceptibility map is created after the classification 302 

of PostP. Susceptibility classes were compared to the observed LTZs in the ‘sampling area’. If 303 

results were satisfactory, the statistical model was applied to the whole area with the same 304 

procedure (Fig. 5). Then, the final indirect landslide susceptibility map was assessed with the 305 

direct landslide susceptibility map with a confusing matrix and several statistical accuracy 306 

tests. Thus, a careful confrontation with a reference map was performed at each step. The 307 

statistical model was implemented in ArcView 3.2® through the ArcSDM extension (Kemp 308 

et al., 2001), and the size of the calculation cell was 10 m. 309 
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 310 

3.2.1. Identification of the response variable (RV) 311 

Bayesian models are very sensitive to the number and quality of the RV. Over large areas 312 

characterized by complex thematic data, it can be very difficult to identify LTZs with high 313 

confidence. To deal with these limitations, the first two steps of the procedure are: (i) to 314 

identify the minimum number of cells representing the variability of the predisposing factors 315 

within LTZs, and (ii) to identify the best spatial location of cells to represent the variability of 316 

the predisposing factors within LTZs. For each landslide type, the same number of cells was 317 

introduced at each calibration phase. The initial number of cells in the LTZs examined in this 318 

study is 460. 319 

The minimal number of cells to introduce in the model was estimated by a random sampling 320 

(10 to 100%) of the LTZ cells of each landslide type. The best spatial location of cells was 321 

estimated by selecting several cells’ locations within the LTZs (Table 4). The computations 322 

were performed with a set of four a priori ‘constant’ thematic maps of PVs (slope gradient, 323 

surficial deposits, lithology, and land use). A landslide susceptibility map was then produced 324 

for each combination. The PostP distribution was analysed by expert judgment to define 325 

susceptibility classes. In former studies, the number of classes varied from two (e.g. stable 326 

and unstable; Begueria and Lorente, 1999) to six (null, very low, low, moderate, high, and 327 

very high susceptibility; Chacón et al., 2006). In this study, landslide susceptibility was 328 

classified into four (null, low, moderate, and high) for comparison to the direct landslide 329 

susceptibility map with the four classes. The relative error ξ  was computed to evaluate the 330 

performance of the simulations: 331 

L

LL

O
P Οξ −=               (3) 332 
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where OL is the number of the observed landslide cells representing the LTZ of active 333 

landslides, and PL is the number of the predicted landslide cells with the high susceptibility 334 

class. If the relative error decreases with the introduction of a RV, this RV is retained for the 335 

next simulation step (Fig. 5). 336 

 337 

3.2.2. Identification of the predictive variables (PVs) 338 

The performance of the PVs introduced successively in the statistical model was evaluated in 339 

terms of CI violation and distribution of PostP for each landslide type. Computations were 340 

performed with the best RV dataset identified previously. The procedure is as follows: 341 

(i) Selection of the best PV dataset by expert judgement which takes into account the 342 

predisposing factors and classes associated with each landslide type; 343 

(ii) Analysis of CI violation between each PV and the RV. As the χ2-test is very sensitive to 344 

the density of the RV introduced in the model (Thiart et al., 2003) and may increase the 345 

measure of the dependence between two PVs by 25 to 30% (Pistocchi et al., 2002; 346 

Dumolard et al., 2003), the Cramer’s V coefficient (Kendall and Stuart, 1979) is 347 

calculated. The Cramer's V is considered as the more robust association test because of 348 

its possibility to assess large and complex contingency tables (Howell, 1997). The 349 

coefficient provides a standardized measure in the range [0-1]; the closer V → 1, the 350 

stronger is the association between two PVs.  351 

(iii) Exploration of the structure of the association between PV classes and the RV by a 352 

multiple correspondence analysis (MCA), and definition of the most significant classes 353 

of a PV to represent landslide occurrences. 354 

(iv) Introduction of a neo-variable (nPV) with geomorphological meaning (van Westen et 355 

al., 2003) in the statistical model by combining PVs causing CI violations. 356 
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(v) Finally, the performance of each PV and nPV is assessed by introducing the variables 357 

iteratively in the statistical model. If the relative error does not decrease despite the 358 

addition of a PV or an nPV, the simulation is rejected; whereas, if the relative error 359 

decreases, the simulation is accepted. 360 

 361 

3.2.3. Evaluation of performance of the indirect susceptibility maps 362 

The performance of the indirect susceptibility maps was assessed for the total study area with 363 

the best combination of PVs and nPVs (Figs. 1 and 5). Both statistical and expert evaluations 364 

were performed successively. 365 

First, the weights obtained for the classes of the best PVs and nPVs are applied to the total 366 

study area (Figs. 1 and 5) and the susceptibility classes were defined with the same thresholds 367 

in the cumulative curves. The degree of model fit was evaluated by analysing the ξ  value for 368 

all the LTZs observed in the total study area. If ξ  is low (<0.3), the statistical model is 369 

considered as robust. Then, the confidence of PostP was evaluated by the Student-t test. This 370 

test uses the variance of PostP to create a normalized value to estimate the certainty of the 371 

calculation with the null hypothesis H0: PostP = 0. The normalized value has to be equal or 372 

larger than 1.64 to have a certainty calculation of 95% (Bonham-Carter, 1994; Davis, 2002). 373 

Second, the indirect susceptibility map was compared with the direct susceptibility map. 374 

Because the direct susceptibility map had been produced by the French Official Method of 375 

Landslide Risk Zoning (MATE/METL, 1999) independently of the landslide types, a unified 376 

indirect susceptibility map was produced by combining the indirect susceptibility maps 377 

obtained for the three landslide types. The four classes of the indirect susceptibility maps 378 

were merged, and for each cell, more weight was systematically given to the higher 379 

susceptibility class (Fig. 8). Confusion matrices were calculated and several statistical tests 380 
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were performed for the direct and unified indirect susceptibility maps (Tables 5 and 6). The 381 

Kappa (Κ) coefficient was used to assess the improvement of the model predictions over 382 

chance (Table 6). A Κ value of 1 is equivalent to a perfect agreement between the model and 383 

the reference map. Κ values higher than 0.4 signify a good statistical agreement between 384 

maps (Fielding and Bell, 1997). 385 

 386 

4. Results 387 

4.1. Best response variable 388 

The minimum number of cells representing the variability of the predisposing factors within 389 

the LTZs was identified from the 460 cells. The relation between the number of LTZs cells 390 

introduced in the model and ξ for each landslide type is presented in Fig. 7. A threshold 391 

comparable to 50% of the 460 cells was identified to stabilize ξ for the ‘sampling area’, and 392 

the simulations with RV-3 to RV-7 were performed with the 230 cells. Table 4 indicates that 393 

the simulations with RV-2 and RV-3 are not acceptable, confirming that using only one or a 394 

few cells around the centre of a LTZ mass underestimates PriorP and PostP. Table 4 also 395 

indicates the influence of LTZ sizes on the results, and highlights that the best results are 396 

obtained with the use of the cells representing the most frequent combination of PVs observed 397 

in LTZs (RV-7). 398 

 399 

4.2. Best predictive variables 400 

Statistical tests indicate CI violation between the PVs. As an example, the values of the χ2-test 401 

and the Cramer’s V coefficient for the translational slides are detailed in Table 7. The 402 
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Cramer’s V coefficient indicates a low association between the variables except for SLO-CUR 403 

and SLO-SF. The correlation SLO-CUR is mainly related to the location of RV-7 cells on 404 

slopes between 15° and 35°, which cover more or less 50% of the ‘sampling area’ and present 405 

planar slopes. Therefore, the information contained in these two PVs is redundant and 406 

combining these variables has no geomorphological meaning. Consequently, the PV CUR 407 

was not introduced in the statistical model. In contrast, the combination of variables with a 408 

geomorphological meaning (for instance SLO and SF) was introduced. 409 

The first four axes of the MCA (multiple correspondence analysis) explain 40.5%, 49.3% and 410 

46.0% of the total variance for the shallow translational slides, rotational slides and 411 

translational slides, respectively. Despite the low contribution of each axis (<20%) on the 412 

cumulated variance, some useful information is still highlighted by the MCA. For example, 413 

the axes F1, F2 and F3 of the translational slides confirm the relation between SLO and the 414 

surficial formations (SF and TSF). Thus, the MCA gives some indications on the possible 415 

combination of classes for each PV, and allows us to justify the definition of an nPV with 416 

both a geomorphological meaning and a low redundancy of information. Table 8 summarizes 417 

the results of the MCA for the three landslide types. Fig. 8 details the cumulative curves 418 

associated with each WOE simulations and the different thresholds to define the four 419 

susceptibility classes for each landslide type. Fig. 9 presents the susceptibility maps obtained 420 

for the shallow translational slides. Simple geomorphological information given by the nPV 421 

increases the performance of the models. For example, for the shallow translational slides, the 422 

best simulation carried out with the non-combined PVs (SLO, FS, LIT, and LAD) is 423 

characterized by a ξ  value of 0.45 (Table 6), while the best simulation with the introduction of 424 

nPV-1 (which combines slope gradient classes and surficial formation types, Table 9) is 425 

characterized by a ξ value of 0.14 (Table 9). For the simulations performed in the ‘sampling 426 
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area’, ξ  values are 0.18, 0.16, and 0.14 for the shallow translational slides, rotational slides, 427 

and translational slides, respectively (Table 9). 428 

 429 

4.3. Evaluation of indirect susceptibility maps 430 

Fig. 10 presents the indirect susceptibility maps for each landslide type obtained by applying 431 

the PostP of the ‘sampling area’ to the total study area. The maps show a good agreement 432 

with the landslide inventory map and are characterized by ξ  values of 0.22, 0.25 and 0.23 for 433 

the shallow translational slides, the rotational slides, and the translational slides, respectively 434 

(Table 10). The surfaces of high, moderate and low susceptibility are 4.9 km2, 1.6 km2 and 1.6 435 

km2 for the shallow translational slides, 12.3 km2, 5.1 km2 and 6.3 km2 for the translational 436 

slides, 3.8 km2, 2.2 km2 and 3.2 km2 for the rotational slides, and 12.3 km2, 5.1 km2 and 6.3 437 

km2 for the translational slides, respectively. The certainty test indicates a percentage of 438 

presence of the high susceptibility class in the confidence zone of 70.8%, 88.7% and 87.5% 439 

for the shallow translational slides, rotational slides, and translational slides, respectively. 440 

Consequently the high susceptibility classes simulated with the statistical models 441 

incorporating an nPV are relevant from a statistical viewpoint. 442 

The unified indirect susceptibility map (Fig. 11) was then compared to the direct 443 

susceptibility map (Fig. 12). The former map identifies 17.7 km2, 5.8 km2 and 6.9 km2 of the 444 

high, medium and low susceptibility classes, respectively (Fig. 11). The confusion matrix 445 

(Table 11) indicates a good accuracy between the direct and indirect maps, especially for the 446 

high susceptibility class. Fig. 13 presents the observed differences between the two maps 447 

concerning the high susceptibly class.  448 

 449 
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5. Discussion 450 

The proposed methodology to assess landslide susceptibility at 1:10 000 scale is based on a 451 

bivariate method calibrated on a ‘sampling area’ and validated on a larger area. To obtain a 452 

robust and reproducible procedure, simple and easy-to-obtain thematic data with a high cost-453 

benefit ratio were used. The thematic maps introduced in the statistical model represent slope 454 

gradient, slope curvature, surficial formations, thickness of surficial formations, lithology, 455 

land use and streams. Our work indicates that introducing only simple PVs in the statistical 456 

model does not satisfactorily recognise landslide-prone areas in a complex environment. 457 

Therefore, the concept of nPV, the use of the main set of predisposing factors for one 458 

landslide type, was employed. In our case this set is essentially represented by the 459 

combination of the thematic classes of slope gradients and surficial deposits. An nPV is 460 

identified by analysing the structure of the relationships between the landslide types, slope 461 

gradients and surficial formations. The nPV significantly increases the performance of the 462 

three statistical models, as pointed out by the decrease of the ξ value from 0.45 to 0.14 for the 463 

shallow translational slides, 0.43 to 0.16 for the rotational slides, and 0.40 to 0.18 for the 464 

translational slides. Evaluation of the statistical model for the total study area shows good 465 

agreement among the indirect susceptibility map, the landslide inventory map, and the direct 466 

susceptibility map. However, to obtain a good agreement, several considerations have to be 467 

pointed out: 468 

(i) Our indirect susceptibility maps represent better the high susceptibility class than the 469 

low to moderate susceptibility classes. Tables 10 and 11 confirm the good agreement of 470 

the indirect susceptibility map with the landslide inventory map and the direct 471 

susceptibility map for the high susceptibility class. The indirect susceptibility maps 472 

underestimate the surfaces of the low and moderate susceptibility classes with Κ  values 473 

of 0.03 and 0.08, respectively. These disagreements are explained by the methodology 474 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

- 21 - 

used to produce the direct and indirect susceptibility maps. On the one hand, rules 475 

relying on expert judgments can take into account (i) some subtle changes in specific 476 

areas which modify the degree of susceptibility, and (ii) the possibility of spatial 477 

evolution of landslides. On the other hand, statistical models were developed in our 478 

study to recognize areas favourable for active LTZs. The calculation processes of such 479 

models are based on binary evidences and are optimized to recognize areas with 480 

identical environmental characteristics, and the procedure of calibration/validation of the 481 

models is dependent on the thresholds observed on the simulated cumulative curves 482 

(Begueria, 2006; van den Eeckhaut et al., 2006). If this classification/validation 483 

procedure is employed, some potentially landslide-prone areas may be overestimated or 484 

underestimated (Begueria, 2006), and consequently the low and moderate susceptibility 485 

classes are not very well identified on the cumulative curve.  486 

(ii) Our indirect susceptibility maps may not take some portion of terrain into account. For 487 

instance, in our study, the portions of terrain with slope gradients lower than 15° are 488 

always considered with a low or null susceptibility, although some of such areas are 489 

prone to landsliding. This discrepancy may be explained by the analysis used to select 490 

the best RV (RV-7) which mathematically increases the weights of the PV combination 491 

corresponding to the LTZs, and by the underestimation of PostP for these slope 492 

gradients because only a few LTZs are located on these slopes. 493 

(iii) On a more general viewpoint, the ‘sampling area’ has to be selected carefully. Indeed, if 494 

the ‘sampling area’ is not sufficiently representative of the environmental conditions of 495 

the total study area, calculations of PriorP and PostP are biased. If the study area is 496 

sufficiently large, a sensitivity analysis on several ‘sampling areas’ with different sizes 497 

and shapes is recommended in order to select the more appropriate area which 498 

represents the total study area (Greco et al., 2007). In our case, the study area has a 499 
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complex topography with two distinct parts and several landslide types. Therefore, the 500 

selection of the ‘sampling area’ was based on geomorphological knowledge of the site. 501 

(iv) Statistical models are very sensitive to the type and number of landslide cells. A 502 

conceptual model has therefore been created for each landslide type, because each type 503 

is controlled by a specific combination of predisposing factors. Furthermore, the quality 504 

of the indirect susceptibility maps depends on the selection of relevant cells representing 505 

the variability of the environmental factors (Greco et al., 2007). 506 

(v) Statistical models are also very sensitive to the thematic data of environmental factors, 507 

and to their potential conditional dependence. Regarding CI violation, the results of the 508 

χ2-test and the value of the V coefficient have to be interpreted with caution, because a 509 

few cells can severely bias the results (Dumolard et al., 2003). These tests are just 510 

informative and they cannot be used in rigorous terms (Pistocchi et al., 2002). 511 

Therefore, instead of not incorporating the cells posing some problems or decreasing the 512 

total number of RV cells, the proposed procedure intends to combine some classes of 513 

the PVs which are conditionally dependent. Indeed, decreasing the number of RV cells 514 

could modify the stability of the model as demonstrated previously. A robust procedure 515 

to follow is to combine an expert judgment with the χ2-test and the V coefficient in a 516 

multiple correspondence analysis, in order to identify the classes of PVs violating CI 517 

and select the classes of PVs to be combined with an nPV with a geomorphological 518 

meaning. As mentioned by van Westen et al. (2003, 2006), expert judgment is very 519 

important in the conception of the statistical model to guide thematic maps towards 520 

geomorphological landslide evidences. Regarding the minimum set of thematic maps, 521 

the different statistical tests used in our study stress the difficulty to map landslide 522 

susceptibility at 1:10,000 scale using only a few variables. Other data sources such as a 523 

more detailed soil thickness map or detailed structural maps (fault map and tectonic 524 
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map) should be used in order to obtain more accurate results. Nevertheless, at this scale 525 

of work and for a large and complex environment, these variables are extremely difficult 526 

to measure because of their high spatial variability. Therefore, they have been often 527 

neglected in susceptibility assessment. 528 

The proposed procedure follows the guidelines suggested by van Westen et al. (2003) and 529 

Guzzetti et al. (2006) for the validation of indirect susceptibility maps. Guzetti et al. (2006) 530 

proposed a set of criteria for ranking and comparing the quality of landslide susceptibility 531 

assessments, i.e., the quality of the input data and the use of different statistical tests. In terms 532 

of these criteria, the susceptibility maps obtained with the procedure used in this study have 533 

the highest quality (level 7). 534 

6. Conclusion 535 

This study has demonstrated the necessity of using specific and adapted procedures for 536 

indirect landslide susceptibility assessment by bivariate methods, especially at 1:10,000 scale, 537 

for complex environments with some uncertainty in collected landslide characteristics. The 538 

proposed procedure, based on a reduced number of thematic data and a ‘sampling area’, 539 

consists of four steps. First, the best response variable RV (e.g. landslide inventory) to be 540 

introduced in the statistical model is defined. This variable may vary according to the 541 

landslide type and the environmental characteristics of the study area. Second, the best PVs 542 

(e.g. terrain predisposing factors) to be used in the statistical model are identified by 543 

minimizing conditional dependence on the basis of statistical tests. The structure of the 544 

statistical relation between RV and PV is studied through multiple correspondence analyses to 545 

identify the class of PVs influencing the location of landslides. Based on the results, neo-546 

predictive variables (nPVs) with geomorphological meanings are proposed, and introduced in 547 

the statistical models. Third, the performance and confidence associated with the simulations 548 
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are evaluated by statistical tests and expert knowledge. Fourth, more appropriate thematic 549 

data and weights identified on the ‘sampling area’ are applied to the total study area. The 550 

results are compared to a direct landslide susceptibility map through a confusion matrix. 551 

The procedure was applied successfully to the north-facing hillslope of the Barcelonnette 552 

Basin. The indirect and direct susceptibility maps are quite similar for the high susceptibility 553 

class with a high classification rate and a good Kappa (Κ) coefficient. 554 

This study has demonstrated that the use of a ‘sampling area’ correctly representing the 555 

geomorphology of a larger area, combined with the use of neo-predictive variables, is 556 

sufficient to calibrate a bivariate statistical model for landslide susceptibility assessment. This 557 

study reinforces the use of bivariate statistical models based on both expert knowledge and 558 

objective calculations for landslide susceptibility assessment, assuming the use of specific 559 

statistical tests if only a few landslide data are available. The proposed procedure has to be 560 

tested in other types of environment in order to verify its spatial robustness. 561 
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Table 1. Morphometric characteristics of active landslides inventoried with a high mapping confidence index 
(MCI). µ  is geometric average; σ  is standard deviation. 

Landslide type Number Depth 
(m) 

Width 
(m) 

Length 
(m) 

Slope of 
LTZ (°) 

Landslide 
size (m2) 

Size of 
LTZ (m2) 

  µ σ µ σ µ σ µ σ µ σ µ σ 
Shallow translational 
slide 50 2 0.6 60 25 77 70 31 9 2766 2389 866 714 

Rotational slide 54 6 3 140 136 118 114 21 9 12527 12971 4601 3947 

Translational slide 88 6.5 4.5 78 70 217 168 21 6 14874 19002 4400 4100 

 

Table 2. Thematic data used in the statistical model.  

Themes Map Source of information and methods used 

Landslide 
inventory Landslide inventory map (LAI) API (air-photo interpretation), field survey, analysis of available 

documents 

Relief 
Slope gradient map (SLO) 
Slope curvature map (CUR) 

DTM elaborated by digitization and interpolation of elevation lines 
extracted from topographical maps (1:10,000)  

Geology 

Lithological map (LIT) 
Surficial formation map (SF) 
Thickness map (TSF) 
Bedding map (BED) 

Analysis of geological map, field survey 
Analysis of geological and geomorphological maps, field survey 
Field survey 
Analysis of geological map, field survey 

Hydrology Distance to stream map (HYD) API, analysis of topographical maps 

Landuse Landuse map (LAD) SIA (satellite imagery analysis), API, field survey 

 

Table 3. Expert rules and associated environmental conditions used to define the direct susceptibility map. SLO: 
slope gradient; LAD: land use; CUR: slope curvature. 

 

 

 

Susceptibility class Expert rule Environmental conditions 

S0: 
no susceptibility 

Environmental conditions favourable to slope 
stability. No possibility of landslide developments 
for the next one hundred years. 

SLO: 0-10° 
LAD: arable land, permanent crop 

S1: 
low susceptibility 

Environmental conditions are slightly favourable to 
slope instability. Low possibility of landslide 
developments for the next one hundred years. Future 
human and socio-economic developments of the area 
are possible and subject to specific attention. 

SLO: 10-20° 
LAD: pasture, grassland 
CUR: moderate presence of topographic  
irregularities 

S2: 
moderate susceptibility 

Environmental conditions are moderately favourable 
to slope instability. Moderate possibilities of 
landslide developments for the next one hundred 
years. Mitigation works are essential for future 
human and socio-ecomonic developments of the 
area. 

SLO: 20-30° 
LAD: pasture, grassland, forests lowly 
maintained 
CUR: high presence of  topographic  
irregularities ,  hummocky topography  

S3: 
high susceptibility 

Environmental conditions are very favourable to 
slope instability. High possibility of landslide 
developments for the next one hundred years. Future 
human and socio-ecomonic developments of the area 
are impossible. 

SLO: > 30° 
LAD: landuse highly deteriorated, bare 
soils, forests not maintained 
CUR: very hummocky topography 
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Table 4. Characteristics of the response variable (RV) introduced in the statistical model to identify the most 
relevant spatial locations of cells to represent the variability of predisposing factors within LTZs, and relative 
error associated with the simulations. The simulations were performed with the predictive variables (PVs) SLO, 
SF, LIT and LAND (Table 2). STS: shallow translational slides; RS: rotational slides; TS: translational s lides. 

Response variable (RV) Characteristics of the response variable  Relative error ξ (−) 
  STS RS TS 

RV-1 Use of all (460) cells of the landslide triggering zones (LTZs) 0.50 0.54 0.45 
RV-2 Use of the centre of mass of each LTZ (e.g. one cell per LTZ) 0.76 0.73 0.74 
RV-3 Use of the total number of cells in a radius of 10 m around RV-2  

(e.g. 230 cells) 
0.57 0.60 0.49 

RV-4 Use of the total number of cells of small LTZs 
(mean size: TS: 215 m2; RS: 260 m2; STS: 60 m2) 

0.64 0.69 0.69 

RV-5 Use of the total number of cells of medium-size LTZs 
(mean size: TS: 400 m2; RS: 450 m2; STS: 65 m2) 

0.58 0.62 0.52 

RV-6 Use of the total number of cells of large LTZs 
(mean size: TS: 650 m2; RS: 640 m2; STS: 190 m2) 

0.53 0.54 0.46 

RV-7 Use of the cells representing the most frequent combination of PVs 
observed in each LTZ (e.g. 230 cells) 

0.45 0.43 0.40 

 

 

Table 5. Confusion matrix. a: true positives; b: false positives; c: false negatives; d: true negatives. 

Observed 
 

X1 X0 
X’1 A b Predicted 
X’0 C d 

 

Table 6. Statistics derived from the confusion matrix. N: number of cells  in the study area. a: true positives; b: 
false positives; c: false negatives; d: true negatives. 

Correct classification rate (a + d ) / N Proportion of correctly classified observations 

Misclassification rate (b + c) / N Proportion of incorrectly classified observations 

Sensitivity a  / (a + c) Proportion of positive cases correctly predicted 

Specificity d / (b + d) Proportion of negative cases correctly predicted 

Kappa (Κ) coefficient [(a + d) - (((a + c)(a + b) + (b + d)(c + d) ) / 
N)] / [N - (((a + c)(a + b)+(b + d)(c + d)) / N] 

Proportion of specific agreement 
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Table 7. Example of association measures between RV-7 and PVs for the translational slides. The PVs CUR, 
HYD and BED are not introduced in the model because there is no causal relation between the occurrence of the 
translational slides and these PVs. The bold font indicates the PV used to build an nPV. χ2-test: from left to right, 
calculated χ2, theoretical χ2, and degree of freedom. The grey-coloured box represents the conditional 
dependence between PVs and the null hypothesis H0 rejected for a level of significance α  = 0.05. Cramer’s V 
coefficient: the bold font indicates moderate to high association between the variables. 

 

 

 

Table 8. Contribution of PVs on the explained variance of the axes F1 to F4 for three landslide types. The most 
contributive PVs for each axis are indicated in grey and are used to define nPVs. The classes chosen to build 
nPVs are detailed in the last column. 

 SLO LIT SF TSF LAD CUR HYD BED Explained 
variance 
(%) 

Structure of nPVs 

Shallow translational slides 
F1 25.6 18.6 19.1 3.2 15.3 0.1 0.1 18.2 13.1 

F2 10.3 6.9 5.9 21.5 25.9 3.6 0.2 25.6 22.7 

F3 18.4 16.5 6.9 25.0 16.4 2.0 10.4 4.5 32 

F4 21.64 3.3 10.0 28.1 28.5 7.4 0.7 0.3 40.5 

nPV-1: SLO (15-25°, 25-35°, 35-45°, 
45-55°) + SF (colluvium, scree, moraine 
deposit) 

Rotational slides 

F1 33.1 17.2 24.9 3.0 21.0 0.6 0.05 - 16.4 

F2 24.9 3.8 0.8 34.2 7.8 19.7 2.4 - 28.4 

F3 19.8 17.0 6.7 29.7 9.2 11.2 6.4 - 39.8 

F4 40.9 0.9 4.5 22.5 20.6 0.7 10.0 - 49.3 

nPV-3: SLO (10-20°, 20-30°, 30-40°) + 
SF (all classes) 

Translational slides 
F1 37.1 0.4 25.6 21.1 15.7 - - - 12.9 

F2 36.8 3.1 6.3 29.9 20.6 - - - 25.3 

F3 39.9 0.1 12.2 33.8 13.7 - - - 36.1 

F4 24.3 2.4 25.7 16.7 30.8 - - - 46.0 

nPV-3: SLO (5-15°, 15-25°, 25-35°,  
35-45°) + SF (moraine deposit)  
 
nPV-4: SLO (25-35°, 35-45°) + SF 
(colluvium or weathered marl) 

 

PV LIT SF TSF LAD CUR 

χ2 2.6    12.5     (6) 33.1    21    (12) 104.3   28.8    (18) 75.5    36.4     (24) 81.6     21     (12) SLO 

V 0.11 0.42 0.26 0.29 0.41 

χ2 - 0.2    5.9     (2) 5.7    7.8    (3) 0.2     9.5    (4) 1.2    5.9    (2) LIT 

V - 0 0.15 0.03 0.07 

χ2 - - 9.6    12.5     (6) 35.3    15.5     (8) 7.2    9.4    (6) SF 

V - - 0.14 0.27 0.12 

χ2 - - - 31.8    21    (12) 55.7    12.6    (6) TSF 

V - - - 0.2 0.38 

χ2 - - - - 24.5    9.5     (4) LAD 

V - - - - 0.23 
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Table 9. Relative error ξ  and CI results  for the best combination of PVs and nPVs 

Landslide type Combination ξ χ2 -test V-coefficient 

nPV-1 + LAD 0.40 Yes Low 
nPV-1 + LAD + HYD 0.35 Yes Low 
nPV-1 + LAD + HYD + CUR 0.21 Yes Low 

Shallow translational 
slides (STS) 

nPV-1 + LAD + HYD + CUR + BED 0.14 Yes Low 
nPV-2 + LAD 0.21 Yes Low 
nPV-2 + LAD + HYD 0.18 Yes Low 

Rotational slides (RS) 

nPV-2 + LAD + HYD + CUR 0.16 Yes Low 
nPV-3 + LIT 0.35 Yes Low Translational slides 

(TS) nPV-3 + LIT + LAD 0.18 Yes Low 

 

 

 

 

 

Table 10. Relative error ξ  of the best simulations for the ‘sampling area’ and the total study area. Results are 
indicated for the LTZ and the total area of landslide (L). Simulations are computed with RV-7. 

STS  
(nPV-1 + LAD + HYD + CUR 
+ BED) 

RS 
(nPV-2 + LAD + HYD + CUR) 

TS 
(nPV-3 + LIT + LAD) 

 

LTZ L LTZ L LTZ L 

ξ  : ‘sampling area’ 0.14 0.09 0.16 0.34 0.18 0.41 

ξ  : total study area 0.22 0.26 0.21 0.33 0.23 0.47 

 

 
Table 11. Statistical accuracy tests between the indirect and direct susceptibility maps. ccr is the correct 
classification rate; mcr is misclassification rate. 

Susceptibility class  
Null Low Moderate High Global 

ccr 0.73 0.81 0.85 0.91 0.61 
mcr 0.27 0.19 0.15 0.09 0.39 
sensitivity 0.87 0.18 0.08 0.80 0.61 

specificity 0.39 0.89 0.95 0.93 0.89 
Kappa Κ  0.36 0.08 0.03 0.43 0.41 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 - 1 - 

 
 

Fig. 1. Shaded relief map of the north-facing hillslope of the Barcelonnette Bas in and distribution of landslides. 

Fig. 2. Landuse map of the north-fac ing hills lope of the Barcelonnette Basin. 

Fig. 3. Simp lified geological map (A) and observed landslide types in the Barcelonnette Basin: (B) shallow 
translational slide in the Abriès Torrent; (C) rotational s lide in the Poche Torrent; and (D) translational slide in 
the Bois Noir catchment. 

Fig. 4. Characteristics of the active landslides observed in the Barcelonnette Basin. 

Fig. 5. Strategy for susceptib ility assessment with the bivariate WOE model at 1:10,000 scale. 

Fig. 6. Distribution of landslides and environmental characteristics of the ‘sampling area’. (A) inventory of 
active landslides; (B) slope gradient map; (C) surfic ial formations map; (D) lithological map; (E) landuse map; 
(F) thickness of surficial formations map; (G) irregularities of terrain map; (H) outcrop and type of dip map.  

Fig. 7. Relative error ξ  of the simulations for several quantities of RV cells  introduced in the statistical model. 

Fig. 8. Cumulative curves of the best simulation obtained in the ‘sampling area’. (A) translational slides; (B) 
rotational slides; (C) shallow translational slides. The susceptib ility classes are defined on the basis of the 
thresholds observed in the cumulative curves of total probabilities. The number of cells  in the highest 
susceptibility class is  compared to the distribution of LTZs (relative error ξ ). 

Fig. 9. Examp le of WOE simulations for shallow translational slides performed without (A) and with (B) the 
introduction of an nPV: Statistical simulations with the PVs SLO + SF + LIT + LAD and with the PVs nPV-1 + 
LAD + CUR + BED, respectively. 

Fig. 10. Indirect susceptibility map for the landslide types observed on the north-facing hillslope of the 
Barcelonnette Basin. (A) shallow translational slides; (B) rotational slides; (C) translational s lides. 

Fig. 11. Direct susceptibility map produced with the French Official Method of Landslide Risk Zoning. 

Fig. 12. Final indirect susceptibility map produced by combining the three indirect landslide susceptibility maps. 

Fig. 13. Differences between the direct and final ind irect susceptibility maps (example of the high susceptibility 
class). 
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