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ABSTRACT: The aim of this paper is to assess the influence of different climate scenarios on scenarios
for the impact variable ‘landslide activity’. For this purpose, a site-specific model was used, relating the
activity of a landslide in South East France to climate. Landslide activity was reconstructed from tree
ring data. Hydrological field data indicated that the controlling climatic variable is net precipitation
(precipitation minus evapotranspiration). However, this variable and hence the impact model could not
explain all of the variations in landslide activity. The landslide model was fed with 1 temperature and
several precipitation scenarios obtained by applying 3 different methods for downscaling 3 different
general circulation model (GCM) simulations of the large-scale climate. The skill of the downscaling
methods in reproducing the historical local precipitation was either limited or trivial, but fair enough to
justify further application. The resulting scenarios for landslide activity were quite similar, with the
exception of 2 specific combinations of GCM and downscaling method. Furthermore, short-term cli-
matic variation, plausibly represented in one of the downscaling methods as a random noise compo-
nent, caused additional variation in the resulting scenarios. The amount of variation in the climate sce-
narios is of the same order of magnitude as that in the landslide model. The general conclusion is not to
focus on calibrating impact models while using only 1 climate scenario, but to assess the overall uncer-
tainty of the impact scenario by considering different parameter settings of the impact model as well as
different climate scenarios, as was done in the present study.
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1. INTRODUCTION

General circulation models (GCMs) are capable of
providing plausible, physically based scenarios of
future climate on a large scale (Trenberth 1997), but
less so on a regional scale (Grotch & McCracken 1991).
This is mainly due to the low spatial resolution of most
GCMs (currently around 250 x 250 km), and coarse-
scale model parameterizations (Giorgi & Mearns 1991).
For climate change impact studies, regional- or local-
scale climate scenarios are needed. A common way to
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derive these is to interpolate large-scale, gridded GCM
output to the desired locality, and to append the differ-
ence between the future (‘target’) and present-day
(‘reference’) periods of this interpolated scenario to the
observational record of the locality. This approach may
result in misleading impact scenarios, because it does
not take into account the spatial variability and nonlin-
earity of regional climate changes in response to
mesoscale forcings, such as orography, which are not
resolved by current GCMs (Wigley et al. 1990, Giorgi
& Mearns 1991). Especially direct interpolation of pre-
cipitation has many shortcomings, such as inadequate
parameterizations of the process in the GCMs and the
averaging of precipitation over the entire GCM grid-
box (Airey & Hulme 1995).
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Statistical downscaling methods are a potential alter-
native. In these approaches, the local climate is statis-
tically related to large-scale climate variables which
are simulated more reliably by GCMs (Hewitson &
Crane 1996, Zorita & von Storch 1998). Thus, more
plausible local climate change scenarios may be
expected from statistical downscaling, albeit under
one important condition: the large-scale climate simu-
lated by the GCM must be precedented in the histori-
cal record; otherwise the statistical relations lose sta-
tionarity and hence validity. Furthermore, it must be
realised that under large-scale climatic conditions sim-
ilar to the present but occurring in a higher-tempera-
ture future climate enhanced evaporation from the
oceans may still result in changing precipitation
amounts on the continents. Other restrictions to statis-
tical downscaling, from the impact community point of
view, are (1) the limited portion of local climate vari-
ability that is explained by the large-scale situation,
and (2) the sometimes complicated statistical proce-
dures which may dissuade impact researchers.

In this study, the influence of different GCMs and
downscaling methods on the simulated impact of
climate change on a landslide in South East France is
investigated. Three GCMs and 3 downscaling meth-
ods were considered. In the following, we first de-
scribe the landslide under study, its relation to cli-
mate, and the model to simulate this relation; then the
GCM experiments and downscaling methods are
described, followed by the use of the downscaling
methods to reproduce the observed local climate. Sec-
tion 5 deals with the scenarios of future climate, while
Section 6 addresses their application to the impact
model, resulting in scenarios of future landslide activ-
ity. The conclusions of this study are summarised in
Section 7.

2. THE LANDSLIDE
2.1. Observations

Landslides are a major source of human and eco-
nomic loss in mountain regions throughout the world.
Landslides can be defined as ‘downward and outward
movements of slope forming materials under the influ-
ence of gravity’ (Varnes 1978). Earthquakes, undercut-
ting of slopes by rivers or seas, and excessive precipi-
tation are common landslide triggers (Crozier 1986). In
the latter case, excessive infiltration and percolation
into the slope increase the pore pressure. Higher pore
pressures decrease the intergranular (resisting) forces
along an existing or potential slide surface, increasing
the probability of slope instability (e.g. Craig 1987 and
references therein).

The Boisivre landslide is situated on the eastern
slope of the Riou Bourdoux valley, in the basin of
Barcelonnette in the French Alps (Fig. 1). The nearest
weather station, Barcelonnette ‘Le Verger’ is about
4 km to the southeast. The observations of the land-
slide described below were collected and first pre-
sented by Caris & van Asch (1991) and Mulder (1991).
The landslide has a length of about 170 m. The slide
surface runs parallel to the ground surface, at a depth
of about 7 m below the ground surface. The geology of
the landslide may be described as follows: unweath-
ered marl bedrock (depth below ground surface >7 m,
very low permeability); weathered marl (depth below
ground surface about 1.5 to 7 m, low permeability);
and glacial till (ground surface to about 1.5 m below,
high permeability).

The decrease in permeability probably governs the
reactivation mechanism of the landslide (Caris & van
Asch 1991). The direct trigger is the build-up of a criti-
cal pore pressure at the slide surface as a result of the
percolation of water through the weathered marl. Field
observations revealed that rain water infiltrates into
cracks and macropores in the till layer. In summer this
water is available to the vegetation for transpiration,
but in winter it is allowed to infiltrate further into the
weathered marl and onto the slide surface. Therefore,
percolation will mainly take place during the winter
half-year, or, more generally, after periods of high net
precipitation (net precipitation = percolation = precipi-
tation — evapotranspiration). The time scale of trigger-
ing is probably several months rather than a single
rainstorm, which will generate too small amounts of
percolation to critically raise the groundwater table
(Caris & van Asch 1991).

2.2. The model

Buma (1998) tried to quantify the relation between
landslide reactivation and climate by comparing the
time series of net precipitation (as defined above) with
landslide reactivation data. The latter were derived
from tree ring analyses, assuming that landsliding
causes trees to slant, resulting in tree ring eccentrici-
ties (Braam et al. 1987). Tree ring data from 1956 to
1980 were used to reconstruct the landslide reactiva-
tion record. The associated temporal resolution is
yearly. A time series of net precipitation covering the
same period was calculated with a simple water bal-
ance model for the till. The model requires monthly
precipitation and temperature data, and soil moisture
retention curves of the till. To meet the desired climatic
time scale outlined earlier, the net precipitation time
series was aggregated to 3 mo running sums. For
details of the model see Buma (1998).
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Fig. 2 shows the resulting climatic and landslide
reactivation time series. The square symbols are based
on the tree ring analyses. The diamond symbols are
based on the climatic data exceeding the threshold.
Both symbols series should match. The threshold
shown is 270 mm. This means that whenever the
amount of net precipitation over 3 mo exceeds 270 mm,
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Fig. 1. Regional setting of the Boisivre landslide in the
Barcelonnette basin (bold line), France

a landslide reactivation should occur, according to the
model. The threshold only allows events and ‘non-
events’ to be discriminated; the model is too coarse for
event magnitudes to be assessed. The match is not per-
fect, because in the dry years 1974-1975 a reactivation
occurred. Furthermore, the duration of landslide reac-
tivation is systematically overestimated by the model.

The frequency of landslide reactivation (¢) was sub-
sequently calculated. The annual maxima of the cli-
matic time series (during the period 1960 to 1989) were
identified and ranked in ascending order (30 values).
The return interval of each annual maximum is related
to this ranking according to the theory of statistics of
extreme values formulated by Gumbel (1958). A linear
regression relating these 2 variables provided a signif-
icant fit with an r? of about 0.95. Substituting the
threshold value (270 mm) in the regression provided a
¢ of 0.27 yr! (landslide reactivation about once every
4 yr).

Several factors complicate the relation shown in
Fig. 2. First, the tree ring record may be contaminated
by false rings or the absence of rings (as a result of
abnormal weather conditions during the growing sea-
son) or counting errors. Second, tree slanting may have
other causes such as wind action or disease. Third, the
model does not take into account the time it takes the
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Fig. 2. Three-month sums of net precipitation compared to landslide reactivation, derived from tree ring analyses
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water to percolate through the weathered marl. This
time lag may also be variable in time; more water may
be needed to raise the groundwater table, as a result of
drainage in a preceding period of relative drought.
Finally, landslide reactivation may be more likely to
occur after long periods of slope stability in which the
build-up of shear stress is allowed. Conversely, reacti-
vation may cease as a result of feedback mechanisms
once the shear stress is released. This may explain why
the duration of reactivation is in general overesti-
mated.

It may be concluded that the presented model for
landslide reactivation as a function of climatic parame-
ters still carries too many uncertainties for a successful
application to climate change impact assessment.
However, the focus of this paper is to determine the
influences of different GCMs and downscaling meth-
ods on simulated climate change impacts on landslid-
ing. For this purpose even a theoretical model relating
climate to landslide activity would have been suitable.
Therefore, the landslide model is considered good
enough for the scenario study.

3. GCM EXPERIMENTS AND DOWNSCALING
METHODS

3.1. GCM experiments. The characteristics of the 3
GCM experiments used in this study are listed in
Table 1.

3.2. Downscaling methods. In the following, the
term ‘reference period’ indicates the historical period
used as a validation of the downscaling procedures.

On the other hand, ‘control period’ refers to the period
over which GCM experiments were forced with
observed and reconstructed greenhouse gas concen-
trations (1860 to 1990).

3.2.1. Direct GCM interpolation: Direct GCM inter-
polation comprises 2 stages: (1) Interpolation stage—
interpolation of gridded GCM data to the desired loca-
tion. (2) Transformation stage—the mean difference
between the reference climate and a target climate sit-
uation, as estimated from the interpolated GCM time
series, is appended to the historical time series. The
target period can be any period of the GCM scenario
other than the reference period. The reference period
should coincide with the period of observation.

The transformation of a temperature time series for a
single locality proceeds as follows:

Trar(Y:M) = Togs(Y.m) + [Tecm1ar(M) = Toemrer(M)]

(1a)
where Trar(Y,m) = temperature in year y and month m
in the target climate period; Togs(y,m) = temperature
in year y and month m of the historical time series; and
ToemTarR(M) — Toemprer(M) = temperature difference
between target and reference period estimated by the
GCM for month m.
For precipitation (P), the procedure is slightly differ-
ent:

Rrar(Y.m) = Rogs(y;M) - [Reem,1ar(M)/Recmrer(M)]
(1b)
For textual convenience, climate scenarios derived

by direct interpolation will be referred to as ‘direct sce-
narios’.

Table 1. Characteristics of the GCM experiments used in this study

ECHAMA4-OPYC3

HadCM2-GG HadCM2-GS

Institute Max-Planck-Institut fur
Meteorologie, Hamburg

Reported in Roeckner et al. (1996)

Type Transient, coupled

ocean-atmosphere
GCM experiment

2.8° x 2.8° (T42)
1861-1990
1991-2099

Observed/reconstructed
greenhouse gas
concentrations

Spatial resolution

Control period

Scenario period

Control period forced with

Scenario period forced with
(Houghton et al. 1992)

Greenhouse gases considered Greenhouse gases only

Referred to in this paper as ECHAMA4

IPCC 1S92a emission scenario

Hadley Centre, UK Hadley Centre, UK

Johns et al. (1997)
Transient, coupled
ocean-atmosphere
GCM experiment

2.5° (lat.) x 3.75° (long.)
1860-1990

1991-2099
Observed/reconstructed

greenhouse gas
concentrations

IPCC 1S92a emission scenario IPCC IS92a emission scenario
(Houghton et al. 1992) (Houghton et al. 1992)

Greenhouse gases only Greenhouse gases and
sulphate aerosols

HCGS

Johns et al. (1997)

Transient, coupled
ocean-atmosphere
GCM experiment

2.5° (lat.) x 3.75° (long.)
1860-1990
1991-2099

Observed/reconstructed
greenhouse gas
concentrations

HCGG
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3.2.2. Downscaling based on multiple regression:
Canonical correlation analysis is a linear regression
between 2 space-time-dependent variables, each con-
sisting of a number of time series measured at different
locations. In the climatological application, the predic-
tor variable is a large-scale variable L, the predictand
variable a local-scale surface variable R (Barnett &
Preisendorfer 1987, von Storch et al. 1993, von Storch
& Navarra 1995, Heyen et al. 1996). In the present
study R consists of 1 station only, so the downscaling
technique is instead a multiple regression. Prior to the
regression, a data-reduction procedure is carried out
by projecting the time series onto a few empirical
orthogonal functions (EOFs; Heyen et al. 1996) which
explain a major part of the total variance.

3.2.3. Downscaling based on nearest-neighbour
analogs (analog-downscaling): The analog approach
applied in this study is described in Zorita et al. (1995)
and Cubasch et al. (1996). Given a large-scale climate
situation, the approach finds the nearest analog of
each GCM day in the observed large-scale climate
record, and assigns the local climate belonging to this
observational day to the GCM day. The large-scale cli-
mate situations are characterized by a vector L (I, ),
where each | represents a real or EOF time series of a
large-scale climate variable. The GCM-simulated and
observed large-scale climate situations are character-
ized by vectors L(t) and L'(t) containing the spatial pat-
tern of the large-scale climate on Day t. The nearest
analog in the observational record L’(t) has the lowest
Euclidian distance to the vector L(t) of the GCM day.
The approach is validated on an independent, histori-
cal data set by comparing the local climate assigned by
the analogs to the observations. The dimension of the
vectors may be extended by including more large-
scale variables or by including antecedent local or
large-scale conditions (Cubasch et al. 1996). Another
refinement was presented by Brandsma & Buishand
(1997), who considered more than 1 ‘near neighbour’
as analogs and applied a stochastic procedure to select
1 of them. In doing so, the (unexplained) variability,
given a large-scale climate state, is taken into account.

4. APPLICATION OF THE DOWNSCALING
METHODS TO HISTORICAL BARCELONNETTE
CLIMATE

4.1. Procedures

The performance of the 2 statistical downscaling
methods in reproducing the observed Barcelonnette
precipitation was tested by downscaling from the
observed large-scale climate. Temperature was not
downscaled with these methods; the temperature sce-

narios presented in Section 5 were derived by direct
GCM interpolation (average of several grid boxes).
This was motivated by the fact that in general the cor-
relation between local and large-scale values is better
for temperature than for precipitation.

Observed temperature (1956 to 1994) and precipita-
tion time series (1928 to 1994) of the weather station
Barcelonnette ‘Le Verger’ were obtained from Météo-
france. A monthly time scale for downscaling is consid-
ered sufficient to capture the time scale of the climatic
landslide triggering mechanism, as outlined in Sec-
tion 2.

The multiple regression was performed with ob-
served mean monthly North Atlantic sea level pressure
(SLP) as the predictor variable and local monthly pre-
cipitation as predictand. We used re-analyses of SLP
observations by the US National Center for Environ-
mental Prediction (NCEP) interpolated to a 5° x 5° grid
(Trenberth & Paolino 1980). The applied field over the
period 1928 to 1994 includes 153 grid points covering
the region 40° W-40° E, 30°-70° N. The first 4 EOFs of
the SLP fields, always explaining >80% of the variabil-
ity, were retained for the regression. The regression
models were built for each month separately over the
period 1928 to 1994. The regressions were carried out
with anomalies relative to the long-term means. All
precipitation series were power-transformed prior to
the regressions in order to obtain normally distrib-
uted variables. Validation of the multiple regression
was done by means of a cross-validation procedure
(Michaelsen 1987).

The procedure for analog-downscaling applied in
this study considered daily North Atlantic SLP of the
current and the 2 preceding days. The analog was
selected from 1 nearest neighbour only. The anomalies
were projected on the first 5 EOFs of the SLP of the
training period. To filter out seasonal influences, the
procedure was carried out separately for the 4 seasons.
The training period was 1928 to 1957, the validation
period 1958 to 1991. The selection criteria for the num-
ber of retained EOFs was model performance. This
was not rigorously tested, but on average the perfor-
mance was better with 5 EOFs than using more or less
patterns.

4.2. Results
4.2.1. Downscaling with multiple regression

Fair correlations between North Atlantic SLP and
Barcelonnette precipitation could be found for Octo-
ber through April. The explained variance of the
cross-validation between observed and downscaled
precipitation time series ranged from 23 (March) to
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52% (February). For May through September lower
explained variances were found. Fig. 3 shows the
explained variance of the cross-validation for all
months.

The limited amount of variance in Barcelonnette
precipitation explained by North Atlantic SLP causes
a variability reduction in the downscaled precipitation
series. This shortcoming was solved by adding a noise
component to the downscaled series, as proposed by
Zorita & von Storch (1998). The noise may be physi-
cally interpreted as all of the climatic factors causing
variability in Barcelonnette precipitation which are
not captured by the multiple regression. These factors
may be operating on a local scale, but large-scale
atmospheric features may also be missed by the
regression. In statistical terms the noise is represented
by the residual (unexplained) variance of the regres-
sion model. Dehn & Buma (1999) added the noise
component by randomly resampling from the residu-
als of 1928 to 1994. This was allowed because the
residuals of the multiple regression were not autocor-
related on a monthly scale. In the present study, 1000
values were randomly selected from the normally dis-
tributed, power-transformed 1928 to 1994 residuals.
Each selected residual was added to the downscaled
value. Subsequently their sum was back-transformed,
resulting in 1000 realisations of downscaled monthly
precipitation time series (1928 to 1994). Putting these
time series into the landslide model provided 1000 ¢
values with a median of 0.29 yr!, a 5% quantile of
0.18 yr! and a 95% quantile of 0.42 yr. This corre-
sponds fairly well with the ¢ of 0.27 yr! obtained with

0.6 -
0.5 1
0.4 1
0.3 1

0.2 1

explained variance

0.1 1

-0.1

historical precipitation, but it also shows that ¢ is
rather sensitive to variation not captured by the multi-
ple regression.

4.2.2. Analog-downscaling

Fig. 3 also shows the explained variances of the ana-
log-downscaling for all months. In the winter half-year,
the explained variances of the analog technique are
lower than those obtained with multiple regression,
except for January (32 vs 29%). In the summer half-
year the opposite is the case, notably in September (20
Vs 4%). Note that the procedures for validation are not
identical for multiple regression and analog-downscal-
ing. Furthermore, the absolute precipitation amounts
are generally underestimated by the analogs (not
shown). Overall, the skill of the analogs is somewhat
lower than the skill of the multiple regression. How-
ever, the evaluation was restricted to mean precipita-
tion, and variability on different frequencies was not
taken into account. Furthermore, mean precipitation is
by definition correct for the multiple regression,
because observed means and noise are added to the
anomalies at the end of the procedure. This type of cal-
ibration is not included in the analog technique. There
may be several ways to improve the performance of
the analog method, as outlined in Section 3.

It goes without saying that the landslide frequency
obtained with the landslide model and analog-down-
scaled time series did not match the value of 0.27 yr!
obtained with the historical time series.

—&— MUL, crossvalidation

—e— analog, validation

JAN FEB MAR APR MAY

JUN JUL

AUG SEP OCT NOV DEC
month

Fig. 3. Explained variances of downscaled local precipitation for the multiple regression, MUL (cross-validation of period
1928-1994) and the analog technique (validation period 1958-1991). See text for explanation
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5. LOCAL CLIMATE SCENARIOS FOR
BARCELONNETTE

5.1. Procedure

5.1.1. Direct GCM interpolation (temperature and
precipitation)

A direct interpolation from the 6 (HCGG/HCGS) or
16 (ECHAMA4) nearest GCM gridpoints was carried out
to obtain precipitation and temperature scenarios for
the Barcelonnette coordinates. Subsequently the aver-
age temperature and precipitation differences be-
tween the reference and target periods were calcu-
lated according to Eqg. (la,b). The reference period
was 1960-1989, the target periods were 1870-1899,
1910-1939, 2020-2049, 2050-2079 and (Hadley GCMs
only) 2070-2099.

5.1.2. Downscaling with multiple regression
(precipitation)

The multiple regression models of October through
April were applied to North Atlantic SLP simulated by
the GCMs. In the absence of good correlations, precip-
itation for May through September was randomly
selected from the normal, power-transformed distribu-
tions of the 1928 to 1994 observations, which were not
mutually (auto)correlated. Therefore, the scenarios for
summer (June through August) obtained with multiple
regression reflect the historical statistics. This is also
partly the case with spring (March through May) and
autumn (September through November).

5.1.3. Analog-downscaling (precipitation)

The nearest-neighbour analogs of the large-scale
vectors L of each day of the GCM scenarios were
searched in the observational record. The correspond-
ing precipitation was then assigned. Due to data provi-
sion problems of both climate modeling centers, the
procedure was restricted to 2 GCMs (ECHAM4 and
HCGS) and different target periods: 1960-1989 and
2070-2099 for ECHAM4; 1950-1979, 2020-2049 and
2070-2099 for HCGS.

5.2. Local climate scenarios

5.2.1. Temperature scenarios

The differences between directly interpolated GCM
temperature and observations for the period 1956 to

1994 are shown in Fig. 4a; they are suspected to reflect
altitude differences between Barcelonnette and the
GCM grid boxes. Therefore, monthly correction terms
were determined and applied as constant to the tem-
perature scenario from 1860 to 2099, see also Eq. (1a).
The corrected scenarios are shown in Fig. 4b. Steady
upward trends are visible, while the tempering effect
of sulphate aerosols is evident in the HCGS scenario.
The magnitudes of temperature rise simulated by the 2
greenhouse-gas-only GCMs also differ markedly. This
illustrates the disagreement of current-generation
GCMs on the magnitudes of simulated temperature
changes.

5.2.2. Precipitation scenarios

The precipitation scenarios are shown in Fig. 5a-d
(per season). The discussion of the scenarios focuses on
mean statistics. Extreme statistics, such as for example
90% quantiles of seasonal precipitation, are more
important to landslide activity. The trends of these sta-
tistics are similar to the trends of the means (not
shown). The discussion focuses on 2 main aspects:
(1) The correspondence with the observations in the
reference period 1960 to 1989 (1950 to 1979 for HCGS
and analog only). (2) The significance of the simulated
future trends in precipitation is indicated by the differ-
ence between future (1991 to 2099) and control (1860
to 1990) periods, as opposed to the difference occur-
ring within the control period. If the latter is equal to or
larger than the former, the simulated future trends
have little meaning. This difference is evaluated only
qualitatively in this paper.

5.2.2.1. Direct GCM interpolation. The directly
interpolated precipitation of the target period 1960
to 1989 is by definition identical to the observed
precipitation for this period, since Rgcmtar(M) =
Reemper(M). The observed mean precipitation for
1960 to 1989 can be found in parentheses in the DIR
columns of Table 2.

Distinct trends are simulated in winter (upward in all
3 scenarios) and in summer (downward in ECHAM4
and HCGG). In autumn and spring, only HCGG shows
distinct trends (downward and upward, respectively).

5.2.2.2. Downscaling with multiple regression. Mean
scenario precipitation in the reference period is within
5% of the observed values, except for winter precipita-
tion in both Hadley Centre scenarios. The good fit is
partly trivial, because the use of anomalies in the
regression filters out absolute biases between GCM-
simulated and historical large-scale climate. It mainly
indicates that the GCMs reproduce the magnitudes of
the anomaly fields of North Atlantic large-scale cli-
mate well.
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Fig. 4. (a) Mean annual cycle of air temperature in Barcelonnette, 1956-1994, from observations (OBS) and directly interpolated
from 3 GCM experiments. (b) Temperature scenarios for Barcelonnette ‘Le Verger’, obtained by direct interpolation and trans-
formation from 3 GCM experiments

Distinct trends are simulated in autumn (downward
in ECHAMA4, to a lesser extent in HCGG) and in winter
(upward in HCGG and HCGS). In spring, ECHAM4
and HCGG both show distinct trends, but interestingly
their directions are opposite (downward in ECHAMA4
and upward in HCGG).

5.2.2.3. Analog-downscaling. In both scenarios, the
observations are underestimated in all seasons. Given
the underestimation introduced by downscaling, the
observed large-scale climate (see Section 4.3.2), it may
be concluded that the underestimation is caused by the
downscaling method rather than by a bias in the

GCMs. The poor correspondence makes the question
of whether or not the simulated trends are significant
irrelevant.

5.2.2.4. Comparison of the scenarios. The difference
between analog on the one hand and multiple regression
and direct interpolation on the other hand is obvious; the
cause of this was already discussed in Section 4. As for
the comparison between multiple regression and direct
interpolation: from Fig. 5b it appears that in the winter
season the absolute precipitation amounts are deter-
mined more by the downscaling method than by the
GCM. This is not the case in the other seasons. In gen-
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Fig. 5. Scenarios for mean monthly precipitation, obtained with different GCMs and downscaling methods. (a) Autumn (SON);
(b) winter (DJF); (c) spring (MAM); (d) summer (JJA). Note that the reference period of analog-downscaling with HCGS, 1950-
1979, for convenience is plotted at the position of 1960-1989. DIR = direct interpolation/transformation, MUL = multiple regres-

sion, ANA = analog-downscaling
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Table 2. Scenarios of mean seasonal precipitation (in mm). The values in parentheses are trivial because they are entirely derived
from observations (see text for further explanation). DIR = direct interpolation/transformation, MUL = multiple regression,
ANA = analog-downscaling

Period Autumn Winter Spring Summer

DIR MUL ANA DIR MUL ANA DIR MUL ANA DIR MUL ANA
ECHAM
1870-1899 226 241 - 172 151 - 187 175 - 165 (162) -
1910-1939 245 252 - 176 155 - 183 180 - 171 (162) -
1960-1989 (234) 239 181 (170) 164 147 (177) 182 151 (165) (162) 133
2020-2049 229 206 - 191 146 - 192 166 - 159 (163) -
2050-2079 224 182 - 204 157 - 187 161 - 141 (162) -
2070-2099 - 188 181 - 161 111 - 159 169 - (162) 124
HCGG
1870-1899 230 232 - 180 164 - 181 181 182 (163) -
1910-1939 237 238 - 172 163 - 176 182 186 (162) -
1960-1989 (234) 246 - (170) 148 - @177y 170 - (165) (163) -
2020-2049 218 216 - 189 167 - 182 178 - 168 (162) -
2050-2079 212 206 - 187 170 - 180 184 - 141 (163) -
2070-2099 207 205 - 202 182 - 193 204 - 130 (162) -
HCGS
1870-1899 220 233 - 167 156 - 181 181 - 158 (162) -
1910-1939 236 257 - 174 157 - 179 188 - 172  (162) -
1950-1979 - - 162 - - 141 - - 167 - - 152
1960-1989 (234) 238 - (170) 158 - @77 171 - (165) (162) -
2020-2049 233 237 167 176 162 139 187 189 175 172 (162) 126
2050-2079 230 224 - 171 158 - 190 196 - 156 (162) -
2070-20 220 222 128 191 172 152 186 195 179 155 (162) 143

eral, precipitation increases in winter and spring, and
decreases in summer and autumn. The multiple-regres-
sion-downscaled ECHAMA4 scenario is the most diver-
gent, notably in spring, for which a precipitation de-
crease is simulated. The changes in HCGS are the least.

6. SCENARIOS FOR LANDSLIDE REACTIVATION
6.1. Procedure

The direct precipitation and temperature scenarios
were used as input for the landslide model without fur-
ther processing. Five target periods were selected, as
in Fig. 5a-d: 1870-1899, 1910-1939, 2020-2049,
2050-2079 and 2070-2099. Again, the simulation of
the ‘observed’ frequency of landslide reactivation ¢ in
the reference period is trivial (see Section 5.1.2).

In the case of multiple regression, ¢ was calculated
for target periods shifted at 10 yr steps over the
entire scenario period (1870-1899, 1880-1909, ...,
2070-2099). The 1000 regressed precipitation scenarios
(see Section 4.2.2) resulted in 1000 ¢ values. For each
target period, the 10, 50 and 90% quantiles of these
were calculated. The latter are shown to provide an in-
dication of the variation in simulated impacts occurring
within one combination of GCM and downscaling
method.

The procedure for analog-downscaling is identical to
that of the direct method. @ was calculated for the tar-
get periods given in Section 5.1.3.

6.2. Results and discussion

The scenarios of the frequency of @ generally follow
the mean precipitation scenarios. The results are
shown in Fig. 6.

6.2.1. Direct GCM interpolation

Distinct trends in @ were simulated in none of the
GCMs. Apparently, decreased summer precipitation
and increased evapotranspiration are cancelled out by
increased winter and spring precipitation.

6.2.2. Downscaling with multiple regression

A distinct downward trend is simulated in ECHAMA4.
In HCGG a weaker downward trend is simulated. The
stronger trend in ECHAMA4 is not surprising, given the
strong precipitation decreases in spring and autumn.
In HCGS, the slight increases in precipitation are can-
celled out by increased evapotranspiration.
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Fig. 6. Scenarios for the frequency of landslide reactivation (¢) obtained with different GCMs and downscaling methods. DIR =
direct interpolation/transformation, MUL = multiple regression, ANA = analog-downscaling
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Fig. 7. Scenarios for the frequency of landslide reactivation (¢) obtained with multiple regression (MUL) and ECHAM4, showing
10, 50 and 90% quantiles of ¢. See text for explanation

6.2.3. Analog-downscaling

The presentation of scenarios for landslide reactiva-
tion, based on low-quality analog-downscaled precipi-
tation scenarios, seems senseless. However, it is done
merely to show that the underestimation of precipita-
tion is amplified in @ (ECHAM4, 1960 to 1989: 17.5%
precipitation to 81% ¢ on average). This shows the
importance of consistent, plausible precipitation sce-
narios in order to obtain consistent impact scenarios.

6.2.4. Discussion

A distinct change in the frequency of landslide reac-
tivation was simulated with only 1 specific combina-

tion of GCM and downscaling approach (multiple
regression, ECHAMA4). This indicates that the consid-
eration of not only different GCMs but also different
downscaling methods is justified and recommended in
order to better quantify the overall uncertainty in cli-
mate change impact studies.

Fig. 7 shows the scenario of landslide reactivation for
multiple regression and ECHAM4 for all the time
intervals. The influence of interdecadal variability of
precipitation is considerable. This influence seems
greater than the influence of increasing temperature,
which would have resulted in a smoother decline.
Temperature is important, but becomes decisive when
precipitation changes are slight or become cancelled
out between the seasons. Fig. 7 also shows that the
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major anomalous situations occur in the target periods
2030 to 2059 and 2040 to 2069. These were not consid-
ered in the other 2 downscaling approaches. This illus-
trates the importance of considering the entire sce-
nario period instead of only 2 or 3 selected target
periods in order to capture the most radical impact
changes. Finally, the scenarios of different ¢ quantiles
in Fig. 7 are further apart than the scenarios of Fig. 6.
This shows that climate variability not captured by the
multiple regression, or in general by the applied meth-
ods, adds a considerable amount of uncertainty to the
simulated impacts. This variation is not revealed when
using the other downscaling methods, but should
always be considered as an important part of local cli-
mate.

7. CONCLUSIONS

Uncertainty in scenarios of climate change impacts is
an important issue in this paper. It pertains to all stages
of the climate change impact modelling approach:
from errors and biases in the observations on the land-
slide and generalisations in the landslide model to
numerous problems associated with the construction of
climate scenarios. This study has shown that the use of
different GCMs and downscaling methods results in a
broad range of impact scenarios. There seems little
point in calibrating impact models meticulously in
order to improve the impact scenario with such great
uncertainty remaining in the climate scenarios (obvi-
ously, this does not mean that there is no point at all in
calibrating these models). Our recommendation for cli-
mate change impact model studies does not concern
the use of one specific downscaling method or GCM in
combination with a fully validated impact model;
instead we suggest that as many uncertainties as pos-
sible be taken into account by considering different
parameter settings in impact models and climate sce-
narios. In the meantime, while impact models are
improved, GCMs and downscaling methods are
improved as well.
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