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ABSTRACT: Black marl hillslopes in the French Alps are strongly affected by mass movements. This paper 
presents the methodology used in order to characterize the geometrical and geotechnical structure of the La-
val landslide (Draix, Alpes-de-Haute-Provence, France). The methodology has consisted in combining geo-
morphologic techniques, geotechnical test (dynamic penetration tests) and geophysical seismic survey. The 
results indicate that the combination of the three techniques is well suited to characterize shallow landslides 
structure developed in black marls. 

1 INTRODUCTION 

The callovo-oxfordian black marls of Draix (Alpes-
de-Haute-Provence, France) are known for their sus-
ceptibility to weathering and erosion, and show 
many examples of active structural landslides. These 
landslides generally present a morphology com-
posed of a main scarp with straight ruptures and 
controlled by the bedding and the discontinuities.  

The material that failed from the main scarp 
forms accumulation zones composed of reworked 
marls and blocks of heterogeneous sizes. The re-
worked soils are largely exposed to the high inten-
sity rainfalls observed during summer storms and 
strongly contribute to the high sediment yield ob-
served in the basins. The Laval largest landslide, 
which occurred in January 1999, has surprised many 
observers by its size and the volume of mobilized 
materials. The study area extends on 4000 m2 from 
875 m to 935 m elevation.  

2 GENERAL OBJECTIVES 

The objective of this study is to characterize the in-
ternal structure of the Laval landslide and to identify 
the conditionning and triggering factors. The meth-
odology consists in combining aerial photo-
interpretation techniques, geomorphological obser-
vations and measurements, geotechnical measure-
ments and a seismic survey. A qualitative model of 

landslide development is proposed, and the landslide 
geometry is defined.  

Several morphological mapping and topometric 
measurements have been carried out on the site 
(Huser, 2001). It is instrumented since 2006 in order 
to characterize the water circulation inside the ac-
cumulation zone (Garel et al., 2008). A water infil-
tration experience has been leaded in October 2007 
(Grandjean et al., in press). 

3 MATERIAL AND METHODS 

The acquisition of geophysical and geotechnical data 
in the accumulation zone allows to identify the 
boundary between reworked materials and intact bed 
rock. The dynamic penetration tests have been ap-
plied to the recognition of marly bedorock by Flag-
eollet et al. (2000) and Maquaire et al. (2002). This 
method allows to obtain information on the geome-
try and structure. About 50 drilling have been done 
from January 2007 to March 2008. Seismic survey-
ing has been applied by Grandjean et al. (2006). The 
method of continuous imagery has shown good re-
sults for the characterisation of marly landslides 
structure. The results are interpreted along nine 
cross sections distributed on the site. A qualitative 
model is proposed according to the geomophological 
aspects observed in situ which evolution is estimated 
by the comparison of the georeferenced photographs 
taken before and after the landslide triggering (Fres-
sard, 2008).  
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Figure 1. View of the Laval landslide: (A) May 1999; (B) March 2008 with the penetration tests and seismic survey location.  

 
In order to characterize the predisposition factors, 

the morpho-structural measurement have been com-
pleted with fault and stratigraphy scanline observa-
tions. These data have been combined to GPS and 
terrestrial laser scanning realized in July 2007 in or-
der to integrate the information in a GIS database. It 
permits to propose interpretative sections that sug-
gest the predisposition conditions according to the 
iso-volumes and the marls expansion coefficient 
(Klotz, 1998).  

4 RESULTS 

In the accumulation zone, the materials thickness is 
variable from approximately 1 to 6 m (Fig. 2-3). The 
materialis composed of reworked marls and blocks 
of various sizes. The interpretation of the cross-
sections shows that the paletopography overlaid is in 
accordance with the observations from the aerial 
photographs prior to the triggering. The limit be-
tween accumulation and ablation zone is clearly es-
tablished, and constitutes a first stage towards the 
understanding of the triggering conditions. Morpho-
structural measurement will allow us to go further 
into that question. 

The section 1 (Fig. 2) indicates that cracks have a 
major influence in the geometry of the rupture. The 
massif failed in many dihedrons with two degrees of 
freedom according to two components of a moving 
vector with a general North orientation (Fig. 4): 

(a) the first component is principally controlled 
by the main crack N90°-50°N. This component 
is orientated North-North-West, and supplies the 
most important volume to the accumulation 
zone;  

(b) a second component controlled by the bed-
ding is orientated North-North-East. This dis-
placement of the failed material along this com-
ponent seems to have occurred slower because 
the mass has moved in a homogeneous way. 

Few damages are visible except a few open 
cracks. These two components of a major moving 
vector (North direction) have been validated by the 
observation of the movement of two young pines 
over the main scarp. These trees are visible on the 
georeferenced pictures taken before and after the 
main rupture.  

The volume of the accumulation zone is esti-
mated at 8.000-10.000 m3, corresponsing to a vol-
ume of ca. 4.500-5.600 m3 of compact marls. This 
figure has been calculated according to the ‘expna-
sion coefficient’ calculated by Klotz (1998).  This 
iso-volume estimation shows that the material of the 
accumulation zone (relatively thin) is supplied with 
shallow landslides which base altitude has been es-
timated at around 900 m. Thus the “pre-landslide” 
topography has been reconstituted according to the 
observation of the aerial photographs taken before 
and after the triggering date. 

5 CONCLUSION 

The combination of geomorphologic and geotechnic 
methods has premised to identify the structure and 
the geometry of the accumulation zone, and then to 
understand the structure of the main scarp and the 
triggering conditions. ..
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Figure 2. Longitudinal section of the Laval landslide. 

 

 
Figure 3. Transversal sections of the Laval landslide. 
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Figure 4. Major components orientation of the movement along the secondary scarp of the Laval landslide. Note down the position 
of the pines position before and after the movement. 

 
This conceptual model has shown its interest for 

the characterization of those phenomenons We have 
thus been able to define precisely the limit between 
the accumulation and the ablation zone, recognize 
the morphology of the paleotopography and estimate 
the volume of materials in the accumulation zone 

The structural measurements and the in situ ob-
servations have premised to characterize the internal 
structure of the ablation zone. This landslide seems 
to be wildly commanded by the structural factors of 
the massif. A numerical and hydro-dynamical mod-
eling will soon validate those results.  
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