CEREG
 Juillet 1997

Rapport de stage de zème année

Auscultation topométrique du glissement de terrain de Barcelonnette par tachéométrie et GPS

Comparaisons

I. Introduction

Les applications de la topographie dans la mesure des mouvements de la terre, à échelle locale ou géodésique m'intéressent particulièrement. C'est pourquoi j'ai choisi d'effectuer mon stage de deuxième année dans un organisme qui me permettrait de faire mes premiers pas dans ces domaines.

Le CEREG (Centre d'Etudes et de Recherches Eco-Géographiques) est un organisme modeste mais dont les travaux sont très complets. Ils lient à la fois la topographie certes, mais aussi la géomorphologie, la géophysique, la géologie, l'environnement, etc... Autant de thèmes qui pour le néophyte que je suis, sont des sciences aussi mystérieuses que passionnantes. J'espérais pouvoir profiter de mon intégration dans une équipe du CEREG pour découvrir les types de travaux relatifs à ces différentes spécialités. Le travail de terrain réalisé cet été m'a permis d'observer quelques opérations en ce sens et ce fut là une première satisfaction de ce stage.

J'ajouterai que le travail de terrain dont il était question ci-dessus a contribué à diversifier les activités vécues lors de ce stage. En effet, en six semaines, le temps de travail aura été équitablement réparti entre le travail de terrain et le travail de bureau. De même, les travaux topographiques menés lors de cette période ont été des plus variés, entre la tachéométrie, l'utilisation du GPS, le traitement informatique des levés, l'organisation des missions et des méthodes, le repérage des points d'appuis, etc... Toutes ces étapes aboutissent à un stage complet et enrichissant.

Ces six semaines au sein du CEREG furent d'autant plus enrichissantes que l'équipe à laquelle je me suis retrouvé intégré ne comportait réellement de topographe ou de géodésien. J'ai dû par conséquent, me documenter, m'intéresser et m'organiser de façon à gérer l'ensemble des travaux à caractère topographique sans pouvoir attendre de soutien ou de contrôle extérieur. Les autres membres de l'équipe avaient eu tout de même de nombreuses occasions de suivre des campagnes de mesures et nous avons donc confronté nos opinions. Il en ressort des idées intéressantes mais qui doivent sans doute être critiquées.

II. Sommaire

I. Introduction 1
II. Sommaire 2
III. Présentation du CEREG 4
III. 1 Présentation 4
III. 2 Thèmes de recherche 4
III. 3 Infrastructures 4
III.3.a Personnel 4
III.3.b Equipement 5
IV. Présentation du chantier 6
IV. 1 Le site 6
IV.1.a Localisation 6
IV.1.b Etendue 6
IV. 2 L'historique 6
IV.2.a L'infrastructure 6
IV.2.b Les résultats 7
IV. 3 Les travaux effectués sur le site 7
IV.3.a La géophysique 7
IV.3.b La géotechnique 7
IV.3.c La géomorphologie 8
IV.3.d Un bassin bien exploité 8
IV. 4 Les travaux topographiques 8
IV.4.a Les réseaux mis en place 8
IV.4.b Le système d'auscultation choisi 9
IV.4.c La méthode d'auscultation 16
IV.4.d Les particularités et difficultés 19
V. Préparation de la campagne 1997 21
V. 1 Découverte du chantier et de l'organisme 21
V.1.a Le personnel 21
V.l.b Les moyens 21
V.1.c Les documents 21
V. 2 Mise en place des objectifs de la mission 22
V.2.a Réitérer une campagne de mesure du réseau d'auscultation 22
V.2.b Levé grossier des autres réseaux 22
V.2.c Test de l'outil GPS sur les différents sites 22
V.2.d Revoir la configuration du chantier 22
V.2.e Autres travaux.. 22
V. 3 Rassemblement des informations 23
V. 4 Préparation du matériel 24
V.4.a Topométrie 24
V.4.b GPS 24
V.4.c Traitement informatique 24
V.4.d Divers 24
V. 5 Prise en main du GPS 25
V.5.a Projet Metz 25
V.5.b Projet ENSAIS 25
V. 6 Mise place d'une méthode de levé 25
VI. La mission 1997 27
VI. 1 Planning 27
VI. 2 La tachéométrie 27
VI. 3 Le GPS 27
VI.3.a Mise en place de la méthode 27
VI.3.b Les autres mesures 30
VII. Le dépouillement des mesures 32
VII. 1 La tachéométrie 32
VII.1.a Création du programme « DEPOUILL.XLA » 32
VII.1.b Traitement des fichiers de l'année 1996 32
VII.1.c Traitement des fichiers de l'année 1997 34
VII.1.d Conclusion 34
VII. 2 Le GPS 35
VII.2.a Initiation au matériel 35
VII.2.b Projet canevas 35
VII.2.c Projet Adriano 38
VII.2.d Projet Super Sauze 39
VII.2.e Autres projets 39
VII.2.f Le dégagement du site du Super-Sauze 41
VII.2.g Conclusion 43
VII. 3 Comparaison 44
VII.3.a Détermination de la transformation de coordonnées 45
VII.3.b La couronne 47
VII.3.c Le profil 47
VIII. Travail à effectuer à l'avenir 48
VIII. 1 En tachéométrie 48
VIII. 2 Avec le GPS 48
VIII. 3 Sur le programme 49
IX. Conclusion 50
X. Remerciements $5 I$
XI. Bibliographie 52

III. Présentation du CEREG

III. 1 Présentation

Le CEREG (Centre d'Etude et de Recherche Eco-Géographiques) existe sous sa forme actuelle depuis le $01 / 01 / 1986$. Il regroupe des enseignants, des chercheurs et des techniciens appartenant à plusieurs laboratoires de l'Université Louis Pasteur de Strasbourg I, ainsi que des chercheurs de la station Agronomique de l'INRA à Colmar.

Cette unité est pluridisciplinaire puisqu'elle regroupe climatologues, hydrologues, géomorphologues, phytosociologues, écologistes et agronomes. Elle est rattachée à trois sections du CNRS, dépendant de trois départements différents :

- «Planète Terre : enveloppes superficielles» du Département des Sciences de l'Univers.
- «Diversité Biologique, populations, écosystèmes et évolution» du Département des Sciences de la Vie.
- «Hommes et Milieux : évolution, interactions» du Département des Sciences de l’Homme et de la société.
Cette entité est articulée avec le DEA «Systèmes Spatiaux et Aménagements Régionaux» auxquels sont rattachés tous les membres du laboratoire.

III. 2 Thèmes de recherche

Le thème de recherche général du laboratoire est l'étude de la structure et du fonctionnement des systèmes «eau-sol-plante» en vue de leur protection et de leur mise en valeur. Les activités scientifiques entre 1989 et 1997 furent par exemple réparties selon cinq grands axes ou équipes de recherche :

- Bassins versants de moyenne montagne : étude et modélisation de leur structure et de leur fonctionnement à différentes échelles.
- Lits fluviaux et vallées alluviales [...]
- Environnement, Cartographie, Télédétection.
- Structure, fonctionnement et aménagement des milieux tropicaux
- Risques naturels : climatiques, géomorphologiques et hydrologiques. Mon stage s'est déroulé dans cette dernière équipe.

III. 3 In frastructures

III.3.a Personnel

Le personnel technique du CEREG comprend huit ingénieurs, techniciens et administratifs du CNRS ainsi que sept ingénieurs, administratifs et techniciens du ministère de l'Education Nationale.

III.3.b Equipement

Les équipements de terrain sont soit des équipements permanents (stations hydrométéorologiques), soit des équipements utilisés lors de campagnes de mesures intensives. On trouve par exemple des stations météorologiques automatiques (rayonnement, insolation, température, humidité, vitesse et direction du vent, précipitations...), des appareils de mesure d'évapotranspiration et de profils hydriques, des systèmes d'échantillonnage des eaux, des systèmes d'enregistrement en continu des paramètres physico-chimiques ($\mathrm{T}^{\circ}, \mathrm{pH}$, conductivité...), des appareils d'analyses chimiques, etc...

Le CEREG dispose également d'un réseau informatique géré par deux informaticiens dont un des rôles est d'intégrer toutes les données météorologiques des stations permanentes.

L'équipe «Risques Naturels» dans laquelle je travaillais disposait en plus de matériel topographique. Celui-ci est détaillé plus loin dans ce document.

Les bureaux du CEREG sont répartis selon les activités, à l'UFR de géographie (rue de l'Argone) et à la tour de botanique (rue Goethe), à Strasbourg.

Mon stage s'inscrivait dans la logique de la problématique des recherches engagées. On pourra citer entre autres :

- la cartographie des risques
- l'étude des processus de mise en mouvement des masses à la surface du sol.
- le diagnostique sur l'état de stabilité et des risques de transformation de la coulée en une lave torrentielle en cas de conditions climatiques exceptionnelles.

IV. Présentation du chantier

IV. 1 Le site

IV.1.a Localisation

Le glissement de terrain de Super-Sauze se situe dans le bassin de Barcelonnette (on parle de fenêtre tectonique), dans la vallée de l'Ubbaye, au dessus de la station de ski de Super-Sauze. Il est accessible en véhicule tout terrain par une piste qui part de la station et se situe à une altitude moyenne de 1800 m . Il est surplombé par «Le Chapeau de Gendarme» (2685 m) et le «Brec Second » (2596 m).

Une carte générale du site se situe en annexes III.2.A.

IV.1.b Etendue

Le mouvement s'effectue du Sud (alimentation par la couronne) vers le Nord (vers la vallée) et le glissement s'étend sur une longueur d'environ 850 m . La coulée a une largeur variable, canalisée par les versants latéraux. Au plus large, elle atteint 200 m .

Un carte géomorphologique au 1/1000 se trouve en annexes III.2.B.

IV. 2 L'historique

IV.2.a L'infrastructure

Des photos aériennes de l'IGN prises en 1956, 1971, 1978, 1982, 1988 et 1995 permettent d'observer l'évolution du phénomène. Le glissement en lui même n'est ausculté par voie topométrique que depuis 1991. Le réseau de points d'auscultation se composait initialement de 40 points mesurés de deux stations. 15 d'entre eux étaient répartis sur le corps du glissement, 14 plus en altitude sur le pourtour de la couronne, 4 sur une petite zone instable à proximité du glissement et les sept derniers répartis aux alentours du glissement, sur des versants supposés plus stables et pouvant servir de référence le cas échéant.

Jusqu'en 1996, 10 des 15 points du corps ont disparu ensevelis dans le mouvement. Certains d'entre eux ont cependant été remplacés pour l'étude cinématique du glissement.

Durant l'été 1996 , le réseau fut complété à nouveau et compte aujourd'hui une cinquantaine de points sur le corps et les abords, et une quinzaine de points sur le pourtour de la couronne. La principale innovation de ce réseau réside dans le système d'auscultation, basé sur deux piliers en béton solidement amarrés, et non plus sur deux bornes comme c'était le cas auparavant. Ces piliers supportent des platines de centrage forcé qui reçoivent les embases du théodolite. Ils augmentent la précision pour deux raisons essentielles :

- le centrage forcé garantit le même positionnement dans l'espace de l'appareil à chaque mise en station
- les piliers sont plus stables que les trépieds sur la durée d'une campagne de mesure (tassements, chocs) et entre les campagnes de mesures.
En septembre 1996, cinq campagnes consécutives ont été menées en 10 jours en vue de détecter des mouvements journaliers de certains points du réseau.

IV.2.b Les résultats

Entre août 1991 et septembre 1996, une vingtaine de campagnes de mesures ont été effectuées. Elles ont permis d'analyser les mouvements dans l'espace et dans le temps. Veuillez vous référer à l'annexe III.5.C pour observer quelques exemples de graphiques qui montrent les mouvements horizontaux et les vitesses moyennes de déplacement dans le temps. On se rend compte que selon l'endroit où on se situe, les vitesses sont extrêmement variables (comprises entre quelque cm et $30 \mathrm{~m} / \mathrm{an}$).

Ces graphiques ne permettent pas de conclure quant à une mouvement uniforme de l'ensemble de la masse. On peut cependant discerner deux types de mouvements : des chutes de blocs de moraine détachés de l'escarpement par éboulement et des glissements de zones plus ponctuelles.

Depuis 1994, une station climatique a été installée de façon définitive à la Rente, à proximité de Super-Sauze et plus récemment encore (juillet 1996) à la station de ski de Super-Sauze, ce qui permet de confronter les résultats spatiaux aux données pluviométriques.

Le réseau d'auscultation, tel qu'il est configuré aujourd'hui, devrait pouvoir fournir des informations intéressantes sur le comportement cinématique de la coulée. Ces données géographiques seront d'ailleurs exploitées en corrélation avec les données climatologiques (précipitations et fluctuations du niveau des eaux souterraines).

IV. 3 Les travaux effectués sur le site

Toutes ces études ont pour but de connaitre la géométrie en 3D de la masse en mouvement. Cette masse est une coulée fossilisant une paléotopographie constituée a priori de ravines et échines.

IV.3.a La géophysique

La géophysique permet d'obtenir une bonne connaissance des caractéristiques et des épaisseurs des différentes couches du sous-sol. On peut distinguer en première approche deux techniques d'auscultation

IV.3.a.i La prospection électrique

Elle consiste à réaliser des mesures de résistivité pour détecter la présence d'eau et définir des profils des sous-couches.

IV.3.a.ii La sismique réfraction

On utilise la vitesse de propagation d'un impact pour déterminer la présence de sous-couches rocheuses et déterminer les caractéristiques des couches traversées

IV.3.b La géotechnique

Elle a consisté en une auscultation par sondages ponctuels du corps de la coulée avec des pénétromères dynamiques, par des forages carrotés, avec des vibro-percuteurs, par la mise en place de tubes inclinométriques et piezométriques. Le but était de détecter et de suivre l'évolution des déplacements en profondeur ainsi que l'écoulement des nappes piezométriques (hauteur d'eau dans le sous sol).

IV.3.c La géomorphologie

Il s'agit essentiellement de définir des zones homogènes et de déterminer leurs formes en vue de les représenter graphiquement pour dresser un aperçu général sur lequel seront lisibles la géologie, le relief, l'étendue et la diversité du site.

Pour cela, on peut certes effectuer des relevés approximatifs sur le terrain à l'aide d'une boussole et d'une carte IGN au $1 / 25000$, mais il peut être intéressant d'utiliser également les photos aériennes voire satellites si l'échelle le permet.

IV.3.d Un bassin bien exploité

Le bassin de Barcelonnette est un laboratoire qu'utilisent plusieurs organismes dont le CEREG qui suit et équipe la coulée de Super-Sauze. D'autres laboratoires l'ont également choisi et mènent des études avec d'autres outils, par exemple sur la coulée de La Valette. Un laboratoire allemand met ainsi en oeuvre une surveillance du site par imagerie radar (cf annexes III.6.C).

A Super-Sauze, la coulée n'est pas considérée comme menaçante pour les villages proches et peut donc être laissée dans son état naturel. Ceci est important lorsqu'on sait que le but de toutes ces études est de modéliser les mouvements d'une telle masse.

IV. 4 Les travaux topographiques

IV.4.a Les réseaux mis en place

IV.4.a.i Le réseau d'auscultation

Comme décrit ci-dessus, le réseau de points voué à l'auscultation propre de la coulée comportait 67 points à l'origine (juillet 1996) matérialisés par des bornes. En juillet 1997, certains points avaient déjà disparu, notamment sur la crête de la couronne. Ces points sont certainement tombés au fond du cirque avec le décrochement d'un bloc durant l'année. On constate en effet des éboulements en permanence, surtout après une période de précipitations importantes, où les blocs peuvent atteindre des dimensions importantes. D'autres points ont disparu ensevelis dans la coulée. C'est par exemple le cas des point $n^{\circ} 40$ et $n^{\circ} 18^{\prime}$.

Le site étant peu propice aux auscultations topométriques, les stations ont été placées de façon a pouvoir observer un maximum de points tout en restant dans une zone stable. Ainsi les point $\mathrm{n}^{\circ} 107$, $\mathrm{n}^{\circ} 107^{\prime}$ et $\mathrm{n}^{\circ} 36$ sont invisibles de P 1 et le point $\mathrm{n}^{\circ} 16$ est non visible de P 2 .

Enfin, il existe un point pour lequel la hauteur de canne doit être de $1,80 \mathrm{~m}$ alors que pour tous les autres, $1,30 \mathrm{~m}$ suffira.

Ces 67 points sont répartis comme suit : une cinquantaine sur le corps et une quinzaine sur la couronne. Une carte du réseau d'auscultation figure en annexes III.2.C. Ce réseau sert à déterminer les vitesses de déplacements et à quantifier ces déplacements. Les résultats sont confrontés avec des mesures de toutes autres natures (climatologiques, mesures de débits, auscultations géophysique, etc...) pour conclure sur la nature et la modélisation des mouvements. Le travail topométrique n'est pas une fin en soit.

IV.4.a.ii Les réseaux divers

Le glissement supporte d'autres réseaux dont les points sont levés par tachéométrie. On citera par exemple un réseau de piezomètres pour détecter la profondeur de la nappe d'eau (piquets de bois rouges), un réseau de piquets repérant les impacts des explosions provoquées pour l'auscultation géophysique (piquets de bois verts).

Seuls les points du réseau topométrique sont levés avec précision et rigueur. Les autres points sont levés par des pointés uniques et une fois par campagne.

IV.4.a.iii Les profils

Remarquons enfin que les points du réseau topométrique étaient à l'origine organisés en profils en travers. Ces profils sont numérotés et utilisés pour les investigations géophysiques et géotechniques. Aujourd'hui, les alignements ne sont plus respectés mais les profils sont encore à peu près visibles.

IV.4.b Le système d'auscultation choisi

IV.4.b.i Historique

En 1991, deux bornes ont été plantées au Nord du glissement sur des contreforts stables. Ces deux points 0_{1} et O_{2} ont été utilisés comme base du repère jusqu'en 1996. En juillet 1996, les deux piliers d'auscultation ont été installés et rattachés à l'ancien système par une polygonale fermée.

Avec cette nouvelle infrastructure, un nouveau repère a été défini. Le pilier P_{1} sera l'origine du repère $(0 ; 0 ; 1754,287)$ l'altitude ayant été définie par nivellement. Le gisement $\vartheta_{0}=0,0000 \mathrm{gr}$ est fixé sur une antenne qui se découpe bien sur la crête du col qui surplombe le glissement. Les coordonnées du pilier P_{2} ont été définies en conséquence à l'aide des données de la polygonation. On trouve P2 (52,102; 30,866 ; 1783,500) et on fixe l'orientation angulaire du théodolite à $397,3935 \mathrm{gr}$ à chaque mise en station, en visant sur l'antenne du col. Les gisements des stations l'une par rapport à l'autre étaient connus et permettaient de contrôler l'orientation régulièrement.

Ainsi, les visées angulaires correspondent aux gisements dans le système de coordonnées du chantier.

IV．4．b．ii L＇état actuel

Dès le mois de septembre 1996，un problème est apparu．Les contrôles angulaires ne correspondent plus et mettent en relief un mouvement au niveau des piliers．Cette nouvelle est des plus alarmantes surtout qu＇elle se confirme durant l＇été 1997．En fixant le gisement origine à 397,3935 en P2， on obtient une visée angulaire vers Pl différente d＇environ 100 dmgr par rapport à la valeur obtenue initialement．Les causes de ce mouvement sont inconnues．Les chocs dus aux animaux（vaches）sont exclus car les piliers sont protégés par des clôtures métalliques；les pivotements des piliers sont peu probables car ceux－ci sont profondément scellés sous terre（à $0,80 \mathrm{~m}$ de profondeur）；des tassements du terrain seraient surprenant vu la composition géologique du sol à cet endroit．Il ne s＇agit pas non plus de dilatations des piliers durant la journée car ces écarts sont constatés à tout moment de la journée．Peut être s＇agit－il finalement d＇un mouvement général du versant？

Quoi qu＇il en soit，ce problème est très gênant car il compromet la comparaison des coordonnées de 1997 avec celles des années précédentes．On peut déterminer une transformation de coordonnées pour passer d＇un système à l＇autre．Les paramètres de cette transformation seraient calculés à l＇aide des coordonnées des points supposés stables sur les versants latéraux du glissement．Cependant， les erreurs commises sur cette transformation vont diminuer la précision des résultats et les erreurs pourraient même être de l＇ordre du mouvement pour certains points．

IV．4．b．iii Le rétablissement

P＇1 et P＇2 sont les deux piliers．Ils sont renommés tous deux car on ne parvient pas à savoir lequel a bougé pour le moment．Dans un premier temps，on conserve $P^{\prime} l$ comme origine du repère et $\vartheta_{0}=0,0000 \mathrm{gr}$ entre P＇l et l＇antenne．On recalcul les coordonnées de P＇2 et le gisement entre P＇2 et l＇antenne．Pour cela plusieurs visées ont été effectuées entre l＇antenne（point n ${ }^{\circ} 3000$ ）et les deux piliers．

S Whk			／V／	\％\＆\％	Efs	新施	数
P1＇	3000	400，0000	78，9781				
P2＇	3000	397，3892	80，9223				
P2＇	P1＇	334，0318	128，6187	67，222	60，542	0，236	0，238
P1＇	P2＇	134，0313	71，3832	67，220	60，542	0，237	0，236

Le point 3000 n＇est pas stationnable mais les moyennes des observations suffisent à déterminer le triangle ci－contre pour recalculer les coordonnées et gisement origine de $\mathrm{P}^{\prime} 2$ ．On trouve les coordonnées de P＇2 et son gisement origine par de simple relations géométriques．

Fori	\％	\％	\％	9．5NT
P＇1	0，000	0，000	1754，287	0，0000
P＇2	52，096	－30，844	1783，500	397，3892

Ces nouveaux paramètres doivent être pris en compte dans les levés de l'été 1997. Cependant, ces informations étaient inconnues et le gisement origine était donc l'ancien, 397,3935 gr pour P2. Ceci explique la raison d'être de la procédure «Rotation» du programme DEPOUILL.XLA. Il suffisait donc d'appliquer une rotation de $\mathrm{d} \vartheta=-43 \mathrm{dmgr}$ à tous les levés de la station P2.

Cependant, vu la configuration du terrain (crête dans des marnes en place), il est raisonnable de penser P2 n'a pas bougé mais que P1 est à l'origine du problème. On aurait aussi pu recalculer les coordonnées de P'l et conserver les coordonnées et l'orientation de P2. On trouve :

\%ent	\%	\%	\%	9\#\#\#
P'1	0,008	-0,019	1754,287	-0,0043
P'2	52,102	-30,866	1783,500	397,3935

Cependant, en comparant les coordonnées des points supposés fixes avant septembre 1996 et en juillet 1997, que l'on considère P1 fixe ou P2 fixe, on s'aperçoit qu'aucune de ces deux solutions n'est satisfaisante. Veuillez vous reporter en annexes III.2.D.a pour observer ces écarts.

On peut donc penser à deux éventualités. Soit les points que l'on considère fixes sur les flancs du glissement ($\mathrm{N}^{\circ} 26 ; 1 ; 12 ; 25 ; 39 ; 109 ; 111 ; 114$ sachant que les trois derniers sont sur la couronne donc très lointains) sont en fait en mouvement et on ne peut plus rien faire pour rétablir le système. Soit les deux piliers ont bougé et une compensation par les moindres carrés des paramètres d'une transformation d'Helmert basée sur les points énumérés ci-dessus devrait aboutir à la connaissance des éléments de la transformation entre les deux systèmes.

Principe:

Les données sont les suivantes :

- X_{i} et Y_{i} sont les coordonnées du point M_{i} dans l'ancien système.
- $X^{\prime}{ }_{i}$ et $Y^{\prime}{ }_{i}$ sont les coordonnées du point M_{i} dans le nouveau système.

Les paramètres $\mathrm{X}^{\prime}{ }_{0}, \mathrm{Y}^{\prime}{ }_{0}, \alpha$ et μ sont les paramètres de la transformations d'Helmert et constituent les inconnues.

$$
\begin{aligned}
& X_{i}^{\prime}=X^{\prime}{ }_{0}+\mu \cdot(\mathbf{Y} \cdot \sin \alpha+X \cdot \cos \alpha) \\
& Y_{i}^{\prime}=Y^{\prime}{ }_{0}+\mu \cdot(\mathbf{Y} \cdot \cos \alpha+X \cdot \sin \alpha)
\end{aligned}
$$

On commence par calculer des valeurs approchées des quatre inconnues. Il faut pour cela connaître au moins deux points dans les deux systèmes. On choisit des valeurs simples :
$X^{\prime}{ }_{01}=0 \mathrm{~m}$
$Y^{\prime}{ }_{01}=\mathbf{0 m}$
$\alpha=0 \mathrm{rad}$
$\mu=1$

On calcul ensuite les coefficients de la compensation par les intermédiaires. On distingue huit coefficients :

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{i}}=\partial \mathbf{X}_{\mathrm{i}}{ }_{\mathrm{i}} / \partial \mathbf{X}_{0}{ }_{0}=\mathbf{1} \\
& \mathbf{a}^{\prime}{ }_{i}=\partial \mathbf{Y}^{\prime}{ }_{i} / \partial \mathbf{X}^{\prime}{ }_{0}=\mathbf{0} \\
& \mathbf{b}_{\mathrm{i}}=\partial \mathbf{X}_{\mathrm{i}} / \partial \mathbf{Y}^{\prime}{ }_{0}=\mathbf{0} \\
& b_{i}^{\prime}=\partial Y_{i}^{\prime} / \partial \mathbf{Y}^{\prime}{ }_{0}=1 \\
& c_{i}=\partial X_{i}{ }_{i} / \partial \mu=Y_{i} . \sin \alpha+X_{i} \cos \alpha \\
& \mathrm{~d}_{\mathrm{i}}=\partial \mathbf{X}_{\mathbf{i}} / \partial \alpha=\mu .\left(\mathbf{Y}_{\mathrm{i}} \cdot \cos \alpha-\mathbf{X}_{\mathrm{i}} \sin \alpha\right) \\
& \mathbf{c}_{\mathrm{i}}=\partial \mathrm{Y}_{\mathrm{i}} / \partial \mu=\mathrm{Y}_{\mathrm{i}} \cdot \cos \alpha-\mathrm{X}_{\mathrm{i}} \sin \alpha \\
& \mathrm{~d}_{\mathrm{i}}=\partial \mathrm{Y}_{\mathrm{i}} / \partial \alpha=\mu .\left(-\mathrm{Y}_{\mathrm{i}} \cdot \sin \alpha-\mathrm{X}_{\mathrm{i}} \cos \alpha\right)
\end{aligned}
$$

Un calcul matriciel donne le résultat suivant :

$$
\mathrm{dX} ’_{0}=4,09 \mathrm{~mm} \quad \mathrm{dY}{ }_{0}^{\prime}=-23,2 \mathrm{~mm} \quad \mathrm{~d} \mu=4,4983 \cdot 10 \mathrm{E}^{-5} \quad \mathrm{~d} \alpha=-1,5910 \cdot 10 \mathrm{E}^{-5} \mathrm{rad}
$$

On obtient comme résultats définitifs pour les inconnues après deux itérations) :

$$
\begin{array}{cc}
X_{0}=0,004 \mathrm{~m} & \mu=1,0000450 \quad(\mu \# 1) \\
\mathbf{Y}_{0}^{\prime}=-0,023 \mathrm{~m} & \alpha=-10,1 \mathrm{dmgr}
\end{array}
$$

Calcul des écarts:

			Coomanmees uon inees 079\%			
	\%					
\%	\%	K¢\%	4ik	Y ${ }^{\text {k }}$		
1	49,873	125,781	49,877	125,764	4	-17
12	73,195	343,356	73,197	343,350	2	-6
25	79,310	378,306	79,312	378,302	1	-5
26	148,366	509,638	148,368	509,640	2	2
39	272,640	549,617	272,647	549,623	6	6
109	371,519	909,411	371,524	909,435	5	24
111	406,03	898,652	406,036	898,676	6	24
114	435,446	861,537	435,454	861,560	8	23

On en déduit l'erreur moyenne quadratique de l'unité de poids $\mathrm{mq}^{2}{ }_{0}=\left[\mathrm{vi}^{2}\right] / \mathrm{n}-\mathrm{q}$
($\mathrm{n}=16 \mathrm{et}$ $\mathrm{q}=4$ dans notre cas); On trouve $\mathrm{mq}_{\mathrm{o}}= \pm 1,4 \mathrm{~cm}$.

Les erreurs moyennes quadratiques sur les inconnues.
$\mathrm{mq}_{\mathrm{x}^{\prime}}= \pm 1 \mathrm{~cm}$

$$
\mathrm{mq}_{\mathrm{Y}^{\circ} \mathrm{O}}= \pm \mathrm{lcm}
$$

$$
\mathrm{mq}_{\mathrm{m}}= \pm 1,6 \cdot 10 \mathrm{E}-4
$$

$\mathrm{mq}_{\mathrm{a}}= \pm 1,5 \mathrm{dmgr}$

Les écarts obtenus sont corrects mais non négligeables．Le point 1 n＇est sans doute pas si stable que cela et les écarts dépassant 2 cm concernent uniquement les points de la couronne（lointains des stations）．On pourra donc utiliser ces résultats pour calculer les coordonnées post－07／1997 mais en restant très critique quant à la transition avant／après l＇hiver 96／97．L＇étude cinématique risque tout de même d＇être partiellement faussée à cette époque．Sans doute serait il préférable de recommencer une nouvelle étude cinématique dont la date origine serait juillet 1997．Les coordonnées seraient calculées dans un nouveau repère（on garde Pl comme origine et l＇origine des orientations de Pl vers l＇antenne pour des raisons de commodité）：

	\％	＊	K．	
P＇1	0，000	0，000	1754，287	0，0000
P＇2	52，096	－30，844	1783，500	397，3892

Pour l＇étude dans sa globalité，il manquera une période donc un segment du trajet de chaque point mais les résultats seront plus fiables．De plus，on pourra tout de même vérifier l＇évolution et la continuité de la vitesse，du type et de l＇ampleur du déplacement．En effet，le repère a changé mais le système reste le même．

Dans le cas où on décide d＇utiliser les résultats du dernier calcul（transformation d＇Helmert）en supposant que les points utilisés soient fiables，les inconnues $X^{\prime}{ }_{0}$ et $\mathrm{Y}^{\prime}{ }_{0}$ sont les coordonnées de $\mathrm{P}^{\prime} 1$ dans l＇ancien repère．De plus，il suffit d＇appliquer une rotation de $« \alpha »$ aux points du nouveau repère pour obtenir leurs coordonnées dans l＇ancien système．La comparaison redevient possible．Les coordonnées de P＇2 sont également calculés à partir des coordonnées de P＇1．On trouve：

\＄界艮	嗗	§界寺	\％	
P＇1	0，004	－0，023	1754，287	399，9990
P＇2	52，099	－30，868	1783，500	397，3882

Le dépouillement des carnets d＇observations utilise la procédure «rotation» du programme DEPOUILL．XLA pour les deux stations et en spécifiant les nouveaux coordonnées des stations．

IV．4．b．iv Conclusion

Les annexes III．2．D．a．montrent les écarts observables entre les différentes déterminations des points réputés stables dans la campagne de juillet 1997．On voit qu＇aucune des trois solutions calculées ci－dessus n＇est satisfaisante．Le réseau des points «stables» ne doit pas être fiable et les calculs s＇appuient donc sur une hypothèse fausse．C＇est pourquoi on préférera se fier au bon sens et décider selon des critères plus géologiques．Le pilier P2 se situe sur une crête en place soutenue par de la roche dure．Il semble très improbable que P2 ai bougé vu sa situation．La solution choisit consiste à retenir les anciennes coordonnées de P2 et de recalculer les nouveaux coordonnées de P1 ainsi que son orientation． Ils ont été déterminés ci－dessus．

Parat	§	\％	Kそ\％	
P＇1	0，008	－0，019	1754，287	－0，0043
P＇2	52，102	－30，866	1783，500	397，3935

IV.4.b.v Propositions d'avenir

Il est légitime de se demander si les piliers bougeront à nouveau à l'avenir, soit de façon continue, soit de façon discontinue. Il semble difficile de rattacher les deux piliers à un système fiable à 100% en raison de la nature du sol et de l'irrégularité des reliefs. Cette solution serait très sécurisante. Une autre solution serait de remesurer à chaque campagne, les coordonnées des piliers avec un récepteur GPS. On obtiendrait alors immédiatement la réponse à la question et les mouvements, s'il y en a, peuvent être quantifiés immédiatement.

Cependant, la fermeture de la polygonale de la première solution ou l'incertitude sur la connaissance des coordonnées GPS (mauvaise connaissance des coordonnées des points de calage des alentours, terrain montagneux, etc...) engendrent des incertitudes sur l'exactitude des mouvements des piliers. Les coordonnées de ces derniers doivent être connus de façon très précise (de l'ordre du mm) car c'est sur eux que repose tout le système d'auscultation.

D'autre part, la configuration du système actuel est très défavorable. Les piliers sont très proches l'un de l'autre ($62,542 \mathrm{~m}$) face aux visées lointaines pouvant atteindre plus de 1000 m sur la couronne. Ainsi, les intersections spatiales sont très peu précises et il n'est pas raisonnable de garantir une précision de l'ordre du cm dans cette zone (reportez vous en annexes III.2.D.b pour visualiser la sensibilité d'un point en fonction de l'angle d'intersection A entre les rayons de visés).

L'idéal serait de trouver une nouvelle station sur une zone stable, dégagée et accessible. Or ces endroits sont moins que fréquents voire même absents sur le site (peut être une station pourrait-elle être installée au dessus de la couronne pour réaliser des visées plongeantes sur les points du haut de la coulée et sur ceux de la couronne). Il semble pourtant falloir se contenter du système choisi.

Deux améliorations certaines peuvent cependant être apportées. La première est la multiplication des références angulaires pour contrôler la stabilité des piliers entre les campagnes et durant les campagnes. J'ai pour cela repéré des nouveaux repères visibles d'au moins un pilier en les insérant dans un tour d'horizon avec des visées multiples pour chacun d'eux.

Point n ${ }^{\circ} \mathbf{3 0 0 0}$

Il s'agit de l'antenne du col qui surplombe le glissement. C'est elle qui fut toujours utilisée pour donner le gisement origine. Sur cette antenne, on vise l'extérieur du pied le plus à droite lorsqu'on se situe au niveau des stations. L'antenne est visée au niveau du premier étage.

Rq : une petite erreur est due à ce type de visée. En effet, entre Pl et P2, ce n'est pas le même point qui est visé comme le montre la figure ci contre ($\mathrm{M} \mid \neq \mathrm{M} 2$). Cependant, les 60 m séparant les deux piliers sont négligeables face aux 1350 m qui séparent les piliers de l'antenne.

point $n^{\circ} 4000$

Ce point n'est visible que de la station P2. Il s'agit d'un relais hertzien du même type que le point $\mathrm{n}^{\circ} 3000$. Ce point à l'avantage d'être éloigné mais pas trop, ce qui assure une visée facile et de qualité (flamboiement et brouillard sont rarement des obstacles). Il se situe juste au dessus de la station de ski et à côté de la station météorologique automatisée du CEREG. Une piste y passe ce qui le rend très accessible.

Trois points géodésiques de l'IGN se trouvaient à cet endroit mais l'un d'entre eux n'existe plus aujourd'hui (celui sur le fâ̂te du toit), l'un n'est pas stationnable (au sommet de l'antenne) et l'autre est au pied de l'abri et donc caché par un masque.

photo
point $n^{\circ} 5000$
Ce repère est l'antenne d'un clocher d'un ancien couvent situé en contre bas, dans la vallée. La photo ci contre présente la visée. Ce point peut s'avérer problématique selon la culture de champ en fond. En effet, l'antenne peut alors être plus ou moins visible. Si des problèmes se posent, on peut viser l'arête verticale d'un des mûrs du clocher.

photo

Le point 5000 est visible de P1 et de P2.

point $\mathbf{n}^{\circ} \mathbf{6 0 0 0}$

Il s'agit à nouveau d'un relais hertzien. Il est situé de l'autre coté de la vallée, à proximité du glissement de terrain de la Valette. Sa visibilité est plus aléatoire et on pourra là aussi préférer viser une arête verticale d'un mûr de l'abri proche .

Résumé

Voici un tableau récapitulatif des valeurs des références angulaires de la session de juillet 1997．Il est bon de les vérifier et de les mettre à jour．

芶絃			4	\％\＆\％	媇新		等
P1	3000	399，9957	78，9781＊	${ }^{*}$ signifie que ces valeurs sont indicatives de la hauteur du repère qui a été visée．			
P2	3000	397，3935	80，9223＊				
P2	4000	284，3754	102，0885＊				
P1	5000	243，4757	107，3856＊				
P2	5000	244，3096	107，8003＊				
P1	6000	217，8447	102，9860＊				
P2	P1	334，0318	128，6187	67，222	60，542	0，236	0，238

＊signifie que cette valeur est indicative de l＇endroit qui a été choisi en hauteur pour la visée horizontale．

IV．4．c La méthode d＇auscultation

Pour chacun des points du réseau d＇auscultation visible des deux stations，on procède comme suit dans la même journée．On commence par stationner une des deux stations au choix（ Pl ou P 2 ）． Pendant que l＇opérateur met en station，le porte prisme se rend au pied du glissement sur le point $\mathrm{n}^{\circ} 1$ ． Quand la mise en station est réalisée et contrôlée，l＇opérateur effectue un double voire triple pointé sur le prisme．Il dispose ensuite d＇une radio pour prévenir que les pointés sont faits et contrôlés．En effet，d＇un pointé à l＇autre，l＇opérateur a pour mission de vérifier que les écarts angulaires ne dépassent pas 20 dmgr entre les différentes déterminations．Un simple contrôle mental et rapide qui ne nécessite pas forcément l＇édition du carnet électronique（sauf en cas de trou de mémoire）qui sera repris systématiquement lors du dépouillement par le programme pour s＇assurer qu＇il n＇y a pas d＇oublis．Si les écarts sont trop grands，on effectue des pointés supplémentaires et on prend note de l＇événement dans le carnet de levé．Car le carnet de levé existe toujours．Celui－ci sert à noter les incidents de station，les résultats des contrôles angulaires （fermeture du tour d＇horizon）tous les 5 points environ et la correspondance entre les numéros de visées et les numéros de points．C＇est sur le carnet également que l＇on note les hauteurs de prisme et d＇instrument lors de la mise en station et les hauteurs de cannes particulières（point 18^{\prime} entre autres）durant le levé．

Pendant que l'opérateur effectue ses contrôles (entre les différents pointés sur un même point si ce n'est pas déjà fait ou sur les repères angulaires connus en gisement), le porte prisme se déplace vers le point suivant où la séquence reprend. Au cas ou un contrôle angulaire sur les références révélerait un dérèglage, l'opérateur demande au porte prisme de retourner sur le point suivant le dernier contrôle angulaire satisfaisant et les mesures sont reprises après réorientation de la station. L'événement doit bien sûr figurer sur le carnet de levé.

On procède ainsi de suite sur tous les points du réseau puis on vise l'autre station pour contrôler une fois de plus cette ligne de base. Ceci implique qu'il est préférable de disposer de plusieurs prismes pour que le porte prisme n'ai pas besoin de revenir vers les stations à ce moment. Il faut donc posséder deux embases également, une pour le théodolite et une pour le prisme laissé sur l'autre pilier. C'est l'opérateur qui permute le prisme et la station à la fin du levé du réseau. En effet, le porte prisme se trouve au niveau des points les plus éloignés (800 m environ, et dans un relief peu engageant) et on perdrait du temps a le faire revenir pour cette opération. La permutation est laborieuse car le matériel est relativement lourd et volumineux. En effet, il y a deux valises (théodolite et distance-mètre), un parasol et des outils pour préparer les platines de centrage et y fixer l'appareil. De plus, le terrain est relativement escarpé (30 m de dénivelée sur 62 m de long). C'est pourquoi on essaye de cumuler cette opération avec la pause de midi (ce qui correspond tout à fait à la synchronisation du levé).

La deuxième station se déroule exactement de la même façon. Le porte prisme en profite pour redescendre au fur et à mesure vers le point $\mathrm{n}^{\circ} 1$ au pied du glissement.

Ce stage aura été pour moi l'occasion de proposer une nouvelle méthode de levé. Jusqu'en juillet 1997, le carnet électronique comportait les numéros de visées, les angles horizontaux et verticaux, les distances inclinées et horizontales, la dénivelée et les trois coordonnées. D'autre part, le carnet de terrain servait à noter la correspondance entre les numéros de points et les numéros de visées. Au bureau, le carnet était repris et les numéros de points étaient repris manuellement dans un fichier Excel.

Ce n'est pas l'organisation du levé qui a été revue, mais la préparation du dépouillement. Je propose en effet de modifier quelques points :

- modifier le masque d'enregistrement : on enregistrera le numéro de point, les deux angles, la distance inclinée et éventuellement les coordonnées X et Y .
TV les numéros de points pour faciliter le dépouillement. Ceci augmente les activités de l'opérateur durant le levé mais il ne devient plus nécessaire d'écrire sur le carnet de terrain, à moins qu'un incident survienne. Globalement, il s'agit plutôt d'un gain de temps certain. En effet, la manipulation est simple. On peut utiliser l'incrémentation ou la décrémentation automatique de l'appareil si les numéros de points se suivent dans l'ordre (rarement le cas). Sinon, la touche NR permet d'entrer le numéro de point. Le mieux sera de combiner ces deux méthodes. Utiliser l'incrément automatique en ayant fixé le bon numéro de point de départ avec la touche NR_{0} et la touche NR pour les deuxièmes voire troisièmes pointés. L'incrément automatique proposera à chaque nouvelle visée le numéro suivant. Il suffit de l'accepter quand on arrive à ce point.
(*) Les deux angles car ils sont nécessaires et suffisants pour le travail demandé.
La distance inclinée suffit. La distance horizontale sera calculée durant le dépouillement et n'a pas besoin de surcharger le carnet électronique.
Attention: cela signifie que la distance doit toujours être enregistrée au moment où le prisme est visé!
* Les coordonnées peuvent être utiles dans la mesure ou les visées d'un même point donneraient un nuage de point particulièrement répandu. Dans ce cas, la lecture des coordonnées peut être plus explicite que les observations tant sur le terrain que lors du dépouillement.

- Instaurer l'utilisation des codes.

σ le code 2 pour la mise en station. Les différentes infos sont les suivantes:

- infol : numéro de station.

ATTENTION : les caractères alpha-numériques ne sont pas acceptés. On appellera Pl 1000 et P2 2000 par exemple. Le logiciel Excel permet de changer ultérieurement cela très rapidement avec l'outil «remplacer».

- Info2: la hauteur de station. Le traitement automatique fera correspondre à chaque enregistrement la hauteur de station.
ATTENTION : les virgules n'entrent pas dans les infos. On entre la hauteur en mm.
- Info3 : la hauteur de prisme par défaut pour la station. Le traitement automatique fera correspondre à chaque enregistrement la hauteur de prisme par défaut de la station.
ATTENTION : les virgules n'entrent pas dans les infos. On entre la hauteur en mm.
σ Le code 3 : à utiliser lorsque la hauteur de canne doit être modifiée sur cette visée uniquement. Sur la visée d'après, c'est la valeur par défaut qui sera reprise en compte. Lors du dépouillement, le code sera systématiquement détecté et la bonne hauteur de canne apparaîtra dans la colonne HP de l'enregistrement.
\leftrightarrow On pourrait penser à un code 4 qui changerait définitivement la hauteur de station. Il n'est cependant pas la peine de prévoir de code d'excentre qui agirait sur la distance car ceux-ci sont surtout utilisés pour les levé de bâtiments ou de détail de voirie, ce qui ne nous intéresse pas ici. On pourrait également penser à un code 31 qui serait à insérer dans le carnet après l'enregistrement concerné. Il s'agirait d'un code 3 pour le point précédent au lieu du point suivant. Cela peut être utile au cas où on se rend compte tardivement que la hauteur de canne a été modifiée.

Ces modifications permettent d'une part de gagner du temps sur le terrain car les écritures dans le carnet ne sont plus nécessaires. Seuls les incidents apparaissent dans le carnet et eux restent importants. En effet, bien que le dépouillement soit plus automatisé, l'opérateur peut encore intervenir sur le carnet électronique quand il est sous forme de fichier texte ou entre les différentes étapes du dépouillement. Ces modifications permettent d'autre part, de gagner du temps lors du dépouillement. Celui ci est désormais totalement automatisé et crée des fichiers qui ont tous la même forme, pour pouvoir être exploités par le programme de compensation.

Le seul problème est de s'adapter à cette nouvelle méthode, et le mode d'emploi qui suit est fait à cet effet.

1. Enlever le couvercle protecteur de la platine
2. placer et fixer l'ergot de centrage
3. placer l'embase de l'appareil (ou du prisme) et la fixer solidement. La caler grossièrement à l'aide de la nivelle sphérique
4. placer l'appareil sur l'embase
5. placer le distance-mètre sur le théodolite
6. raccorder les batteries
7. caler l'appareil précisément à l'aide la nivelle cylindrique de l'alidade.
8. Allumer les appareils
9. taper «code» «2». Entrer alors successivement le numéro de station (1000 pour Pl et 2000 pour P2), la hauteur de station et la hauteur de canne par défaut en mm. Enregistrer avec «rec».
10. Déterminer la correction sur les distances en ppm (sur le distance-mètre : «set», «p/t», [valeur de la pression] (se reporter aux abaques), «run», [température], «run». On obtient la valeur de ia correction. Toujours sur le distance mètre, «set», «ppm», «0», «run». Sur le théodolite, «set», «ppm », [valeur de la correction], «run »).

11．Entrer les coordonnées de la station avec «set $»$, ， $\mathrm{E}_{0} \mathrm{~N}_{0} »$ «set $», « \mathrm{H}_{0}$ 》．

Pint	\％	Y	\％	9，men
P＇1	0，008	－0，019	1754，287	－0，0043
P＇2	52，102 ε_{0}	$-30,866 N_{0}$	1783，500	397，3935

12．Viser l＇antenne de référence et fixer les Hz_{0}（ 0,0000 pour Pl et 397,3892 pour $\mathrm{P} 2(07 / 97)$ ）
13．Contrôler les valeurs angulaires sur les autres références．

			䫆	\％		䢒\＆	接
P1	3000	399，9957	78，9781＊	＊signifie que ces valeurs sont indicatives de la hauteur du repère qui a été visée．			
P2	3000	397，3935	80，9223＊				
P2	4000	284，3754	102，0885＊				
P1	5000	243，4757	107，3856＊				
P2	5000	244，3096	107，8003＊				
P1	6000	217，8447	102，9860＊				
P2	P1	334，0318	128，6187	67，222	60，542	0，236	0，238

（07／97）
14．Entrer le numéro du premier point de l＇incrémentation automatique avec «set» «NRo»．
15．S＇assurer que le module Rec est en place et qu＇il y a de la place dessus（«DATA»）．Sinon le vider avec «set»，«mode»，［99］，«run»，［ \pm ．］，«run»．

La mise en station est terminée．Le levé peut commencer．
1．Entrer le numéro de point（«NR»，［numéro］，«run»）si ce n’est pas le numéro de point de l＇incrément automatique．（ou：sin cost $1 n=0^{\circ}$ ；sityz des cettes \rightarrow varch pos）．
2．Si la hauteur de canne est particulière，taper «code» «3＂，«run» puis la valeur de la hauteur en mm et enfin «rec»．
3．Viser le point et appuyer sur «ALL＂．
4．Débloquer les vis de fine visée et refaire le pointé．Entrer à nouveau le numéro de point （ «NR »，［numéro］，« run »）et remesurer．
5．Noter éventuellement un incident de station ou des conditions particulières de levé sur le carnet．
6．Refaire un pointé ou changer de point．

Rq：il est bon de noter dans le carnet la date du levé et pour chaque station les hauteurs mesurées（ Hi et Hp ），les conditions climatiques ainsi que les références angulaires utilisées．

IV．4．d Les particularités et difficultés

Le site est assez défavorable pour les travaux topographiques．L＇altitude fait que l＇enneigement est long et que le plafond nuageux est souvent bas．A plusieurs reprises，l＇antenne de référence s＇est retrouvée cachée par des nuages．Il peut même arriver que la coulée soit immergée dans les nuages．

Sans être immergée, la coulée peut également être baignée dans une brume plus ou moins épaisse due à l'évaporation importante. A l'inverse, par beau temps, le sol étant noir et l'air immobile, on est confronté à des problèmes de flamboiement importants. Ces phénomènes météorologiques compromettent la précision des résultats et ils sont notés sur le carnet de levé. Il sont d'autant plus importants que les visées sont relativement rasantes. La coupe du glissement ci contre montre que certaines visées sont particulièrement proches du sol et donc
 influencées par la réfraction.

D'autre part, les marnes noires sont très instables et le sol est souvent mou. Toute polygonation est difficilement envisageable pour cette raison. C'est ce qui fait le «malheur» du CEREG qui ne parvient pas à rattacher ses piliers à un système plus éloigné de la zone instable avec assez de précision.

Enfin, les rares repères fixes accessibles sont souvent des antennes hertziennes ou des pylônes de remontées mécaniques. Ces repères sont visibles de loin mais on peut difficilement déterminer leurs coordonnées. La connaissance des coordonnées des différents repères pourrait permettre de rétablir les piliers par relèvement ce qui sécuriserait le chantier. Cependant, vu la faible distance entre les piliers face à l'éloignement des repères, on ne peut pas déterminer les coordonnées de ces points par intersections spatiales. Une solution serait de déterminer des points excentrés au GPS et de déterminer par des polygonations les coordonnées des repères. Un gros travail pour un résultat aléatoire...

V. Préparation de la campagne 1997

V. 1 Découverte du chantier et de l'organisme

V.1.a Le personnel

Mon stage s'est déroulé dans l'une des équipe du CEREG. L'organisme possède une structure plus importante détaillée au début de ce document.

La majorité des travaux topographiques pouvaient s'effectuer à deux. Il a pu arriver que nous travaillions à trois, voire à quatre. Durant la mission, quatre personnes étaient disponibles :

- Olivier Maquaire, maître de conférence de l'UFR de géographie de Strasbourg.
-Dominique Weber, étudiant géographe qui mène une thèse sur le site du glissement du Super-Sauze.
-Nicolas Hampelé, étudiant géographe en DEA.
-Loïc Galisson, étudiant ENSAIS topographe en fin de deuxième année.
Les deux étudiants géographes avaient des travaux propres à leurs sujets respectifs (cartographie géologique, mesures de débits...). J'ai pu participer à certains d'entre eux. L'un des objectifs principaux de Dominique Weber cet été était tout de même centré sur la topométrie et c'est donc avec lui que j'ai essentiellement travaillé. Ayant une meilleure connaissance du réseau et du terrain que moi, c'est lui qui a tenu le rôle de porte prisme lors des levés tachéométriques ou qui se déplaçait avec le mobile lors des mesures GPS. J'ai plutôt été à l'appareil et préparé les missions et le matériel pour les levers au GPS.

Pour certains levés, nous avons travaillé à trois. En effet, le réseau des 50 points de la coulée doit être levé totalement dans la journée en cas de mouvement rapide. Cela sous entend qu'il faut mesurer chaque point deux fois (une fois de chaque station) avec plusieurs pointés à chaque fois. Cette méthode est longue et les déplacements sont parfois importants. C'est pourquoi on utilisait deux prismes donc trois opérateurs.

En ce qui concerne les travaux de GPS, nous avons également travaillé à deux ou trois selon la tâche à accomplir.

V.1.b Les moyens

Le CEREG propose des programmes de recherche au niveau européen ce qui lui permet de prétendre à des fonds au niveau européen. Ce fut le cas l'année dernière où toute une campagne d'auscultations géophysique et géotechnique avait été organisée. Ces travaux demandent du matériel et des infrastructures très importantes et coûteuses (explosifs, matériel héliporte...).

Les travaux de cet été sont restés bien plus modestes.

V.1.c Les documents

De nombreuses études ont déjà été menées sur le site du glissement du Super-Sauze. La continuité et l'intensité des recherches sur ce site particulier font de lui un laboratoire dont on connaît l'évolution depuis maintenant plusieurs années (1991 pour la topométrie). Selon les objectifs des travaux à faire, on peut trouver tous les renseignements utiles dans des rapports d'étudiants ou de chercheurs.

D'autre part, le CEREG possède des documents sur l'histoire de la zone, des photos aériennes, des témoignages... Autant de pièces qui aident à déterminer l'apparence originelle du site pour mieux déterminer son évolution et prévoir son devenir.

V. 2 Mise en place des objectifs de la mission

V.2.a Réitérer une campagne de mesure du réseau d'auscultation

Depuis 1991, une ou plusieurs campagnes de mesure de l'intégralité du réseau ont été organisées chaque année dans le but de tracer des diagrammes cinétiques pour chaque point. Il s'agissait cet été d'enrichir la banque de données en ce sens.

Il s'est avéré qu'un autre objectif s'est fixé sur place: déterminer les mouvements qui ont affecté les piliers depuis la campagne de juillet 1996 . Enfin, afin d'éviter toute nouvelle surprise, il aurait été bon de créer des points de rattachements lointains en prévision de nouveaux déplacements. Cette partie du travail n'a pas été réalisée : elle deviendra peut-être inévitable si des mouvements sont observables d'année en année. Les mouvements quant à eux ont été déterminés approximativement mais les résultats ne garantissent pas une précision suffisante pour continuer l'étude cinématique dans l'ancien système.

V.2.b Levé grossier des autres réseaux

Comme dit dans le § IV.5.a.ii, plusieurs réseaux sont mis en place sur le site. Leur repérage a deux objectifs : déterminer les mouvements des points pour avoir plus d'informations sur les mouvements de la coulée (exemple: les piézomètres), et aussi pour pouvoir mieux les identifier à la campagne suivante. En effet, certains points se déplacent rapidement et on peut parfois avoir du mal à retrouver certains d'entre eux.

Ces levés demandent une précision de l'ordre de quelques centimètres. Les points sont levés d'une seul station, avec un seul pointé.

V.2.c Test de l'outil GPS sur les différents sites

Le GPS peut sembler être l'outil idéal pour un tel chantier. Il évite en effet les problèmes de système de coordonnées appuyé sur deux piliers dont la stabilité est remise en cause.

Il restait à voir cependant si l'encaissement de la vallée, l'orientation du glissement et la zone d'étude n'empêchaient pas l'utilisation de cet outil.

V.2.d Revoir la configuration du chantier

Le système de coordonnées s'appuie sur deux piliers distants de 60 m alors que les visées peuvent atteindre un kilomètre. L'orientation des stations n'est pas un problème car elle se fait sur une référence angulaire lointaine (environ 1350 m) et non pas d'un pilier vers I'autre. L'étude du § IV.1.G du manuel du programme DEPOUILL.XLA montre les imprécisions engendrées par une telle configuration. L'idéal serait d'ouvrir l'angle d'intersection des visées entre les deux stations pour le faire tendre vers $\pm 100 \mathrm{gr}$. Cependant trouver une station éloignée des piliers actuels avec une bonne visibilité et sur une zone stable parait mission impossible...

V.2.e Autres travaux...

Pour leurs études respectives, les trois géographes et géomorphologues ont eu à effectuer des mesures propres à leurs spécialités. J'ai assisté voire participé à certaines parmi lesquelles :

国 mesure de débit des torrents qui drainent le glissement. On aura utilisé deux méthodes selon le relief.

Si le torrent descend en «escalier», on peut utiliser un débit-mètre capacitif. C'est un seau gradué en volume que l'on remplit tout en mesurant le temps de remplissage. Cette méthode n'est à utiliser que dans les endroits ou l'écoulement est concentré en une petite chute afin que toute l'eau tombe dans le débit-mètre.
La seconde méthode consiste à aménager le lit de la rivière sur deux mètres environ en essayant de lisser le fond au maximum. Il s'agit ensuit de tracer un maillage du cours d'eau tous de 10 à 20 cm de côté représentant le fond du torrent. On peut ainsi déterminer le volume d'eau qui s'écoule à chaque instant sur la distance de référence. Il faut ensuite déterminer la vitesse d'écoulement. On utilise pour cela des marqueurs que l'on lâche en amont et on mesure le temps qu'ils mettent pour parcourir la distance. Ces mesures de vitesses se font au milieu du cours d'eau et sur les bords. Pour le calcul, les profils sont lissés et les vitesses moyennées.
prélèvement d'échantillon d'eau en vue d'analyser le chargement des eaux en minéraux par exemple. Cette information, cumulée avec les mesures de débit, permet de déterminer des volumes de matériaux évacués en un an par les torrents. Pour cela, les mesures sont réitérés en plusieurs points stratégiques.

- cartographie géologique. Voilà un travail où le GPS aurait pu servir. Il est parfois difficile de se repérer précisément et des point GPS en Stop \& Go auraient pu faciliter le travail de repérage.
- enregistrement des données météorologiques cumulées par les stations en continu depuis la dernière campagne.

V. 3 Rassemblement des informations

V.3.a.i Les essais GPS

L'outil GPS n'avait jamais été utilisé auparavant sur le site du Super-Sauze. Cet instrument demande une certaine connaissance sur les méthodes de levé et sur son utilisation. Nous avons donc effectué des tests avant le départ en mission pour être confrontés aux éventuels problèmes de manipulation tant que nous avions les personnes compétentes à proximité.

Une première expérience à Metz a permis de découvrir le matériel et son utilisation plus en détail et un essai sur le toit de l'ENSAIS pour tester nos connaissances nous ont permis de partir plus confiants.

V.3.a.ii Les fiches signalétiques de l'IGN

Nous avons pu obtenir des copies des fiches signalétiques des points IGN proches du site. Cette documentation devait nous servir pour deux travaux : connaitre quelques points en coordonnées Lambert III pour l'utilisation du GPS et garder la possibilité de rattacher les piliers P1 et P2 au canevas national.

V.3.a.iii Les données du SERTIT

Le CEREG collabore avec le SERTIT pour tenter d'établir un modèle numérique de terrain de la zone. C'est Adriano Ricotta, de l'ENSAIS qui travaillait à cette question dans le cadre de son projet de fin d'études. Profitant du fait que nous disposions d'un récepteur GPS, nous lui avons proposé de mesurer quelques points caractéristiques visibles sur les photos aériennes pour améliorer le calage du MNT. Nous avons ensemble définis une dizaine de points à mesurer, en fonction de leur définition sur les photos dans les différentes années, et de leur accessibilité sur le terrain.

V. 4 Préparation du matériel

Cette phase de préparation est très importante car aucun détail ne doit être oublié. En effet, le chantier est loin du bureau et on ne peut se permettre d'oublier quoi que ce soit.

V.4.a Topométrie

Le matériel était à prévoir pour faire les levés des réseaux et pour effectuer une éventuelle polygonation en centrage forcé en vue de rattacher les piliers à un réseau extérieur. Pour cela nous avions :

- Trois trépieds
- Trois embases avec plombs optiques
- Trois prismes avec embases (deux pour les porte-prisme, et un pour mettre sur le pilier non stationné)
- Deux cannes ($\operatorname{lm} 30 / 2 \mathrm{~m} 50$)
- deux trépieds légers à pince pour prisme
- Matériel de centrage pour les piliers (clé pour dévisser la plaque protectrice, ergot de centrage ($\times 2$), tournevis pour fixer les ergots.
- Un théodolite Tl600.
- Un distance mètre Di 3000.
- Trois batteries
- Un chargeur
- Deux talkies-walkies + deux batteries de rechange avec chargeur
- Des carnets de terrain

V.4.b GPS

- WILD GPS Leica Système 200 (pivot + mobile)
- Une canne et un trépied
- Deux batteries plus un chargeur.
- Un carnet de mission
- Un adaptateur porte prisme

V.4.c Traitement informatique

- Un PC portable.
- Une unité de transfert GIF 10 .
- Une licence pour le logiciel SKI (Static KInematic) avec une clé physique.
- Une version du programme DEPOUILL.XLA.
- Des disquettes pour faire des copies tous les jours des mesures de la journée (tachéométrie et GPS).

V.4.d Divers

- Matériel de protection des piliers (parasol et tissus à enrouler autour des piliers pendant les levés)
- Un véhicule 4×4
- Cartes diverses
- Equipement pour les travaux divers (débit...)
- ruban de 30 m et double mètre.

$V .5$ Prise en main du GPS

V.5.a Projet Metz

Cette mission à Metz dans le cadre d'une formation dispensée par le laboratoire de photogrammétrie de l'ENSAIS avait pour but la découverte du matériel, avec sa mise en oeuvre et son utilisation. Elle montra également un exemple de chantier avec un canevas et des points de détail.

Il s'agissait donc d'un chantier complet mais déjà bien avancé. Les travaux réalisés durant cette mission concernaient le mesurage du canevas et de nouveaux points de détail.

V.5.b Projet ENSAIS

Forts de cette première expérience, nous tenions à gérer un projet dans sa globalité avant de partir en mission. Profitant du réseau de points présents sur le toit de l'ENSAIS, nous avons effectué quelques essais de statique et de Stop \& Go.

Ce travail a mis en relief les risques d'erreurs telles que la détermination des offsets pour les antennes suivant l'endroit où elles se trouvent (pilier, canne, trépied...). Il a permis également de se rendre compte de l'influence des masques sur les chaînes de Stop $\& G o$ par exemple. En effet, le point $n^{\circ} 11$ se trouve caché par un local et son accès oblige à pencher largement l'antenne qui finit par être cachée par le local.

Connaissant les coordonnées des points P 1 et P 4 nous avons remesuré le réseau formé par les points Pl à P 6 considérant cette figure comme le canevas. A partir de deux points de ce canevas, nous avons mesuré des points de détail (points 11 , $21,31,41$) puis nous avons réalisé deux chaînes de Stop \& Go représentant le dallage de la terrasse. Les figures géométriques formées par les dallages sont régulières et les longueurs des côtés des dalles très proches de la valeur moyenne de 25 cm .

Pour une première expérience, les résultats furent concluants et la convivialité de l'outil fut un paramètre non négligeable. Le projet GPS a d'ailleurs été à la base d'une démonstration du système GPS devant un groupe d'étudiants européens (ERASMUS) à Barcelonnette.

Pour ces deux projets, les traitements se seront faits sur le logiciel SKI. Ils auront été l'occasion de dresser un guide de l'utilisateur débutant (annexes III.4.B \& C).

V. 6 Mise place d'une méthode de levé

Il ne s'agissait pas de déterminer une solution définitive ni pour la tachéométrie ni pour le GPS. En effet, bien que disposant des fiches signalétiques des points géodésiques, nous ne connaissions pas l'état de ces points ni leur encombrement (visibilité pour la tachéométrie et masques pour le GPS).

Nous avons simplement établi plusieurs possibilités de stratégies qu'il fallait de toute façon améliorer au début de la mission après avoir effectué une reconnaissance de l'éventail des points. Cette
préparation avait plutôt pour but d'orienter la solution pour faire gagner le plus de temps possible avec les informations dont nous disposions. En ce qui concerne les mesures GPS, nous étions arrivés aux alternatives suivantes :

- Faire une polygonation en centrage forcé insérée entre les deux piliers pour placer 2 ou 3 nouveaux points de canevas englobant le chantier. Le but est d'obtenir au moins trois points de canevas connus de façon sûre, pas forcément visibles entre eux, pour pouvoir travailler dans un système indépendant avec le GPS et éviter d'avoir à utiliser les points IGN. Les coordonnées de ces points auraient été déterminés dans le système indépendant matérialisé par les deux piliers.
Sur un site courant, cette solution aurait été légère, rapide et précise. En effet, tout le travail s'effectue dans le même système, propre au chantier, indépendant. Malheureusement, la nature du sol empêche toute perspective de polygonation précise, surtout sur une relativement grande étendue.
- Implanter avec le GPS deux ou trois nouveaux points pas forcément visibles entre eux de façon à ce qu'ils englobent tout le chantier avec les piliers. On utiliserait alors les points IGN de Super-Sauze, Barcelonnette, Pra-Loup ou du Chapeau de Gendarme pour y placer le pivot et déterminer tous les points définissant notre système du chantier ($\mathrm{P} 1, \mathrm{P} 2$ et les nouveaux points). On aura cependant des coordonnées Lambert III alors que toutes les mesures ont été réalisées dans un système indépendant jusqu'à aujourd'hui. C'est pourquoi il aurait également fallu mesurer au GPS avec le pivot se trouvant sur l'un des points de canevas du système du chantier (et pas nécessairement sur un point IGN), mesurer le plus de points possible sur la coulée, en les choisissant de sorte qu'ils ne soient pas trop mobiles. On aurait alors disposé d'un large éventail de points (Pl et P 2 plus les points mesurés sur le glissement) connus par tachéométrie dans le système indépendant et au GPS en coordonnées Lambert III. Ces données auraient permis de déterminer les paramètres d'une transformation de coordonnées pour déterminer les coordonnées de tous les points de canevas et se permettre de travailler dans le système indépendant uniquement, même avec le GPS.
Cette méthode, beaucoup plus lourde et bien plus calculatoire semblait pourtant la plus appropriée sur ce terrain. Cependant la multiplication des étapes et des calculs laisse penser que l'incertitude sur les coordonnées calculées en bout de chaîne pourra atteindre plusieurs centimètres, ce qui ne saurait nous satisfaire.

Pour la tachéométrie, nous cherchions deux types de points : d'une part les points visibles des deux stations et connus en coordonnées pour les utiliser comme références angulaires. Connaissant leurs coordonnées ainsi que celles des piliers (qu'il aurait fallu rattacher au même système), on aurait pu calculer les gisements théoriques. D'autre part, nous cherchions des points proches du Super-Sauze qui auraient pu servir à insérer une polygonation passant par les deux piliers. Dans les deux cas, il s'agissait de sécuriser le chantier en multipliant les contrôles et les possibilités de rétablissement des piliers.

En ce qui concerne le GPS, nous cherchions des points les plus dégagés possibles, accessibles facilement et qui engloberaient le plus possible le chantier.

VI. La mission 1997

VI. 1 Planning

Reportez vous en annexes III. 1 pour le connaître.

VI. 2 La tachéométrie

Durant la campagne de juillet, nous devions au moins effectuer un levé complet de tous les points du réseau d'auscultation. Selon le temps, un second levé aurait pu être réalisé pour mettre en relief des mouvements quotidiens. Un tel levé demande une journée et demi : une journée pour les points de la coulée et une demie journée pour les points de la couronne.

Finalement, nous aurons effectué un levé complet du réseau d'auscultation (un jour et demi), des mesures de références angulaires et une surdétermination des points stables utilisés pour le rétablissement des piliers (une demie journée), les réseaux divers et les points doubles tachéométrie/GPS (une demie journée).

Les mesures tachéométriques prennent rapidement beaucoup de temps pour plusieurs raisons :

- l'accès au chantier se termine à pied en raison du mauvais état de la piste (la coulée y est pour quelque chose...). De plus, le matériel est volumineux (théodolite et distancemètre sont séparés...)
- chaque point est visé à plusieurs reprises
- les distances entre points sont parfois importantes et le terrain très irrégulier.
- Les contrôles angulaires réguliers se rajoutent à cela. Ils sont rarement réalisables alors que le porte prisme se déplace. En effet, à moins de connaître le réseau parfaitement, l'opérateur perd de vue régulièrement le porte prisme.
- En raison de la nature du sol et de l'irrégularité du relief, la mise en station du prisme (avec un trépied léger) se rallonge parfois.
- Les permutations de stations sont laborieuses en raison du relief et l'opérateur est souvent seul pour cela.

VI. 3 Le GPS

Après la reconnaissance du début de mission, c'est la deuxième solution du \S V. 6 qui a été retenue.

VI.3.a Mise en place de la méthode

VI.3.a.i Rappel de la méthode

La stratégie fut la suivante :

- Implanter deux nouveaux points de canevas en plus des deux piliers.
- Déterminer les coordonnées des quatre points de canevas dans le système Lambert III
- Déterminer les coordonnées Lambert de quelques points de la coulée par GPS.
- Déterminer les paramètres de la transformation de coordonnées.
- Déterminer les coordonnées des points d'appuis dans le système indépendant.
- Effectuer les mesures des points à déterminer en travaillant dans le repère indépendant avec le calcul par interpolation de SKI.

VI.3.a.ii Implantation des deux nouveaux points de canevas.

Il fallait les choisir de façon à ce qu'ils soient proches, accessibles facilement, bien dégagés de tout obstacle et englobant de préférence le chantier. Nous avons commencé par répertorier les points du réseau IGN qui auraient pu servir. Cela nous éviterait de perdre du temps à déterminer leurs coordonnées. Seuls les points $18,20,23,28$ et 30 auraient pu convenir (cf annexes III.4.A). En effet, ce sont les seuls qui soient proches et accessibles facilement (contrairement au point 26 situé au sommet du Chapeau de Gendarme par exemple). Malheureusement, le point 28 b n'existe plus, le point 28 a est situé au pied d'un mûr qui crée un masque sur près de 200 gr , et le point 28 c n'est pas stationnable (relais Hertzien).

Finalement, nous avons décidé d'implanter deux nouveaux points. Le point numéro 10 est proche de la station météorologique du CEREG à Super-Sauze, et l'autre, le numéro 20, se situe au dessus de la coulée, en arrière de la couronne.

Ce sont des clous enfoncés dans la pierre pour le 20 et dans le béton pour le 10 (cf annexes III.4.D). Tous deux ont été scellés avec du ciment pour éviter que l'eau ne s'infiltre et que le gel fende le support.

Les deux points sont dégagés de tout masque et proches de chemins. Le point 10 est accessible en véhicule tout terrain mais le point 20 n'est accessible qu'à pieds (20 mn de marche environ).

Les deux points sont stationnables aisément bien que le point 20 soit sur un rocher.

VI.3.a.iii Détermination des coordonnées des points de canevas

Deux points connus ont été choisis pour faire une double détermination de chaque point. Le choix de ces points fut dirigé par les paramètres suivants :

- distance du chantier (pour des raisons pratiques plutôt que techniques)
- dégagement du point (le point 28 a ne convenait pas alors qu'il aurait été situé idéalement)
- accessibilité du point (les points $26 a$ et 26 b, situés au sommet du Chapeau de Gendarme sont très bien placé mais difficiles d'accès).
- connaissance du point : les altitudes de tous les points que nous connaissions étaient connues au décimètre sauf un. Nous l'avons choisi en priorité.

Nous avons finalement gardé les points 20 c et 18 c . Le 20 c rempli toutes les conditions énumérées ci-dessus et le 18 c convient également. Malheureusement, son altitude n'est connue qu'au décimètre.

Les mesures des points de canevas ont été effectuées en mode statique. Chaque point à été mesuré durant une heure à partir de chacun des deux points du canevas IGN. Des lignes de bases supplémentaires ont été mesurées entre les points du canevas IGN et entre les points P1, P2, 10 et 20. Reportez vous au chapitre VII. 2 pour voir le détail des lignes de base.

VI.3.a.iv Détermination des coordonnées des points de la coulée

Ces coordonnées vont servir à déterminer les paramètres de la transformation de coordonnées. Ils doivent donc être connus avec une bonne précision. C'est pourquoi ils ont eux aussi été mesurés en mode statique et de préférence déterminés plusieurs fois (à partir de différents points du canevas). Chaque ligne de base a été mesurée environ 10 minutes pour ces points.

VI.3.a.v Détermination de la transformation de coordonnées

On traite ici la transformation du système Lambert III vers le système propre au chantier. Comme le chantier est peu étendu (1 km au maximum), le travail dans le système indépendant ne nécessite pas la connaissance de l'ellipsoïde ni du géoïde.

Cette transformation va se faire en deux étapes. La première va consister en une rotation autour
 coordonnées de $P^{\prime} l$. Cette opération donne une première approximation de la transformation et donne des coordonnées dans un système approximativement parallèle dans les trois dimensions au système du chantier.

Pour se faire, on calcul :

- le gisement $\vartheta_{0}{ }^{M}$ à l'aide des coordonnées GPS dans le système Lambert
- le gisement $\theta_{P l}{ }^{M}$ à l'aide des coordonnées tachéométriques dans le système indépendant
- Pour tous les points Mi , la valeur de l'angle $\gamma_{i}=\vartheta_{O}{ }^{M}-\theta_{\mathrm{Pl}}{ }^{\mathrm{M}}$
- $\gamma=\Sigma\left(\gamma_{i}\right) / \mathrm{n} \quad$ où n est le nombre de points mesurés.
γ est l'angle fait dans le plan (OXY) ou ($\mathrm{P}_{1} \mathrm{xy}$) entre les deux systèmes.

(OXY) : système Lambert III
($\mathrm{P}_{1} \mathrm{xy}$) : système indépendant du chantier

L'étape suivante se caractérise par trois translations, trois rotations et un coefficient d'échelle. La première étape sert en fait à réduire la valeur de la rotation autour de Oz dans la deuxième étape. Ainsi, dans cette deuxième étape, les trois rotations seront très faibles ce qui va faciliter les calculs.

Il s'agit d'une similitude spatiale. Elle se décompose comme suit :

- une translation $T=[T x, T y, T z]$.
- une rotation dans l'espace R. Cette matrice est déterminée par trois rotations $\varepsilon_{x}, \varepsilon_{y}$ et ε_{z} respectivement autour des axes $P_{1} x, P_{1} y, P_{1} z$ qui amènent les axes des deux systèmes parallèles les uns aux autres. Les angles $\varepsilon_{\mathrm{x}}, \varepsilon_{\mathrm{y}}$ et ε_{z} sont très petits. La matrice R s'écrit donc :

$$
\mathbf{R}=\left|\begin{array}{ccc}
1 & \varepsilon^{z} & -\varepsilon^{y} \\
-\varepsilon^{z} & 1 & -\varepsilon^{x} \\
\varepsilon^{y} & -\varepsilon^{x} & 1
\end{array}\right|
$$

- une homothétie $\mathrm{K}=(1+\mathrm{D})$ avec $\mathrm{D}<10^{-4}$.

Ces trois éléments se complètent dans la formule globale :

Connaissant les coordonnées de plusieurs (au moins trois) points dans les deux systèmes simultanément, on peut déterminer les sept paramètres de la transformation.

On appelle (X_{i}, Ψ_{i}, Z_{i}) et ($\mathrm{X}_{i}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}$) les coordonnées de M_{i} respectivement dans le système Lambert III et dans le système indépendant du chantier. Les paramètres $\mathrm{Tx}, \mathrm{Ty}, \mathrm{Tz}, \mathrm{D}, \varepsilon_{\mathrm{x}}, \varepsilon_{y}$ et ε_{z} sont inconnus. On a :

On résout le système à $3 n$ équations ($n=$ nombre de points mesurés dans les deux repères) et 7 inconnues.

La connaissance de ces sept paramètres permet de calculer les coordonnées définitives de tout point dans le système indépendant à partir de ses coordonnées Lambert III. Ainsi, on peut déterminer les coordonnées dans le système du chantier des points 10 et 20 implantés en tant que points de canevas. Ces points pourront être stationnés par le pivot en vue d'un traitement par la méthode par interpolation. Celleci permet de travailler dans un système indépendant sans connaître le modèle du géoïde du lieu. Pour l'utiliser, il faut au moins connaitre les coordonnées de trois points d'appuis dans ce système. Jusqu'en juillet 1997, seuls P1 et P2 étaient considérés comme des points d'appuis. Désormais, les points 10 et 20 sont implantés et déterminés. La méthode de traitement par interpolation devient utilisable. Ce type de traitement est un gain de temps non négligeable car il permet de s'affranchir de toute dépendance du réseau IGN.

VI.3.a.vi Mesures des points de détail.

L'un des buts de la manipulation était de comparer les coordonnées de certains points mesurés par tachéométrie et par GPS. Nous avons donc sélectionné des points caractéristiques pour ce travail. Certains ont été levés en statique, d'autres en Stop \& Go.

VI.3.b Les autres mesures

VI.3.b.i Les tests

Nous avons réalisé deux types de tests. Le premier se rapproche du travail de comparaison des coordonnées évoqué ci-dessus. Il s'agissait de raccorder deux tronçons d'un même profil en travers. La première moitié (Est), visible de Pl , a été levée au tachéomètre. La deuxième moitié, cachée des piliers par un ravine, a été levée par GPS en Stop \& Go avec une partie de recouvrement d'une vingtaine de mètres. Il s'agissait d'observer le raccord des deux moitiés après traitement informatique.

Le second test devait répondre à un autre objectif de la mission : étudier les possibilités et les capacités du GPS dans une vallée plus ou moins encaissée. Pour cela, nous avons analysé la configuration du réseau des satellites observables, des satellites effectivement observés, et le GDOP qui en résulte, et ce en plusieurs points caractéristiques de la coulée (au niveau des piliers, au pied de la couronne, sur la couronne, au pied du glissement, sur la coulée, sur les abords de la coulée).

VI.3.b.ii Les points de calage du MNT

Ces points ont été déterminés en statique. Ils ne requéraient pas une précision justifiant cette méthode et le Stop \& Go aurait suffit. Cependant, l'espacement entre les points était tel que nous avons préféré éteindre l'appareil durant les déplacements. Il fallait donc réinitialiser la chaîne de Stop \& Go pour chaque point ce qui revenait à mesurer en mode statique...

VII. Le dépouillement des mesures

VII. 1 La tachéométrie

VII.1.a Création du programme "DEPOUILL.XLA"

Ce programme est détaillé dans le manuel ci-joint.

VII.1.b Traitement des fichiers de l'année 1996

Il s'agissait de traiter les fichiers de trois campagnes : juillet 1996, septembre 1996 et mai 1997. Le levé du mois de juillet correspond à la campagne durant laquelle les piliers ont été construits. Au mois de mai, un écart angulaire avait déjà été observé mais pas déterminé.

VII.1.b.i Mise en forme

Le masque d'enregistrement n'étant plus le même que le masque actuel, et les codes 2 et 3 n'apparaissant pas dans le carnet de terrain, les fichiers de 1996 et début 1997 n'étaient pas traitables tels quels. Il a donc fallu les ouvrir avec l'éditeur d'Excel puis les mettre sous la bonne forme. Pour certains, il a suffit de mettre en forme la structure du tableau puis de modifier le code Visual Basic de la première étape du dépouillement de sorte que les tests sur les mesures, les divers formatages et les calculs d'observations moyennes soient automatisés.

VII.1.b.ii Le traitement

Un problème majeur s'est posé : quelles coordonnées et quelles orientations choisir ? En effet, le mouvement des piliers a-t-il été soudain et momentané ou se prolonge-t-il depuis juillet 1996 ? La question ne se pose pas pour la campagne de juillet 1996. La polygonale qui lie les bornes de l'ancien repère et les piliers est fiable. Cependant, dès septembre1996, on se rend compte que les écarts entre les deux déterminations de chaque point (de P1 et de P2) augmentent. De plus ces écarts n'ont rien de constants et traduisent non seulement une translation mais aussi une rotation. Il y a un problème de coordonnées de station et d'orientation de station. Ces deux phénomènes sont liés. Un nouveau calcul des coordonnées des points avec les nouvelles coordonnées des stations (celles calculées lors de la campagne de juillet 1997) ne donne pas de meilleurs résultats. Cette observation pousse à penser que le mouvement est progressif et qu'on se trouve dans l'impossibilité de déterminer les coordonnées des points du réseau dans le repère originel. Il en va exactement de même pour le mois de mai.

Durant ces deux campagnes, plusieurs levés avaient été réalisés. Ils sont de qualité plus ou moins bonne selon les conditions météorologiques et atmosphériques du moment. La qualité du levé se voit en partie dans les distances entre les différentes déterminations d'un même point à partir d'une même station. L'étude de ces écarts montre que les levés de septembre 96 et mai 97 ne sont pas mauvais. Le problème réside donc dans l'orientation d'une ou des deux stations ce qui est irrémédiable (si on veut garder une précision de l'ordre de un deux cm par point).

Les grands écarts observables entre les différentes déterminations d'un même point d'une même station aboutissent à des calculs de points approchés très approximatifs et la compensation semble ne plus avoir de sens. Les écarts obtenus après un essai confirment d'ailleurs cette idée. C'est pourquoi, il a été décidé, dans les cas où les écarts étaient trop grands, de ne pas compenser les fichiers par la méthode des intermédiaires.

VII.1.c Traitement des fichiers de l'année 1997

VII.1.c.i Mise en forme

Ils ont été traités en intégralité par le programme DEPOUILL.XLA, tant pour la mise en forme que pour la compensation.

La campagne de juillet 1997 aura abouti à trois fichiers distincts :

- 07a97.rec : il contient le levé des points du réseau (coulée et couronne). Pour sa compensation, le fichier père 07a97_0.xls est divisé en trois fichiers plus petits 07a97_1.xls, 07a97_2.xls et 07a97_0.xls.
- points.rec : ils contient les points divers (piezo...). Ce fichier est mis en forme mais non compensé car les points ne sont levé qu'une fois.
- Triangu.rec : c'est le fichier sur lequel ont été regroupées toutes les visées entre les piliers et le repères angulaires choisis. C'est le fichier qui a servi au calcul de la rotation et des nouveaux coordonnées de P1. Il s'agit de visées angulaires uniquement. Il n'y a pas de compensation mais de simples moyennes arithmétiques.

VII.1.c.ii Le traitement

Mis à part quelques points mal levés ou quelques visées éliminées, les fichiers n'ont pas fait l'objet de manipulations particulières. Notons simplement les paramètres utilisés :

	§\%	\%	\#	
P'1	0,008	-0,019	1754,287	-0,0043
P'2	52,102	-30,866	1783,500	397,3935

En effet, nous avons choisi de considérer P2 fixe et de prendre les nouvelles données pour P1. D'une façon pratique, cela revient à faire effectuer à la station Pl une rotation de -43 dmgr avec la procédure rotation. Ainsi, toutes les lectures angulaires sont augmentées de 43 dmgr. Les deux translations sont prises en compte quand on inscrit les nouvelles coordonnées de P1 dans le tableau des coordonnées de station avant le calcul des coordonnées des points dans le dépouillement. Malgré ces modifications, les écarts ne sont pas aussi bons que sur les campagnes précédentes. Les nouveaux paramètres choisis ne semblent pas être totalement exacts.

VII.1.d Conclusion

On ne parvient pas à déterminer de façon précise les données des stations (coordonnées et orientations). Il faut désormais se demander s'il n'est pas préférable de recommencer une étude cinématique indépendante de la précédente. La réalisation des diagrammes cinétiques répondra en partie à cette question.

D'autre part, un autre problème doit être soulevé. On s'est rendu compte que les paramètres déterminés durant la campagne $07 / 1997$ ne conviennent pas pour les mois de mai et septembre précédents. On en conclut que le mouvement fut progressif. Doit-on craindre alors que ce mouvement ne soit pas achevé et qu'à chaque campagne, il faille redéterminer les paramètres du repère? Si tel est le cas, la tachéométrie ne semble plus appropriée pour le chantier du Super-Sauze et le GPS semble être le bon outil, au moins pour déterminer les coordonnées des stations et des références angulaires sur lesquelles s'appuieraient les mesures tachéométriques..

VII. 2 Le GPS

VII.2.a Initiation au matériel

VII.2.a.i Les mesures et leur traitement informatique

L'utilisation du matériel sur le terrain est simple mais demande de la rigueur et de l'organisation. En effet, des confusions surviennent rapidement dans les appellations des points, des jobs et des projets. D'autre part, les hauteurs de stations et les «offset», bien que modifiables, doivent être entrés avec précautions en se référant à la notice explicative du constructeur. Des telles erreurs peuvent entacher l'ensemble des calculs ultérieurement.

Reportez vous en annexes III.4.B et III.4.C pour connaître la méthode de mise en œuvre du système et l'utilisation du logiciel SKI pour le traitement informatique.

Les résultats qui suivent résultent d'un post-traitement avec le logiciel SKI. Malheureusement, en raison de la méthode choisie et des données dont nous disposions, les résultats ne sont pas aussi précis qu'on pourrait l'espérer. Les valeurs suivantes sont donc à prendre en compte en tant qu'estimations. Des précautions plus rigoureuses dans une mission prochaine donneront des résultats meilleurs.

VII.2.b Projet canevas

La première étape du travail consiste à mesurer les coordonnées des points de canevas ($\mathrm{P} 1, \mathrm{P} 2$, 10 et 20) pour obtenir leurs coordonnées dans le système Lambert III. Ces quatre points de calage serviraient ensuite de canevas pour mesurer tout autre point du chantier.

Ce ne sont pas ces quatre points qui seront utilisés pour déterminer la transformation de coordonnées. Certes, P1 et P2 sont utilisés car ils sont connus dans les deux systèmes de coordonnées mais les coordonnées de 10 et 20 ne peuvent pas être déterminées par tachéométrie. Il faut cependant au moins trois points pour déterminer les sept paramètres de la transformation. On mesurera donc en statique au moins quatre points supplémentaires pour pouvoir déterminer ces paramètres par un calcul de compensation par les intermédiaires. Les points seront choisis de façon à être dégagés, stables et accessibles. La stabilité est importante en effet car les mesures seront étalées sur plusieurs jours.

En ce qui concerne les mesures des quatre points de canevas, ils seront tous mesurés de deux points IGN (100 et 200) et si possible à partir des autres points du canevas. Chaque ligne de base sera mesurée une heure en mode statique pour obtenir une bonne précision. Cependant, en totalisant toutes les lignes de bases possibles entre les six points on arrive à un total de 15 heures de mesures (chaque ligne de base n'est mesurée qu'une fois : on ne la mesure pas dans les deux sens) sans compter les temps de déplacement. C'est pourquoi on se contentera dans un premier temps de mesurer chaque point à partir des points 100 et 200.

Les points 100 et 200 sont les points $\mathrm{n}^{\circ} 20 \mathrm{c}$ et 18c. Leurs fiches signalétiques figurent en annexes III.4.A. Leurs caractéristiques correspondaient exactement à ce que l'on peut demander à un point de calage pour le pivot: accessibilité, dégagement et proximité (gain de temps dans les déplacements). Malheureusement, les point 200 n'est connu qu'au décimètre. Ceci engendre des incertitudes importantes sur la détermination des quatre points de canevas (plusieurs cm). En effet, une erreur commise sur l'altimétrie (altitude d'un point de calage mal déterminée, erreur d'offset...) a une influence certaine sur les calculs planimétriques des points du projet.

Cependant, le fait de n'avoir plus qu'un point d'appui connu précisément empêche la détermination du coefficient d'échelle lors du calcul effectué par le logiciel SKI. En effet, le cheminement du calcul dans SKI est le suivant :

1. On insère dans le projet SKI un fichier contenant les coordonnées Lambert III de tous les points d'appui.
2. Le logiciel SKI utilise les coordonnées d'un point d'appui initial.
3. Les points d'appui sont connus dans le système Lambert III (points IGN). Il faut calculer les coordonnées équivalentes de ce point initial dans le système WGS car SKI traite les mesures dans ce système. Les paramètres de cette transformation sont ceux listés en annexes et le calcul est entièrement réalisé par le logiciel. Mais cette transformation est en fait approximative et les paramètres entrés doivent être affinés ultérieurement.
4. Après avoir déterminé les coordonnées approchées du point initial, le logiciel SKI détermine les coordonnées de tous les autres points (points de détail et autres points d'appui) en traitant les signaux reçus lors des mesures. On obtient les coordonnées de tous les points autres que le point initial dans le système WGS.
5. On applique donc la transformation inverse, celle qui permet de passer de WGS vers Lambert III. Cette transformation utilise les mêmes paramètres et est donc également approchée.
6. On obtient les coordonnées approchées de tous les points dans le système Lambert III.
7. Le logiciel répertorie alors tous les points qui sont à la fois calculés et inscrits dans le fichier de coordonnées des points d'appui (point initial \& autres points d'appui). Par une compensation par les moindres carrés faisant intervenir les coordonnées vraies (IGN) et les coordonnées approchées (calculées par SKI), le iogiciel détermine sept paramètres d'adaptation, trois translations, trois rotations et un coefficient d'échelle).
8. Lorsque la transformation d'adaptation est déterminée de façon précise, les coordonnées de tous les points de détail sont recalculées. Ce sont les coordonnées affichées à l'écran.
Dans notre cas, le problème est que nous ne disposons plus que d'un point d'appui. Les étapes 7 et 8 sont donc inutilisables et les résultats ne peuvent être affinés. On ne peut obtenir mieux que les coordonnées approchées pour tout le traitement de la mission 1997. Deux possibilités sont envisageables :
1.Utiliser les deux points d'appuis 100 et 200. Une transformation d'adaptation à six paramètres peut être calculée et les résultats affinés. En effet, deux points sont définis par six coordonnées et ces six données permettent de déterminer six inconnues. Cependant, la transformation ne sera pas précise car seuls six paramètres sur les sept seront déterminés, et les valeurs obtenues ne seront pas compensées (à moins de déterminer moins de six paramètres...). D'autre part, on ré-injecte l'erreur d'altimétrie sur 200. Les résultats risquent de ne pas être concluant.
2.On garde l'idée d'un point d'appui unique mais on détermine un coefficient d'échelle par les formules de géodésie. En effet, ce paramètre est le plus important des sept car la coulée se situe en zone montagneuse, à une altitude telle que les corrections dues à la projection sur l'ellipsoïde n'est pas négligeable. La correction sur les distances se calcule :
A et B : points de la surface topographique
$I_{0}=R \sqrt{\frac{I^{2}-\left(h_{B}-h_{A}\right)^{2}}{\left(R+h_{A}\right)\left(R+h_{B}\right)}}$
I_{0} : corde réduite à l'ellispsoïde
1 : distance mesurée
$S_{0}=l_{0}\left(1+\frac{I_{0}^{2}}{24 R^{2}}\right)$
h_{A} : altitude de A
\mathbf{h}_{B} : altitude de B
R : rayon de la terre (6370 km)
s_{0} : distance réduite à l'ellipsoïde

Cependant cette deuxième méthode est laborieuse car elle demande de très nombreux calculs préliminaires.

Voilà la raison pour laquelle on ne calculera cette année que des solutions approchées. On décide de ne conserver qu'un point sur les deux : le point 100 .

Le projet «canevas 2 » reprend les mêmes mesures que le projet «canevasl» mais uniquement à partir du point 100 de Barcelonnette. On n'a donc plus que quatre lignes de base partant du point 100 . On lui rajoute les lignes de bases mesurées entre Pl et P 2 , puis quelques unes entre les autres points (P1-P2;P1-10;P2-10;P2-20).

Le projet «canevas 3 » ne prend en compte que les lignes de base entre le point 100 et les quatre points de canevas. En effet, les lignes de base entre les points de canevas ont été mesurées en statique mais sur une durée maximum de 10 minutes. En revanche, les autres lignes de base étaient mesurées sur une heure. On peut donc penser que les lignes de base entre les points du canevas entachent la précision que l'on pourrait obtenir en ne tenant compte que des autres lignes de bases issues de 100 .

On trouve les mêmes résultats qu’avec le projet «canevas 2 ».

canevas 3

Rapport de stage ($2^{\text {ème }}$ année)
Ce sont les résultats les moins entachés d'erreurs que nous prendrons en compte, ceux des projets «canevas 2 » et «canevas 3 ». On fixera donc pour la suite des calculs, les coordonnées suivantes dans le système Lambert III:

rowt	X	Y/2.	2
10	946 277,30	237754,83	1772,00
20	946118,07	236416,08	2073,33
P1	945 752,75	237256,00	1754,45
P2	945 692,69	237248,54	1783,64

Remarquons que le calcul de la distance P1-P2 donne $60,52 \mathrm{~m}$ et $60,54 \mathrm{~m}$ par visées tachéométriques. On observe seulement deux centimètres d'écart.

VII.2.c Projet Adriano

Ce projet contient une dizaine de points mesurés en statique. Ces points sont ceux qui ont servi au calage du MNT au SERTIT. Les points ont été définis en collaboration avec Adriano Ricotta sur les photos aériennes les plus récentes, celles de 1995. Veuillez vous reporter en annexes III.5.B.a pour visualiser ces points et le plan du projet.

Les points ont été choisis pour leur visibilité sur la photo, leur accessibilité sur le terrain (d'après les connaissances de Dominique Weber), leur proximité et leur faculté à être stationnés. Nous avons essayer de les répartir le plus possible autour de la coulée mais le point situé à l'Est n'aura finalement pas été mesuré en raison de son éloignement.

On obtint le résultat suivant :

Unit:	\mathbf{m}
Coordinate type:	Grid
Reference ellipsoid:	Clarke 1880 IGN
Projection set:	Lambert 3

		*		-
		237754.8399	1771.9973	Point d'appui
	946277.3023	236974.1681	1796.6688	Borne du réseau sur un relief remarquable
	945813.5574	236416.1085	2073.3196	Point d'appui
	946118.0659	237256.0342	1754.4605	Point d'appui
	9455692.6861	237248.5385	1783.6449	Point d'appui
	945692.6861	236396.7278	2076.8668	Point de calage
	946346.2220	236473.1409	2056.3102	Point de calage
	946280.0998	237089.3016	1877.7312	Point de calage
	945867.2626	237354.9264	1689.2233	Point de calage
	945561.1686	236978.3700	1796.5512	Point de calage
	945813.5639	236974.1186	1804.3018	Point de calage
	945765.5728	237021.0508	1909.0260	Bonne du réseau sur un relief remarquable
	945873.1444	236654.6897	1937.6374	Borne du réseau sur un relief remarquable
	945975.7989	236662.6222		

Rq: les points de calage du MNT sont numérotés $3^{* *}$ pour les différencier des autres.

VII.2.d Projet Super Sauze

Le projet Super-Sauze comporte tous les points de la coulée mesurés au GPS. On retrouve donc des points du réseau topométrique et les points formant le profil pour l'auscultation géophysique. Les points du réseau ont été mesurés en mode Static (10 min par point environ) et le profil en Stop \& Go.

Les mesures sont tirées des copies (Backup) des mesures enregistrées sur le disque dur. On n'extrait que les mesures concernant les points qui nous intéressent. On élimine par exemple toutes les époques concernant les mesures des points P1, P2, 10 et 20 , les points de calage du MNT et les points de la couronne. D'autre part, on utilise le fichier canevasF3 dont on extrait les coordonnées des points P1, P2, 10 et 20 pour les insérer dans le projet Super-Sauze. En effet, tous les points calculés dans ce projet on été mesurés à partir de ces quatre points d'appui et non plus du point IGN.

Le réseau

Seuls les points singuliers ont été mesurés. Il s'agit essentiellement de points relativement stables. La connaissance de leurs coordonnées par les deux méthodes (GPS et tachéométrie) permettra de déterminer les paramètres de la transformation du système Lambert III vers le système du repère propre au chantier de Super-Sauze.

Veuillez vous référer aux annexes III.5.B.b. pour observer les plans et les coordonnées des points.

Seul un point n'a pas pu être déterminé, le point 25 . Il a été mesuré le 7 juillet à 14 h 09 min 55 sec. Il semble donc peu probable qu'il s'agisse du même problème que dans les deux autres cas. Sans doute y a-t-il eu une erreur de manipulation. Tous les autres points sont déterminés sans ambiguïté et définissent un échantillon du réseau sur lequel on va appuyer notre calcul.

Le profil

Il s'agit de déterminer le prolongement d'un profil commencé en tachéométrie mais dont la fin est cachée par une ravine. L'intérêt est de voir si on retrouve une chaîne relativement droite et si elle se raccorde bien avec le début du profil.

Veuillez vous reporter aux annexes III.6.B.C pour visualiser le résultat. Le profil est représenté par les points numérotés $5^{* *}$.

On observe effectivement un alignement de points. Tous ont été déterminés malgré l'encaissement du lieu ce qui conforte notre affirmation sur la validité de l'utilisation du GPS sur la coulée. Reste à définir la continuité entre les deux demi profils (cf § VII.3.C).

VII.2.e Autres projets

VII.2.e.i Projet Couronne

Ce projet avait vocation de test. Il s'agissait de vérifier que le GPS permet de réaliser des levés de formes sur le terrain. Ceci présente un intérêt certain pour les géographes notamment pour les levés géomorphologiques. Ces levés donnent des plans sur lesquels apparaissent les différentes zones selon leur nature minérale ou selon le relief qui les caractérise. Pour l'exemple, nous avons réalisé le levé de la crête de la couronne du glissement de Super-Sauze en Stop \& Go. Dans cet exercice, deux objectifs étaient visés: prendre des bornes en statique pour comparer leurs coordonnées avec les coordonnées tachéométriques et pouvoir les placer précisément sur un plan. D'autre part, nous avons pris en Stop \& go une série de points sur la crête en vue de dessiner la forme de la couronne. On aboutit au résultat suivant.

Les résultats obtenus sont prometteurs mais pas concluant cette fois (cf annexes III.5.B.c). En effet, les points mesurés en statique semblent bien positionnés. Cependant, un problème est survenu lors des mesures en Stop \& Go. En effet, le levé fut coupé en deux chaînes distinctes avec une réinitialisation intermédiaire. Il semblerait que la deuxième chaîne ne puisse être calculée en post-traitement et seule la solution de navigation approximative apparaît à l'écran. Pourtant, la première chaîne de points donne une image très nette du contour de la couronne. Ce résultat est encourageant quant à l'utilité du GPS pour ce genre de travaux. On peut envisager deux raisons à l'échec de la deuxième chaîne :

- le Brec Second a constitué un masque trop important et les mesures sont de qualité insuffisante.
- Un phénomène est observé systématiquement en début d'après midi (de 15 h 00 à 15 h 30 environ). Si les récepteurs sont allumés et en cours de mesure, les mesures continuent mais le GDOP augmente. Si on essaye de lancer une mesure dans cette période, le récepteur ne reçoit aucun signal (ni L1 ni L2) et la mesure ne peut commencer. Ceci traduit une très mauvaise configuration de la constellation des satellites à cette époque. Il se trouve que les mesures en Stop \& Go réalisées sur la couronne correspondent approximativement à ces horaires. En effet, la deuxième chaîne a été initialisée sur le point 219 , à 15 h 17 min 45 sec . Si l'initialisation a été mal faite, il est normal que toute la chaîne ne soit pas définie.
La deuxième éventualité semble plus probable car le tableau des azimuts et élévations durant la session n'a pas montré de sauts de cycles.

Ainsi, je ne pense pas que le site soit à l'origine du problème. En effet, le même problème est observé à La Valette, l'autre glissement, à la même heure, mais dans une situation géographique tout à fait différente. C'est pourquoi je me permets de conclure de façon optimiste sur l'utilité du GPS pour ces travaux. Une fois de plus, c'est l'expérience et la bonne connaissance du matériel et des méthodes qui peuvent permettre de remédier à ce genre de difficultés. En effet, il est souhaitable de préparer ses missions en tenant compte des orbites. Cette étape demande certaines connaissances dont nous ne disposions pas cette fois ci.

VII.2.e.ii Projet La Valette

Le glissement de terrain de la Valette est ausculté par un autre organisme (RTM). Notre but était de leur prouver qu'il est possible d'utiliser le GPS pour l'auscultation du glissement.

Leur méthode d'auscultation et leurs moyens techniques sont différents de ceux du CEREG. Ils disposent d'un réseau de cibles (catadioptres) en place en permanence sur le glissement, qui sont visées régulièrement de façon automatisée (par corrélation) à partir d'une station fixe, disposée sur un pilier bétonné protégé par une petite cabane.

Les campagnes de mesures sont totalement automatisées et des systèmes d'alertes permettent de prévenir le RTM en cas de mouvements très importants. Cependant, les objectifs du RTM sont différents de ceux du CEREG. Les précisions obtenues sont de l'ordre du décimètre, les observations portent uniquement sur les distances et les mouvements observés sont des mouvements de masse. Le CEREG tente de distinguer plusieurs catégories de points, certains étant proches de l'immobilisme. Ces points requièrent une précision de l'ordre du centimètre. L'état des points du réseau de La Valette atteste d'ailleurs de l'absence de ce soucis de précision d'auscultation. Certains sont penchés, d'autres à peine plantés dans la terre. Les mouvements de terrain endommagent considérablement les points du réseau et l'entretien ne semble pas fréquent. Ceci s'explique par les objectifs qu'ils se sont fixés : déterminer un mouvement d'ensemble et alerter en cas d'anomalie.

[^0]Pour montrer l'intérêt du GPS, nous avons levé des points sur les flancs du glissement pour en tracer le corps. D'autre part, nous avons pris quelques points en statique pour que l'on puisse comparer les distances entre points, qu'ils soient levés au GPS ou dans leur système.

D'un point de vue technique, les problèmes de calculs sont les mêmes que pour Super-Sauze. En effet, nous n'avons utilisé qu'un seul point d'appui et la transformation d'adaptation n'est pas réalisable. Ce point est le point 100 , utilisé également pour l'autre chantier. A partir de ce point, nous avons implanté un point au pied du glissement qui a servit de pivot pour la suite. C'est le point $\mathrm{n}^{\circ} l$. Plusieurs exercices ont alors été mis en œuvre.

- Mesurer en Stop \& Go des points de part et d'autre du chemin pour montrer l'intérêt du GPS pour lever rapidement des formes et situer le chemin par rapport au glissement.
- Mesurer quelques points du réseau d'auscultation du RTM pour comparer leurs résultats aux résultats GPS ,au moins en termes de distances.
- Mesurer en Stop \& Go des points sur les bords du glissement pour deux raisons : pouvoir tracer au moins partiellement le corps du glissement et déterminer les limites d'utilisation du GPS. En effet, la coulée est entourée par des arbres plus ou moins hauts et plus ou moins proches de la coulée. D'autre part, le haut du glissement peut être caché par le sommet le plus proche qui constitue un masque indéniable.
Veuillez vous reporter en annexes III.5.B.d pour observer les résultats et les coordonnées des points.

On se rend compte que plusieurs séries de points n'ont pas été calculées. En ce qui concerne les points 16 et 17 , sur le chemin, je ne vois aucune explication plausible. Pour les deux autres séries (de 29 à 33 et de 49 à 50), il y a à la fois des points pris en statique (mode Static ou initialisation en Stop \& Go) et des points pris en Stop \& Go. Pour les points 49 et 50 , aucun masque permet d'expliquer le phénomène. C'est pourquoi on expliquera cela par le même phénomène qu'à Super-Sauze: la configuration de la constellation des satellites en début d'après-midi semble très défavorable. Remarquons à ce sujet que nous avions même dû interrompre les mesures sur le terrain car au moment de la réinitialisation, aucun des huit satellites disponibles n'était capté! Cette anecdote confirme notre hypothèse. Le problème pour les points 29 à 33 peut-être le même. Il est à noter cependant que ces points sont très proches d'arbres et que ceux ci peuvent constituer d'importants masques supplémentaires.

Pour conclure, disons que le site de La Valette est propice à l'utilisation du GPS également. Cependant, les conditions et les méthodes d'utilisations doivent être mûries et mises en cuvre par un homme d'expérience. De petites études ont été réalisées sur la coulée de La Valette, qui consistent à observer les angles verticaux limites de réception des signaux selon les azimuts. Une attention particulière a été portée pour les azimuts désignant des masques importants. Par exemple, de l'azimut 40° à l'azimut 70° environ se trouve le sommet qui surplombe la coulée. Un satellite a d'ailleurs disparu à l'azimut 47° avec un angle vertical de 24° par rapport à l'horizontale. Voici donc tout de même une limitation contraignante pour le site. Cependant, elle n'empêche en rien de réaliser une mission bien préparée.

VII.2.f Le dégagement du site du Super-Sauze

L'un des objectifs de la mission consistait à valider la possibilité d'utilisation de l'outil GPS sur un site tel que le glissement de Super-Sauze. Celui-ci présente trois inconvénients majeurs:

- il est situé en zone montagneuse
- il est encaissé entre deux versants plus ou moins abruptes à l'Est et à l'Ouest, et caché par la couronne au sud. Le relief qui entoure la coulée peut donc engendrer des problèmes de masques.
- Il est orienté plein nord alors que les configurations de satellites sont meilleures pour des chantiers orientés vers le sud.

C'est pourquoi nous avons apporté de l'importance à cette part de la mission. Tout d'abord, nous nous sommes intéressés au dégagement de tous les points IGN susceptibles de nous intéresser. Le point $\mathrm{n}^{\circ} 18$ a par exemple est situé à un mètre environ du mur de la cabane et cache ainsi presque 200 gr de l'horizon. Le point $n^{\circ} 20 \mathrm{c}$, qui nous a finalement servi de point d'attache, est situé à proximité d'une allée de peupliers. Il a donc été nécessaire de surveiller la constellation ainsi que le GDOP indiqués par le récepteur. Le point $n^{\circ} 18 \mathrm{c}$ situé sur le toit d'un immeuble de Pra-Loup ne présentait en revanche aucun masque apparent. Seul le sommet situé au sud de la station aurait éventuellement constituer un masque. Cependant, l'angle verticale de l'immeuble vers le sommet reste inférieur à 15° et ce pseudo-masque n'est finalement pas problématique.

Nous nous sommes alors intéressés au site du glissement plus particulièrement en apportant une attention toute particulière dans les zones des quatre points d'appuis ($\mathrm{P} 1, \mathrm{P} 2,10$ et 20). Quelques observations sur P 1 et P 2 ont donné les résultats suivants:

		(\%)	yghetis			多	
P1	45	12	oui	P2	39	9	oui
P1	90	11	non	P2	53	9	oui
P1	121	25	oui	P2	75	20	oui
PI	135	18	oui	P2	88	15	oui
P1	156	23	oui	P2	96	11	oui
P1	184	22	oui	P2	152	11	non
P1	215	27	oui	P2	150	20	oui
P1	260	9	non	P2	169	17	non
P1	281	11	non	P2	207	25	non
P1	309	17	oui	P2	211	27	oui
				P2	236	15	non
				P2	284	12	oui
				P2	319	11	oui

Ces chiffres n'apprennent rien quant à la qualité de la mesure. Ils indiquent uniquement si le récepteur est en mesure de capter le signal émis par les satellites à un moment précis. D'autre part, l'horizon est bien dégagé vers le nord. Les azimuts critiques sont dans les trois autres directions cardinales, surtout le Sud (le Brec Second culmine à 2596 m). L'échantillon ci-dessus ne permet pas de conclure précisément sur la forme des masques qui entourent le site. Cependant, ils prouvent que l'opérateur dispose d'une grande marge de manoeuvre pour préparer sa mission. En effet, vers les azimuts 184 gr 215 gr (direction du Brec), l'antenne a été capable de capter un signal alors que l'élévation atteignait 78 gr et 81 gr respectivement.

Cette étude demande à être complétée par des séries de mesures plus denses et à d＇autres endroits．Quelques tests ont donné les résultats suivants：

Fikit	AKinint			絃絃㘳
50	41	14	oui	Situé au pied de la couronne，il reste bien visible tout de même．
50	91	14	oui	
27	48	26	non	Situé sur le flanc droit de la coulée，il est caché par la bute sur laquelle il se situe à l＇Est et l＇autre bute à l＇Ouest．Il reste cependant accessible，même au Sud（Brec）
27	169	28	oui	
27	241	19	oui	
27	318	15	non	
5	211	27	oui	Fond de ravine encaissé
5	60	22	oui	
1	309	17	oui	Pied de la coulée．Endroit le plus encaissé
26	1	1	non	Situé sous des arbres

On constate encore que les satellites restent observables même lorsqu＇ils s＇approchent de l＇horizon．Outre la densification des mesures，cette étude sommaire doit être complétée en prenant compte d＇un facteur supplémentaire，le GDOP（Global Dilution Of Precision）．Cet indicateur de précision de la mesure a une influence prépondérante sur la précision du résultat final．Il peut arriver que l＇on capte quatre satellites ou plus，mais que tous les quatre se situent proches de l＇horizon par exemple．Dans ce cas，la configuration de la constellation est très mauvaise et le GDOP atteint des valeurs très élevées donc défavorables．

Cependant，la conclusion de l＇exercice semble plutôt optimiste．Mise à part une occasion où la mesure a dû être interrompue en raison d＇un nombre insuffisant de satellites（sur le point 1 ，très encaissé）， toutes les mesures ont pu être effectuées sans problème．Certes le GDOP a atteint exceptionnellement des valeurs proches de 6 voire plus encore，mais toujours dans des délais brefs．C＇est pourquoi je pense que， sans considérer les erreurs de manipulation ou de méthode，le GPS semble être utilisable dans de bonnes conditions sur le glissement du Super－Sauze．

VII．2．g Conclusion

Pour conclure，je dirais que le GPS devient de façon certaine un outil efficace，puissant，et convivial pour les travaux qui sont réalisés sur les sites de Super－Sauze et de La Valette．On peut même penser raisonnablement que le GPS puisse rester utilisable dans tout le bassin de Barcelonnette sauf peut－ être au pied des falaises sur l＇extrémité Est d bassin．Selon la nature de l＇exercice，il suffit d＇adapter la méthode et de bien préparer les missions．Dans l＇optique d＇une prochaine mission，trois recommandations s＇imposent：
－éclaircir avant d＇aller sur le terrain tous les offsets que l＇on peut rencontrer suivant qu＇on utilise le mobile ou le pivot sur la canne d＇origine，sur une canne de prisme（différence de 40 mm dans l＇offset pour une même antenne ！！！），sur une embase，sur un adaptateur，etc．．．En effet，bien que modifiable au moment du transfert des mesures，ce paramètre peut très rapidement embrouiller les mémoires．．．et compromettre irrémédiablement la précision des résultats．
－préparer la mission à l＇avance avec les éphémérides pour obtenir une configuration optimale et limiter les cas de points non calculables au retour de mission．

- réorganiser une campagne de mesure des deux piliers et des points 10 et 20 en prenant bien soin de prendre au moins trois points d'appui connus au cm dans le canevas IGN pour permettre à SKI d'effectuer la transformation d'adaptation.

Le GPS est dans le cas de Super Sauze, l'outil idéal surtout si les piliers bougent. En effet, le GPS permet de s'affranchir, en travaillant dans un repère intelligemment choisi, d'un repère qui reposerait sur deux piliers dont on ne maîtrise pas les mouvements. En effet, un mouvement d'un cm entre les deux piliers dans le sens des Y actuels engendre une translation (en simplifiant) de 14 cm à 850 m , au niveau de la couronne.

Avec le GPS, on pourrait redéfinir un nouveau système définit par au moins trois points stables, visibles (au cas ou on voudrait encore faire de la tachéométrie), accessibles et éloignés les uns des autres. On déterminerait leurs coordonnées par la même méthode que cette année et on travaillerait dans ce système indépendant moins « susceptible».

Malheureusement, cette remarque est plutôt à prendre en compte pour un chantier ultérieur. Vu la quantité de données disponible historiquement sur ce site, un changement de repère radicale risquerait de faire perdre beaucoup de précision sur les mesures du passées en raison de la transformation de coordonnées qui ne sera jamais parfaitement définie.

VII. 3 Comparaison

La comparaison passe d'abord par une phase de calcul des paramètres de la transformation des coordonnées Lambert III en coordonnées du système indépendant.

- réorganiser une campagne de mesure des deux piliers et des points 10 et 20 en prenant bien soin de prendre au moins trois points d'appui connus au cm dans le canevas IGN pour permettre à SKI d'effectuer la transformation d'adaptation.

Le GPS est dans le cas de Super Sauze, l'outil idéal surtout si les piliers bougent. En effet, le GPS permet de s'affranchir, en travaillant dans un repère intelligemment choisi, d'un repère qui reposerait sur deux piliers dont on ne maîtrise pas les mouvements. En effet, un mouvement d'un cm entre les deux piliers dans le sens des Y actuels engendre une translation (en simplifiant) de 14 cm à 850 m , au niveau de la couronne.

Avec le GPS, on pourrait redéfinir un nouveau système définit par au moins trois points stables, visibles (au cas ou on voudrait encore faire de la tachéométrie), accessibles et éloignés les uns des autres. On déterminerait leurs coordonnées par la même méthode que cette année et on travaillerait dans ce système indépendant moins «susceptible».

Malheureusement, cette remarque est plutôt à prendre en compte pour un chantier ultérieur. Vu la quantité de données disponible historiquement sur ce site, un changement de repère radicale risquerait de faire perdre beaucoup de précision sur les mesures du passées en raison de la transformation de coordonnées qui ne sera jamais parfaitement définie.

VII. 3 Comparaison

La comparaison passe d'abord par une phase de calcul des paramètres de la transformation des coordonnées Lambert III en coordonnées du système indépendant.

VII.3.a Détermination de la transformation de coordonnées

Pour ce calcul, nous nous appuierons sur la série de points mesurés en mode statique au GPS. On dispose de 21 points (cf ci-dessous) ce qui permet de faire une compensation par les moindres carrés (cf § IV.3.a.v).

钵	 			 		
	\v	\%	\%\%	\$*	\%	\%
P1	945752.7386	237256.0342	1754.4605	0,008	-0,019	1754,287
P2	945692.6861	237248.5385	1783.6449	52,102	-30,866	1783,500
1	945790,201	237126,003	1739,963	49,900	125,771	1739,907
5	945807,966	237088,107	1755,632	59,046	166,643	1755,674
7	945827,836	237051,513	1773,543	65,715	207,791	1773,588
8	945837,764	237054,760	1772,371	55,863	211,274	1772,389
10	945852,465	236976,251	1790,880	92,283	282,415	1790,797
11	945813,564	236974,129	1796,656	124,361	260,285	1796,585
14	945836,176	236937,596	1804,942	128,820	303,033	1804,870
21	945856,605	236873,677	1826,670	151,760	366,163	1826,571
22	945866,735	236879,676	1826,866	140,072	367,626	1826,769
23	945885,806	236891,027	1826,963	118,031	370,292	1826,878
26	945946,976	236762,225	1869,072	148,388	509,635	1869,050
29	945881,916	236776,848	1862,760	190,996	458,300	1862,667
32	945829,879	236751,772	1872,066	247,500	446,288	1871,978
33	945816,661	236736,424	1878,772	267,324	450,334	1878,667
36	945789,684	236641,954	1905,362	346,458	508,630	1905,247
37	945812,793	236644,241	1905,840	326,794	520,930	1905,735
39	945873,145	236654,690	1909,026	272,628	549,583	1909,007

Comme il est expliqué dans le § IV.3.a.v, on commence par faire effectuer une rotation et deux translations au système Lambert pour le retrouver approximativement parallèle au système indépendant.

Remarque: $\vartheta_{0}{ }^{M}=\operatorname{ATAN}(\Delta \mathrm{E} / \Delta \mathrm{N}) \pm 200 \operatorname{car} \Delta \mathrm{~N}<0$

Rappel: les ϑ sont calculés avec les coordonnées Lambert III en prenant (945752,739; 237 256,034) comme coordonnées planimétriques pour P let les h avec les coordonnées du système indépendant.

ydum			\%
1	182,1425	24,0454	158,0971
5	179,7724	21,6784	158,0940
7	177,5973	19,4998	158,0975
8	174,5546	16,4563	158,0983
10	178,2021	20,1061	158,0960
11	186,4713	28,3754	158,0959
14	183,6861	25,5894	158,0967
21	183,1139	25,0134	158,1005
22	181,2765	23,1752	158,1012
23	177,7446	19,6442	158,1004
26	176,1423	18,0375	158,1048
29	183,2367	25,1376	158,0991
32	190,3361	32,2352	158,1010
33	192,2075	34,1043	158,1032
36	196,1744	38,0679	158,1065
37	193,7709	35,6680	158,1029
39	187,4195	29,3159	158,1035
44	187,9651	29,8606	158,1044
48	182,3837	24,2781	158,1056
49	179,5372	21,4296	158,1075
50	177,1100	19,0060	158,1040
$\gamma_{\text {moyen pour } n=21}$			158,1010

On va désormais faire subir aux coordonnées du système Lambert une rotation de $158,1010 \mathrm{gr}$ et deux translations correspondant aux coordonnées de Pl en Lambert III.

Kikik	 			 		
\%14\%					令緗	
1	945790,201	237126,003	1739,963	49,896	125,785	1739,963
5	945807,966	237088,107	1755,632	59,022	166,632	1755,632
7	945827,836	237051,513	1773,543	65,685	207,735	1773,543
8	945837,764	237054,760	1772,371	55,844	211,240	1772,371
10	945852,465	236976,251	1790,880	92,234	282,342	1790,880
11	945813,564	236974,129	1796,656	124,307	260,227	1796,656
14	945836,176	236937,596	1804,942	128,765	302,960	1804,942
21	945856,605	236873,677	1826,670	151,699	366,023	1826,670
22	945866,735	236879,676	1826,866	140,015	367,474	1826,866
23	945885,806	236891,027	1826,963	117,985	370,158	1826,963
26	945946,976	236762,225	1869,072	148,373	509,471	1869,072
29	945881,916	236776,848	1862,760	190,900	458,108	1862,760
32	945829,879	236751,772	1872,066	247,405	446,118	1872,066
33	945816,661	236736,424	1878,772	267,251	450,176	1878,772
36	945789,684	236641,954	1905,362	346,375	508,413	1905,362
37	945812,793	236644,241	1905,840	326,695	520,738	1905,840
39	945873,145	236654,690	1909,026	272,558	549,386	1909,026
44	945891,611	236530,201	1957,819	334,092	659,168	1957,819
48	945955,218	236543,085	1960,291	275,890	687,880	1960,291

Les altitudes ne sont pas modifiées car on a réalisé une transformation plane. Pour l'altimétrie, on préférera garder les valeurs calculées à partir des visées tachéométriques car les piliers ont été nivelés. Il faudrait cependant réitérer ce nivellement régulièrement. On pourra utiliser les hauteurs calculées au GPS en déterminant un systématisme sur plusieurs campagnes de mesures. Cependant, malgré cette conversion, l'écart type sur les altitudes déterminées par GPS sera plus grand que pour les altitudes déterminées par visées optiques. Ceci incombe aux imprécisions relatives au système GPS en altimétrie (connaissance du géoïde, multi-trajets...).

On peut désormais déterminer les coefficients de la transformation: $T_{X}, T_{Y}, T T_{Z}, D, \varepsilon_{X}, \varepsilon_{Y}$ et ε_{Z}. Pour cela, on écrit la matrice des coefficients (cf § IV.3.a.v). Elle se trouve en annexes III.6.A.

On trouve :

T_{x}	$0,46736423 \mathrm{~m}$
T_{y}	$0,38448665 \mathrm{~m}$
T_{z}	$0,62327636 \mathrm{~m}$
D	$-0,00037045$
ε_{x}	$-0,00018648 \mathrm{rad}$
ε_{y}	$0,00028872 \mathrm{rad}$
ε_{z}	$0,00019085 \mathrm{rad}$

Résumé :

La transformation de coordonnées du système Lambert vers le système de Super-Sauze se fait en deux étapes successives :

- un changement de repère fait d'une rotation de $158,1010 \mathrm{gr}$ et de deux translations correspondant aux coordonnées de P1.
- Une transformation à sept paramètres (trois translations, trois rotations et un coefficient d'échelle) qui sert d'ajustement des coordonnées intermédiaires pour les obtenir dans le système de Super-Sauze.

On se sert de ce résultat pour déterminer les coordonnées des points de la couronne (pour pouvoir retracer la morphologie de la couronne dans les plans antérieurs) et des points du profil. Ces valeurs sont à redéterminer dès lors qu'on se sera rendu compte que les piliers ont à nouveau bougé. La méthode de calcul est la même.

VII.3.b La couronne

Les coordonnées des points se trouvent en annexes III.5.B.c.

VII.3.c Le profil

On calcul les coordonnées des points du demi profil réalisé au GPS en vue de le recoller à la première moitié, levée au tachéomètre.

Les résultats se trouvent en annexes III.6.B.C. Le raccordement en planimétrie se fait parfaitement. Ceci prouve d'une part que le GPS est adapté pour de genre de travaux mais aussi que les paramètres de notre transformation de coordonnées sont correctes. En altimétrie, la courbe $z=\mathrm{f}(\mathrm{y})$ n'est pas très représentative du profil car celui-ci a un gisement moyen d'environ 130 gr donc plutôt parallèle à l'axe des abscisses. Ceci explique les importantes dénivelées entre points apparemment proches. En revanche, le raccord en altimétrie semble tout à fait plausible dans la courbe $z=\mathrm{f}(\mathrm{x})$. On n'observe pas de saut en altitude à l'endroit du raccord entre les deux parties. On peut donc tirer les mêmes conclusions que pour la planimétrie.

Remarque: Le choix des points du profil se fait à quelques mètres près et on ne peut donc rien conclure sur la précision du raccord.

VIII. Travail à effectuer à l'avenir

VIII. 1 En tachéométrie

Deux problèmes se posent :

- cerner le mouvement relatif et absolu des deux piliers
- revoir le système d'auscultation

Le premier problème, est complexe à régler. Il ne semble pas envisageable de rattacher P 1 et P 2 par une polygonale qui finirait sur des points relativement éloignés et stables. D'autre part, installer un ensemble de points de référence n'est pas une solution satisfaisante. En effet, soit ces points servent uniquement de référence angulaire et serviront à dire si les piliers ont bougé mais pas à rétablir la position des piliers. Soit ces points sont connus en coordonnées et peuvent servir de références angulaires (avec calcul de ϑ_{0} désormais possible) mais aussi comme points d'appuis pour redéterminer les coordonnées des piliers en cas de mouvements. Cependant d'autres problèmes se posent avec cette idée : où placer les points pour qu'ils soient visibles, stables et accessibles? Comment être sûrs de leur stabilité ? Comment matérialiser ces points? Mais surtout, comment déterminer les coordonnées de ces points? Cette solution idéale semble compliquée à mettre en œuvre.

En ce qui concerne le système d'auscultation, on pourrait essayer de réduire les longueurs de visées. Pour cela, on pourrait envisager de mettre en place une station lancée à mi-chemin sur la coulée, par exemple sur le replat supérieur. Cette station servirait à viser les points invisibles des piliers et les points les plus lointains. Cette méthode est fiable si elle est bien utilisée. Il faut en effet s'imposer des points triples qui seront visés des deux piliers et de la station lancée. Avant tout dépouillement, il faudra alors observer les écarts entre les trois déterminations (une calculée de P1, une calculée de P2 et une calculée avec les coordonnées supposées de la station lancée) de ces points triples. S'ils sont dans les tolérances, on accepte les coordonnées compensées de la station lancée et on calcul les coordonnées des points visés de celle-ci. Cette méthode implique évidemment que les points visés de la station lancée soient pointés le jour où la station est déterminée également. En effet, certaines zones sont si mobiles qu'il devient nécessaire de travailler rapidement.

De même, les points de la couronne pourraient être déterminés à partir d'une station située au dessus de la coulée. Le point $n^{\circ} 20$ est implanté, scellé, et on connaît ses coordonnées. Il pourrait donc servir de station pour la quinzaine de points de la couronne.

En tenant compte de ces remarques ou pas, car chaque solution a ses avantages et ses inconvénients (théoriques et pratiques), le travail à effectuer reste le même que précédemment. Déterminer les coordonnées des points du canevas en vue de tracer les diagrammes cinétiques de chaque point. Ces diagrammes auront pour but de rendre possible la modélisation du mouvement de la coulée.

VIII. 2 Avec le GPS

Forts de l'expérience de 1997, une nouvelle mission pourrait être organisée avec au programme:

- redétermination des quatre points $\mathrm{P} 1, \mathrm{P} 2,10$ et 20 à partir d'au moins trois points IGN connus précisément (à trouver). Ils peuvent être déterminés avec une précision allant jusqu'à $\pm 2 \mathrm{~mm}$ en planimétrie et moins d'un centimètre en altimétrie.
- à partir de ces quatre points, mesurer en statique une série (une dizaine) de points bien définis et mesurables en tachéométrie
- déterminer les paramètres de la transformation de coordonnées à l'aide de ces dix points
- déterminer les coordonnées des quatre points d'appuis $\mathrm{P} 1, \mathrm{P} 2,10$ et 20 dans le système du chantier en utilisant les paramètres calculés ci-dessus.
- Travailler dans un système indépendant (même en GPS) en traitant les mesures avec la méthode par interpolation.
- Travaux complémentaires :
* mesurer les coordonnées de cinq points fixes, stables, accessibles et visibles des piliers de 10 et 20 s'ils existent... Ils serviront de références angulaires pour la tachéométrie. La connaissance des coordonnées de ces points permet de déterminer des gisements origines $\left(\vartheta_{o}\right)$ pour les stations et donc de ne pas avoir à fixer la valeur de l'angle horizontal en début de manipulation. En effet cette opération rajoute une inconnue et une erreur accidentelle aussi petite soit elle.
* utiliser le GPS pour tracer rapidement (en Stop \& Go) une carte geomorphologique du site. C'est une suggestion qui naît de la certitude que le GPS est l'outil le plus précis et le plus rapide pour ce genre de travaux. Remarquons d'ailleurs qu'il est possible de travailler dans n'importe quel système de coordonnées à moins de vouloir superposer ce plan au plan du réseau de bornes.

Sous réserve de bien maîtriser l'outil, le GPS semble être parfaitement approprié pour ce genre de travaux. Certes la phase de mise en place du système est longue, mais elle permet de gagner du temps pour le reste des manipulations. Deux questions se posent cependant :

- ce travail préliminaire est-il à réitérer tous les ans dans la mesure où les piliers ne sont peut-être pas encore stabilisés? A cette question, on peut répondre «OUi», du moins jusqu'à ce que les coordonnées n'évolue plus pendant au moins deux ans.
- ne serait-il pas préférable de travailler dans le système de coordonnées Lambert III si on part du principe que l'outil de base sera le GPS ? En effet, la méthode actuelle fait intervenir un calcul de transformation de coordonnées qui s'appuie sur des paramètres calculés à partir d'une dizaine de points sur lesquels on a émis une hypothèse. Cette hypothèse n'est pas tout à fait vériñée pourtant a posteriori lorsqu'on voit les écarts entre coordonnées après calcul des paramètres de la transformation. Des erreurs ont été introduites dans ce calcul, et elles influencent tout le reste des calculs. On pourrait par contre déterminer les coordonnées Lambert des deux piliers et conserver ces coordonnées pour déterminer les coordonnées des points de la coulée. On supprime l'étape douteuse. Cependant, on perd tout lien avec les travaux antérieurs...

VIII. 3 Sur le programme

Les améliorations à apporter au programme sont détaillées dans le dossier descriptif du programme.

LX. Conclusion

Ce stage au CEREG ne ressemble à aucune de mes expériences du passé et en cela il est déjà une réussite. Mieux encore, je le considère comme le premier pas vers mon activité professionnelle future. La dernière phrase de mon rapport de stage de l'année dernière dans un cabinet de Géomètre-Expert était: «Ce métier, qui pourrait être le mien plus tard, cache de nombreux aspects et six semaines ne suffisent pas à en débusquer la moitié. Cependant, je crois pouvoir affirmer aujourd'hui avec certitude que je n'ai pas l'intention de devenir Géomètre-Expert $\%$. Je pourrais achever aujourd'hui ce rapport avec une phrase similaire à ceci près que je pense pouvoir affirmer que j'ai trouvé ce que je voudrais devenir. Je voudrais utiliser les sciences topographiques pour ausculter les mouvements ou chercher les ressources de la Terre et j'espère pouvoir persévérer dans cette voie. En effet, cette branche de la profession a la chance d'utiliser du matériel performant et des méthodes strictes le tout demandant de la minutie, de la rigueur et de la patience.

De plus, les mouvements de l'écorce terrestre m'ont depuis longtemps intéressé. J'ai aujourd'hui l'occasion d'ausculter la Terre comme le médecin ausculte son patient. Car celle ci est bien vivante et menace l'Homme à tout instant. Cet intérêt, le désir de prévoir les risques naturels ou d'explorer les sous-sols de l'écorce terrestre me poussent donc à choisir cette voie.

Le stage au CEREG m'a plongé dans le cercle des géographes. Les rencontres et les discussions plus ou moins formelles auxquelles j'ai participé m'ont déjà enrichit et m'ont permis de cerner quelle place le topographe peut occuper dans de tels travaux. Certes il ne peut interpréter les mouvements, mais c'est lui qui saura décrire avec exactitude le phénomène.

Ce stage m'a donc comblé par le sujet traité, la problématique abordée, les moyens mis à disposition, les rapports humains qui se sont établis et par la réflexion technique que le travail demandait. En effet, les méthodes choisies résultent de réflexions et de recherches qui m'ont permis de découvrir certaines notions (le Visual Basic par exemple) et certains outils comme le GPS et le logiciel SKI. Bien que je pense avoir progressé énormément, je regrette pourtant de ne pas avoir pu être critiqué dans mes choix. De même, l'introduction au logiciel SKI me paraît un peu courte pour que je puisse exploiter nos résultats entièrement. Mon rôle était celui d'un expert en ce sens que j'avais pour mission de conclure quant à la validité d'une méthode de travail avec un outil de pointe. Je ne pense pas avoir les moyens de répondre avec certitude à la question car je n'ai pas les compétences nécessaires.

Mon seul regret est celui d'avoir été pris par le temps. Six semaines étaient un peu courtes pour écrire le programme, partir en mission, découvrir le GPS et ce quil l'entoure, et dépouiller les mesures. En dehors de la mission, les autres travaux n'ont pas été poussés à bout et je le regrette. Le programme demande à être amélioré et complété, les tests préliminaires avec le GPS auraient pu être plus nombreux et mieux exploités avant de partir en mission et le dépouillement est loin d'être achevé vu le retard accumulé pour déterminer le mouvement des piliers et choisir une solution. Je ne verrai donc pas l'aboutissement du travail mais j'espère au moins que mon passage au CEREG aura pu aider Dominique Weber pour l'avancée de ses travaux de thèse sur le glissement du Super-Sauze.

X. Remerciements

Je tiens tout d'abord à remercier Mr Olivier Maquaire pour m'avoir accueilli au CEREG durant ces six semaines. Ce stage a été grandement enrichi par Dominique Weber qui mène une thèse sur la modélisation du mouvement de la coulée. Il m'a permis d'aborder des domaines très divers et fut un collègue très appréciable pour les travaux topographiques.

Ce stage n'aurait pas pu être si complet sans l'aide du laboratoire de topographie de l'ENSAIS qui a fournit le matériel concernant l'étude par GPS, et le laboratoire de photogrammétrie de l'ENSAIS pour l'introduction au logiciel $S K I$ et pour l'initiation à l'utilisation du matériel.

Enfin, je remercie Mr Blumenroeder, responsable informatique de l'UFR de géographie qui m'a conseillé et documenté pour la réalisation du programme DEPOUILL.XLA.

XI. Bibliographie

Durant ce stage, je me serai référé à plusieurs ouvrage parmi lesquels :

- Guide de l'utilisateur de Microsoft. Visual Basic pour Excel (Microsoft Corporation).
- GPS, localisation et navigation (Botton, Duquenne, Egels, Willis_Hermes)
- Rapprot d'activité du CEREG (1991_ULP)
- Rapport de stage de Eric Hernandez (ENSAIS 1996)

CEREG

Auscultation topométrique du glissement de terrain de Barcelonnette par tachéométrie et GPS

Comparaisons

Annexes

I. Sommaire

I. Sommaire 1
II. Programme DEPOUILL.XLA 2
II. 1 Calculs des coordonnées des points approchés 2
II.1.A Rappels 2
II. 1.B Visées d'environ 200 m 3
II. 1.C Visées d'environ 500 m
4
4
II.1.D Visées d'environ 800 m 6
II.1.E Visées d'environ 1200 m 8
II. 2 Exemples de fichiers traités par DEPOUILL.XLA 10
II.2.A Les différentes étapes 10
II. 3 Code VBA du programme DEPOUILL.XLA 12
III. Auscultation topométrique du glissement du Super Sauze 12
III. 1 Planning de la mission 12
III. 2 Le chantier 13
III.2.A Situation géographique
13
13
III.2.B Situation géomorphologique 13
III.2.C Carte du réseau de points 13
III.2.D Rétablissement du système 14
III. 3 Travaux tachéométriques 16
III.3.A Le réseau de points 16
III.3.B Les points divers 18
III. 4 Travaux au GPS 19
III.4.A Fiches signalétiques des points géodésiques 19
III.4.B Mise en œuvre du système GPS 19
III.4.C Utilisation du logiciel SKI pour le traitement informatique des mesures 21
III.4.D Fiche signalétique du point 10 23
III.4.E Mesures des lignes de base du projet «canevas» 24
III. 5 Traitement des mesures 25
III.5.A Tachéométrie 25
III.5.B GPS 25
III.5.C Exemples de diagrammes cinétiques 33
III. 6 Divers 33
III.6.A Matrices des coefficients de la transformation de coordonnées « intermédiaires» vers 33«indépendants»
III.6.B Jonction des deux demi profils 34
III.6.C Image radar du glissement
36
36
III.6.D Articles divers 36

II. Programme DEPOUILL.XLA

II. 1 Calculs des coordonnées des points approchés

II.1.A Rappels

La distance D_{12} est constante et fixée à $60,558 \mathrm{~m}$. C'est la distance entre P1 et P2. Pour le reste, on choisit D_{2} à $200 \mathrm{~m}, 500 \mathrm{~m}, 800 \mathrm{~m}$ puis 1200 m et D_{1} respectivement à $230 \mathrm{~m}, 530 \mathrm{~m}$, 830 m et 1230 m et on calcul ϑ_{1} et ϑ_{2} correspondant. On choisit 30 m de différence entre les deux visées ce qui correspond en moyenne aux écarts observés sur le réseau.

Pour retrouver les 4 cas détaillés dans le dossier, on joue sur les distances D_{1} et D_{2} en les raccourcissant ou en les rallongeant de 5 mm .

Le calcul des coordonnées est automatisé par des formules dans les cellules Excel.

Dans les paragraphes qui suivent, vous trouverez cinq tableaux par catégorie de longueur.

Le premier concerne le triangle parfait, où fermetures angulaires et métriques sont nulles. Les quatre tableaux suivant correspondent aux quatre cas rappelés ci-contre.

	$\begin{aligned} & d_{1}^{\prime}<d_{1}, \\ & d_{2}^{\prime}>d_{2} \end{aligned}$

II. 1.B Visées d'environ 200 m

II.1.B.a Triangle parfait

X16	Y16	X12	Y12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
211,930	89,363	211,930	89,363	0,000	0,000

II.1.B.b Cas 1

	d1	d2	v1	12	
CASI	230,005	200,005	74,5961	58,9421	
		Xi	Yi		
	1	211,934	89,366		
	2	211,934	89,365		
	3	211,930	89,363		
	4	211,934	89,366		
	5	211,934	89,367		
	6	211,934	89,365		

X 16	Y 16	X 12	Y 12	$\Delta \mathrm{X}$	Y
211,933	89,366	211,934	89,366	$-0,001$	0,000

II.1.B.c Cas 2

	d1	12	1	12	
CAS2	229,995	200,005	74,5961	58,9421	
		Xi	Yi		
	1	211,934	89,366		
	2	211,925	89,362		
	3	211,930	89,363		
	4	211,909	89,399		
	5	211,926	89,360		
	6	211,934	89,365		

X 16	Y 16	X 12	Y 12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
211,926	89,369	211,929	89,364	$-0,003$	0,005

II.1.B.d Cas3

X 16	Y 16	X 12	Y12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
211,933	89,358	211,930	89,363	0,003	$-0,005$

II.1.B.e Cas 4

	d1	12	$v 1$	12	
Cas 4	229,995	199,995	74,5961	58,9421	
		Xi	Yi		
	1	211,926	89,360		
	2	211,925	89,362		
	3	211,930	89,363		
	+	211,925	89,361		
	5	211,926	89,360		
	6	211,925	89,361		

X 16	Y 16	X 12	Y 12		$\Delta \mathrm{X}$		$\Delta \mathrm{Y}$
211,926	89,361	211,925	89,361	0,001	0,000		

II.1.C Visées d'environ 500 m

II.1.C.a Triangle parfait

$\mathbf{d 1}$					
	530,000	500,000	70,2496	63,7412	
		Xi	Yi		
	1	473,173	238,761		

X16	Y16	X12	Y12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
473,173	238,761	473,173	238,761	0,000	0,000

II.1.C.b Cas 1

	${ }^{11}$	12	1	v2	
CAS	530,005	500,005	70,2496	63,7412	
		Xi	Yi		
	1	473,178	238,764		
	2	473,178	238,764		
	3	473,173	238,761		
	$+$	473,178	238,764		
	5	473,178	238,764		
	6	473,178	238,764		

X 16	Y 16	X 12	Y 12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
473,177	238,764	473,178	238,764	$-0,001$	0,000

II.1.C.c Cas 2

	d1	d2	v1	-2	
CAS2	529,995	500,005	70,2496	63,7412	
		Xi	Yi		
	I	473,178	238,764		
	2	473,169	238,759		
	3	473,173	238,761		
-	4	473,125	238,847		
	5	473,169	238,759		
	6	473,178	238,764		

X 16	Y 16	X 12	Y 12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
473,165	238,776	473,173	238,762	$-0,008$	0,014

II.1.C.d Cas 3

	d1	d2	v1	v2	
Cas 3	530,005	499,995	70,2496	63,7412	
		Xi	Yi		
	1	473,169	238,759		
	2	473,178	238,764		
	3	473,173	238,761		
	4	473,222	238,677		
	5	473,178	238,764		
	6	473,169	238,759		

X16	Y16	X12	Y12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
473,181	238,747	473,173	238,761	0,008	$-0,014$

II.1.C.e Cas 4

	11	12	v1	v2	
Cas 4	529,995	499,995	70,2496	63,7412	
		Xi	Yi		
	1	473,169	238,759		
	2	473,169	238,759		
	3	473,173	238,761		
	$+$	473,169	238,759		
	5	473,169	238,759		
	6	473,169	238,759		

XI6	Yl6	X12	Y 12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
473,170	238,759	473,169	238,759	0,001	0,000

II.1.D Visées d'environ 800 m

II.1.D.a Triangle parfait

X 16	Y 16	X 12	Y 12		$\Delta \mathrm{X}$
734,008	387,469	734,008	387,469	0,000	0,000

II.1.D.b Cas 1

	d1	d2	1	v2	
CAS1	830,005	800,005	69,0792	64,9686	
		Xi	Yi		
	1	734,012	387,472		
	2	734,012	387,471		
	3	734,008	387,469		
	4	734,012	387,472		
	5	734,012	387,472		
	6	734,012	387,471		

X 16	Y 16	X 12	Y 12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
734,012	387,471	734,012	387,472	$-0,001$	0,000

II.1.D.c Cas 2

	d1	d2	-1	12	
CAS2	829,995	800,005	69,0792	64,9686	
		Xi	- Yi		
	I	734,012	387,472		
	2	734,004	387,467		
	3	734,008	387,469		
	4	733,931	387,604		
	5	734,004	387,466		
	6	734,012	387,471		

X 16	Y 16	X 12	Y 12	$\Delta \mathrm{X}$	
733,995	387,492	734,008	387,469	$-0,013$	0,022

II.1.D.d Cas 3

	$d 1$	d2	-1	12	
Cas 3	830,005	799,995	69,0792	64,9686	
		Xi	Yi		
	1	734,004	387,466		
	2	734,012	387,471		
	3	734,008	387,469		
	4	734,085	387,335		
	5	734,012	387,472		
	6	734,004	387,467		

X 16	Y 16	X 12	Y 12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
734,021	387,447	734,008	387,469	0,013	$-0,022$

II.1.D.e Cas 4

	d1	d2	$v 1$	$\checkmark 2$	
Cas 4	829,995	799,995	69,0792	64,9686	
		Xi	Yi		
	1	734,004	387,466		
	2	734,004	387,467		
	3	734,008	387,469		
	4	734,003	387,467		
	5	734,004	387,466		
	6	734,004	387,467		

X16	Y16	X12	Y12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
734,004	387,467	734,004	387,467	0,001	0,000

II.1.E Visées d'environ 1200 m

II.1.E.a Triangle parfait

$\square-11$	112	$\cdot 1$	v2	
1230,000	1200,000	68,4127	65,6559	
	Xi	Yi		
1	1081,676	585,557		
2	1081,676	585,557		
3	1081,676	585,557		
4	1081,676	585,558		
5	1081,676	585,557		
6	1081,676	585,557		

X 16	Y 16	X 12	Y 12		$\Delta \mathrm{X}$
1081,676	585,557	1081,676	585,557	0,000	0,000

II.1.E.b Cas 1

	d1	d2	$\cdot 1$	12	
CAS 1	1230,005	1200,005	68,4127	65,6559	
		Xi	Yi		
	1	1081,680	585,560		
	2	1081,680	585,560		
	3	1081,676	585,557		
	4	1081,680	585,560		
	5	1081,680	585,560		
	6	1081,680	585,560		

X16	Y16	X12	Y 12		$\Delta \mathrm{X}$
1081,679	585,559	1081,680	585,560	$-0,001$	0,000

II.1.E.c Cas 2

	$d 1$	12	v1	12	
CAS2	1229,995	1200,005	68,4127	65,6559	
		Xi	Yi		
	1	1081,680	585,560		
	2	1081,671	585,555		
	3	1081,676	585,557		
	4	1081,561	585,758		
	5	1081,672	585,555		
	6	1081,680	585,560		

X 16	Y 16	X 12	Y 12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
1081,657	585,591	1081,676	585,557	$-0,019$	0,033

II.1.E.d Cas3

	d1	12	$\cdot 1$	12	
Cas 3	1230,005	1199,995	68,4127	65,6559	
		Xi	Yi		
	1	1081,672	585,555		
	2	1081,680	585,560		
	3	1081,676	585,557		
	4	1081,790	585,357		
	5	1081,680	585,560		
	6	1081,671	585,555		

X 16	Y 16	X 12	Y 12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
1081,695	585,524	1081,676	585,557	0,019	$-0,033$

II.1.E.e Cas 4

	d1	d2	v1	v2	
Cas 4	1229,995	1199,995	68,4127	65,6559	
		Xi	Yi		
	1	1081,672	585,555		
	2	1081,671	585,555		
	3	1081,676	585,557		
	4	1081,671	585,555		
	5	1081,672	585,555		
	6	1081,671	585,555		

X16	Y16	X12	Y12	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
1081,672	585,555	1081,672	585,555	0,001	0,000

II. 2 Exemples de fichiers traités par DEPOUILL.XLA

II.2.A Les différentes étapes

Nous utiliserons pour cela le fichier phasel.rec qui se trouve sur la disquette ci-jointe.

II.2.A.a Carnet de terrain : «phase1.rec»

Ce fichier est fictif : les sept premiers points sont inventés et mettent en relief certains des cas auxquels on peut être confronté. Les points suivants servent à donner un exemple de compensation.
ATTENTION: la station P1 doit être tournée de - 0.0043 gr .

Point 1	Pas de problème au moment du levé. Cependant, il n'est levé que d'une station et n'est pas pris en compte pour la compensation.
Point 2	Pas de problème avec les observations. Il est levé des deux stations et les écarts entre les deux déterminations sont correctes (cf phases 5).
Point 3	Idem avec des gros écarts entre les deux déterminations (cf phase 5). On supprime le point au moment de la phase de compensation à moins qu'on s'en soit rendu compte dès la phase 2. Il y a eu un problème au moment du levé.
Point 4	Hauteur de canne particulière : utilisation du code 3.
Point 5	Ecarts au niveau des angles horizontaux. Deux déterminations : on se sert de l'autre détermination pour faire le choix de la ligne d'observations fausses.
Point 6	Ecarts au niveau des angles horizontaux. Trois déterminations: l'une des trois semble aberrante : on peut l'éliminer.
Point 7	Ecarts au niveau des angles verticaux: - de Pl: trois observations. On peut déterminer l'observation fausse. - de P2: deux observations. On ne peut choisir l'observation fausse qu'après le calcul des coordonnées (phase 5).
Points 10 à 20	Ils sont utilisés pour montrer les différentes étapes de la compensation.

II.2.A.b Phase2.xIs

Il s'agit du tableau des observations traduit en tableur Excel à partir du carnet terrain. Les points et les stations ont été classés, les numéros de stations et les hauteurs de prismes insérés.

II.2.A.c Phase3.xIs

C'est le même fichier que la phase 2 , à ceci près que les observations fausses ont été corrigées ou supprimées.

II.2.A.d Phase4.xls

Une fois les corrections apportées, les lignes d'observations moyennes sont extraites avec le sous-menu «extraction » et l'inventaire des stations est fait.

II.2.A.e Phase5.xIs

On insère les coordonnées des stations et on lance le calcul des coordonnées des points avec le sous-menu «Calcul des Coordonnées». On peut alors observer les écarts entre les différentes déterminations des points.

Dans le fichier Phase5.xls, on se rend compte qu'il y a un problème général à tout les points. Il s'agit d'un défaut d'orientation.

II.2.A.f Phase6.xls

On a fait effectuer une rotation à la station P1 de $-0,0043 \mathrm{gr}$ et on re-calcul les coordonnées. Les écarts obtenus sont bien plus acceptables.

Remarque: On a appliqué la procédure rotation à la feuille des observations moyennes. Les feuilles 1 et 2 n'ont pas été modifiées. On aurait pu utiliser la rotation sur la feuille 1 ou la feuille 2 puis reprendre les différentes opérations jusqu'au calcul des coordonnées.

II.2.A.g Phase7.xls

Tout est près pour démarrer la compensation. On calcul les coefficients des équations d'erreurs avec la procédure «compensation».

Dans le fichier Phase7.xls, on voit que le point 13 affecte particulièrement le calcul du ϑ_{0} moyen. C'est pourquoi on va le supprimer par la suite.

II.2.A.h Phase8.xIs

On supprime les feuilles 4 et 5, puis on revient à la feuille des observations moyennes (feuille 3). On supprime les lignes concernant le point 13 dans le tableau des observations et dans le tableau des coordonnées approchées.

II.2.A.i Phase9.xls

On re-calcul les coefficients réduits avec les points restant. Les écarts sur les ϑ^{\prime} 。 sont moins importants.

II.2.A.i Phase10.xls

On calcul les coordonnées compensées des points avec le sous-menu «calcul».

II.2.A.k Phase11.xls

On peut éventuellement reprendre le calcul avec les coordonnées compensées pour les coordonnées approchées. C'est le sous-menu «itérations » qui le permet.

II. 3 Code VBA du programme DEPOUILL.XLA

Veuillez vous reporter au manuel d'utilisation pour la description plus détaillée des procédures. Il se trouve en fin du manuel.

III. Auscultation topométrique du glissement du Super Sauze

III. 1 Planning de la mission

Bat:	
30/06	- Reconnaissance du site avec le groupe ERASMUS du cours intensif de géomorphologie. Introduction sur les contextes géologique et géomorphologique du site. Démonstration et exposé sur le principe du GPS. Cette journée a donné l'occasion d'observer des phénomènes de crues importantes qui expliquent de façon flagrante l'existence du glissement. - Tournée d'inspection des points de calage retenus au vu des fiches signalétiques et discussion de la méthodologie en conséquences (cf §VI. 2 du rapport).
01/07	- Mesures GPS : projet Implan pour commencer à mettre en place le canevas. - Préparation de la mission du lendemain (clé de l'inmeuble), mesures météorologiques... - Etablissement d'un planning.
02/07	- Mesures GPS : projet calage. On continu la mise en place du canevas.
03/07	- Mesures GPS : suite et fin du projet calage. - Tachéométrie : mesure des points de la couronne. - Mesures de débits.
04/07	- Tachéométrie : mesures du réseau d'auscultation aller et retour. - Mesures des références angulaires pour essayer de rétablir les piliers.
05/07	- Mesures GPS : projet couronne.
06/07	- Mesures GPS : projet La Valette.
07/07	- Visite du glissement de Saint Etienne de Tinée.
08/07	- Mesures GPS : projet Adriano.
09/07	- Tachéométrie : profils en travers, points doubles GPS-tachéo, réseaux divers... - Mesures GPS : points doubles GPS-tachéo, profils en travers, mesures du canevas.
10/07	- Travaux divers

III. 2 Le chantier

III.2.A Situation géographique

III.2.A.a Situation générale

Page 13a.

III.2.A.b Situation détaillée

Page 13b.

III.2.A.c Vue aérienne

Page 13c.

III.2.B Situation géomorphologique

Page 13d.

III.2.C Carte du réseau de points

Page 13 e .

Carte géomorpholggique au $1 / 1000$ ème Ittat aut 28 noot 1995

formatons		
morruanc de convertur \square marnci in sty \square maty 4 marncocd \square Hindriapt \square	pian de ruqutrit fliserane banc cut tinc pendige \square I edidy formexicil \square 量范 \square \square Aff	forite inilinewe prokeble blocy tif phresius cistoryct $\triangle 4$ \qquad comerepente \square 1 concesule tric alionkiripure B, \%

urdrocrapilic
tavemome permincen
1
i
apeus
\$ \downarrow
P

Figure $n^{\circ} 3$: Second generation topometric network installed

III．2．D Rétablissement du système

III．2．D．a Ecarts entre coordonnées des points fixes en considérant l＇un ou l＇autre pilier fixe
III．2．D．ai Si on considère P1 fixe

			Sinsmamese学䊾综			
	\％	\％	\％	多	継	数
1	49，873	125，781	49，889	125，791	－16	－10
12	73，195	343，356	73，221	343，366	－26	－10
25	79，310	378，306	79，331	378，320	－21	－14
26	148，366	509，638	148，396	509，651	－30	－13
39	272，640	549，617	272，637	549，596	3	21
109	371，519	909，411	371，559	909，444	－40	－33
111	406，03	898，652	406，066	898，672	－36	－20
114	435，446	861，537	435，511	861，555	－65	－18

III．2．D．aii Si on considère P2 fixe

	\％	\＄	\％\％	药	䜌，	
1	49，873	125，781	49，886	125，776	－14	4
12	73，195	343，356	73，205	343，349	－9	7
25	79，310	378，306	79，310	378，302	1	4
26	148，366	509，638	148，367	509，640	0	－2
39	272，640	549，617	272，605	549，593	36	24
109	371，519	909，411	371，502．	909，448	17	－37
111	406，03	898，652	406，010	898，678	20	－26
114	435，446	861，537	435，457	861，563	－11	－26

III．2．D．aiii Si on considère que P1 et P2 ont bougé．

	\％	\％	\％	\＄\％	桜	药运
1	49，873	125，781	49，894	125，766	－21	14
12	73，195	343，356	73，231	343，341	－36	15
25	79，310	378，306	79，339	378，294	－29	12
26	148，366	509，638	148，407	509，626	－41	12
39	272，640	549，617	272，648	549，569	－8	48
109	371，519	909，411	371，575	909，416	－56	－5
111	406，03	898，652	406，082	898，643	－52	9
114	435，446	861，537	435，526	861，526	－80	11

III.2.D.b Sensibilité s sur les coordonnées d'un point en fonction de l'angle d'intersection

Sensibilité sd'un point en fonction de l'angle d'intersection A des deux rayons par mesures de distances

Sensibilité d'un point en fonction de l'angle fait par les rayons d'intersection.

III. 3 Travaux tachéométriques

III.3.A Le réseau de points

III.3.A.a Tableau des coordonnées compensées

1	49,900	125,771	1739,907
2	56,253	144,495	1743,725
3	46,977	144,481	1744,344
4	38,853	167,659	1759,701
5	59,046	166,643	1755,674
6	69,938	167,838	1758,494
7	65,715	207,791	1773,588
8	55,863	211,274	1772,389
9	85,469	214,551	1775,121
10	92,283	282,415	1790,797
11	124,361	260,285	1796,585
12	73,239	343,344	1817,468
13	110,901	316,019	1804,124
14	128,820	303,033	1804,870
15	149,342	303,229	1804,476
16	177,229	313,403	1807,689
17	178,157	344,039	1820,615
18	245,168	394,102	1844,952
19	210,188	375,248	1834,127
20	179,407	364,774	1828,963
21	151,760	366,163	1826,571
22	140,072	367,626	1826,769
23	118,031	370,292	1826,878
24	103,264	374,276	1824,902
25	79,349	378,298	1833,167
26	148,388	509,635	1869,050
27	158,724	496,680	1863,105
28	166,350	479,343	1863,506
29	190,996	458,300	1862,667
30	205,670	452,290	1863,647
31	195,691	438,813	1856,461

	\%		\%
32	247,500	446,288	1871,978
33	267,324	450,334	1878,667
34	259,263	421,649	1862,680
35	285,672	436,041	1877,978
36	346,458	508,630	1905,247
37	326,794	520,930	1905,735
38	321,710	520,347	1905,752
39	272,628	549,583	1909,007
41	203,404	550,290	1899,722
42	382,857	575,901	1930,835
43	353,184	617,085	1945,576
44	334,202	659,473	1957,690
45	271,917	589,556	1929,595
46	260,249	620,202	1936,756
47	257,927	620,135	1936,908
48	275,956	688,186	1960,162
49	232,323	663,905	1958,832
50	186,530	606,121	1937,606
Couronne			
101	199,842	757,702	2025,142
102	198,147	781,150	2040,694
103	213,982	800,328	2051,852
105	270,767	811,196	2060,367
106	276,009	811,974	2061,338
109	371,642	909,403	2091,086
110	390,541	891,567	2094,457
111	406,149	898,627	2099,799
112	399,916	873,448	2092,619
113	417,510	860,653	2097,875
114	435,589	861,508	2105,057
107	304,530	879,837	2075,412

III.3.A.b Semis de points compensés

La soixantaine de points du réseau est régulièrement répartie sur l'ensemble de la coulée.

III.3.B Les points divers

III.3.B.a Coordonnées

d		\$	\%	*	\$		\%		,	\&	\%
Replat E				35	153,501	336,537	1812,764	Profil supérieur			
3	115,901	251,441	1794,032	36	157,769	335,653	1812,995	69	322,190	521,238	1905,847
4	120,462	255,773	1795,537	37	158,849	335,547	1813,011	70	326,833	519,007	1905,317
5	133,832	257,038	1796,877	38	162,117	336,131	1810,593	71	335,266	515,660	1905,120
6	137,784	269,995	1797,577	40	169,648	331,738	1813,486	72	314,202	517,238	1902,770
7	140,611	277,819	1798,487	41	171,422	330,535	1813,542	73	310,716	518,182	1902,268
8	131,201	270,531	1797,264	42	177,622	329,704	1813,765	74	305,331	518,855	1902,020
9	129,226	266,306	1797,308	Profil intermédiaire				75	304,347	519,114	1901,910
10	129,405	263,180	1797,348	43	150,829	491,463	1860,122	76	303,059	519,563	1901,837
11	124,328	260,287	1796,591	44	154,878	488,973	1860,187	77	296,304	523,331	1900,700
12	121,734	261,682	1796,333	45	158,491	485,143	1860,707	78	282,616	528,884	1899,350
13	119,149	263,880	1795,968	46	163,531	481,110	1862,955	79	279,305	530,357	1899,254
14	121,497	271,947	1795,970	47	168,175	478,637	1863,794	80	272,897	530,422	1896,925
15	123,243	278,119	1797,447	48	163,920	473,394	1861,773	81	272,697	529,792	1896,747
16	112,436	258,033	1794,607	49	171,867	474,537	1862,926	82	271,494	534,485	1898,000
17	99,833	259,428	1791,136	50	176,456	465,281	1861,969	83	271,052	536,766	1898,692
18	104,152	262,606	1792,756	51	184,354	471,422	1863,292	84	275,753	553,410	1910,516
19	111,972	266,487	1794,537	52	188,563	469,904	1863,547	85	273,105	549,942	1908,916
20	111,560	272,660	1793,840	53	192,563	469,060	1864,383	87	275,782	553,232	1910,713
21	98,012	265,992	1791,026	54	195,707	465,642	1864,586	88	280,041	551,018	1907,668
22	102,250	274,971	1791,614	55	199,931	465,747	1865,206	89	284,121	548,408	1906,873
23	94,248	278,806	1790,503	56	205,506	465,070	1865,840	90	287,824	545,904	1907,161
Profil inférieur				57	210,303	464,112	1866,990	91	293,141	542,136	1906,178
24	99,278	358,409	1815,589	58	215,679	461,690	1868,327	92	299,949	537,384	1904,854
25	104,552	355,996	1817,482	59	220,264	459,578	1868,609	93	301,854	535,663	1904,135
26	110,025	353,814	1819,809	60	225,582	458,739	1868,165	94	305,735	532,544	1903,842
27	113,858	350,033	1819,074	61	231,212	455,738	1869,458	95	310,687	529,435	1904,890
28	119,161	347,740	1819,572	62	234,962	453,311	1870,648	96	314,427	527,001	1904,495
29	122,891	346,090	1818,981	63	238,881	450,031	1870,532	97	317,503	524,903	1904,611
30	125,481	345,093	1818,710	64	248,411	445,762	1872,068	98	318,777	524,095	1905,174
31	126,542	342,356	1817,738	65	252,228	445,547	1872,383	99	320,532	522,736	1904,839
32	135,053	340,249	1816,185	66	257,095	444,330	1875,080	100	322,340	521,107	1906,090
33	140,032	338,737	1814,305	67	259,293	445,521	1875,532				
34	149,040	337,530	1812,555	68	264,653	445,305	1876,873				

III.3.B.b Apercu

III. 4 Travaux au GPS

III.4.A Fiches signalétiques des points géodésiques

Pages 19a à 19e.

III.4.B Mise en œuvre du système GPS

Voici le déroulement d'une mise en station classique pour une mesure en mode statique.
Pour passer d'une étape à l'autre, on utilise les touches RUN ou CONT. Les valeurs entrées au clavier sont stockées avec la touche STORE. D'autre part, durant la mesure, la touche STATUS (F5) permet de visualiser la configuration de la constellation des satellites disponibles et en appuyant à nouveau, on découvre le GDOP et l'avancement de la mesure en pourcentage.

En cas de sauts de cycles ou de GDOP trop faibles, il est préférable d'arrêter la mesure pour la reprendre, quitte à la reprendre plus tard, lorsque la configuration est meilleure.
= Iille: BABCELONRETTE . 3539
Departement : ALPES-DE-HAUTE - FROVENCE
UVERNET - FOURS V. $2 \cdot$ ordre

Lieu-dit usuel
Lieu-dit cadastral: Pra Loup
Scn et Plle

neientoment au iol à partir de lo borne
ENCHASTRAYES . $5{ }^{\circ}$ ORDRE PYLÔNE ANTENNE PABATONNERRE

Fanllle:
BABCELOAEETTE . . 35 -39.
C partement : NLPES- DE,HAUTE = RROVENCE.
Servitude

Lieu-dit usuel :
Lieu-dit cadastral:....... Le. Chazelas Son et plle:

rientoment ey cel depertir do to berne
SAINT PAONS - $5^{\text {è }}$ ORDRE
:OCHER : AXE .

Ftuille:.... Barcelonnelte 35-39
Denartement : Alpes de-Haute-Provence
U... UVERNET - FOURS VII 4 ordre

Lieu-dit usuel
Lieu-dit cadastral: Frondari
Son el plie:

[c iorve	calculs	Dasignation dor ropiras	Coordonnoer		Allituden	
$1 \sim 31$	1981	- Borne IGN	943574,81	237 755,84	1757,3	
$\left\lvert\, \begin{array}{ll} 1 & 31 . . \\ 6 E 0 \end{array}\right.$	1981	- Repère en bronze PM scelle duns un rocher	943572,70	237759,47	17.56,7	
$\begin{aligned} & 1 \sqcup 81 . \\ & \mathfrak{a} \in \mathrm{O} . \end{aligned}$	1981	c Bome limite avec croix gravée dans la face supérieurv	943575,07	237759,87	1757,6	
.		d.				

-VERMET:FOURS II

Rylône-Antenne: axe

Ifinéraire : Depuis Barcelonnette, prendre la route des cabanes, puis la piste forestiere jusqu' au ed des Alaris (tout véhieule) - Terminer ö pied en suivant la erète vers le Nord - minutes de marche -

Lieu-dit usuel: Chapeau de Gendarme
Lieu-dit cadastral:.
Pré Rasine
Son et plie

Oriontement en sol it partir de lo berne

DESSUPRTSANZE AVEC UNMEHCULE IOUT TERRAN EUNRE: LA. PISTE QUI PASSE

DERRAERE IHOTEL"LE BREC"ET QII CONOUIT AU RELNS TV (COIE 2460). 600MAVANT LE RELAS,
SOMAET SUD, LAISSER LE VEHCULE ET CONTIMER AAPIED RAR LE SENTER QUI CONTOLRYEILERGIRQN PAR LE SID
situation topo: $4,2 \mathrm{~km}$ S.S.O.

ENCHASTRAYES . . III

Lieu-dit usuel
Lieu-dit cidastral: L'Alp Remezin $\quad S^{o n}$ et Pl!e

ENCHASTRAYES PYLÔNE A."TENNE $5^{\circ} 0$ BASE. PARA--1 NNERRE

$$
v=\ldots{ }^{G}
$$

ACCÉS : DE SUPER-SAUZE AVEC UN VÉMICULE TOUT TEFRAIN SUIVRE LA PISTE QUI CONDUIT AU COL DE FOURS.
de Là REJOINDRE À PIED LE SOMMET SITUÉ A L'EST, ET SUR LEQUEL SE TROUVE LA BORNE IGN (15m DE MARCHE). LE PYLÔNE SE SITUE À 80 m ENVIRON A LOUEST DU, COĹ.

Mise en station du pivot

1. On stationne le pivot sur un point connu en coordonnées ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$).
2. Alimentation : on réalise les branchements comme ci-dessous.

3. Mettre le contrôleur sous tension
4. Choisir MISSIONPIVOT POUR CANEVASVPROJET $A D D$

Mise en station du mobile

1. On positionne l'antenne sur le point à mesurer avec le trépied léger.
2. Alimentation :

3. Mettre le contrôleur sous tension
4. Choisir MISSIONMOBILE POUR CANEVAS $\operatorname{PROJET} \backslash A D D$
5. Entrer le nom du projet. Si on veut reprendre un projet, il est possible de rechercher un projet encore stocké en mémoire et de le continuer.
6. Entrer le nom du projet. Si on veut reprendre un projet, il est possible de rechercher un projet encore stocké en mémoire et de le continuer.
Rem: entrer le nom en lettres capitales (CAP)
7. Avec JOB\ADD, on créé un nouveau job que l'on numérote. Il est aussi possible de reprendre un ancien job.
8. Choisir le type de mesure : STATIC
9. Entrer les coordonnées approchées de la zone et sélectionner les coordonnées à prendre en compte (par défaut ou User Input).
10. Entrer le numéro de point, la hauteur de station, l'offset.
10.Vérifier la fréquence des mesures dans le menu.
11.lancer la mesure avec MEAS (F1)
12.Lorsque les 100% sont atteints, taper $S T O P$ puis REC POINT.

Utiliser le même nom que sur le pivot de préférence.
Rem: entrer le nom en lettres capitales (CAP)
6. Avec JOB\ADD, on créé un nouveau job que l'on numérote. Il est aussi possible de reprendre un ancien job.
7. MINIMUM ELEVATION : 15°
8. Choisir le type de mesure : AUTOMATIC
9. Entrer les coordonnées approchées de la zone et sélectionner les coordonnées à prendre en compte (par défaut ou User Input).
10.Entrer le numéro de point, la hauteur de station, l'offset.
11. Vérifier la fréquence des mesures dans le menu.
12.lancer la mesure avec MEAS (F1)
13.Lorsque les 100% sont atteints, taper STOP puis REC POINT.

III.4.C Utilisation du logiciel SKI pour le traitement informatique des mesures

Transfert des mesures

Connections

ATTENTION : toute modification doit être sauvegardée avant le transfert vers le projet.

Mettre le récepteur (mobile ou pivot) en position de transfert en choisissant TRANSFER dans le menu principal. De son côté, SKI réalise le transfert dans une mémoire tampon: IMPORTMEASUREMENT\GPS CONTROLLERMEMORY CARD\COPYOK

A ce stade, il est possible de choisir quel(s) projet(s) et quel(s) job(s) on veut transférer. Après cela, on peut éditer les mesures transférées pour y apporter d'éventuelles modifications (Détails infos ou Edit). Ce n'est qu'après cela que l'on insère les mesures dans un projet (INSERT).

Avant de quitter, il faut dupliquer avec $S A V E A S$ et en sélectionnant data type $=$ back $u p$, les mesures au cas où un problème serait survenu ($\mathbf{c}: . .$. . pivot et $\mathrm{c}: \ . .$. Imobile). Il est possible de récupérer les mesures avec IMPORTMEASUREMENTVBACKUP.

Visualisation du chantier

Avec le menu View/Edit du menu principal, on peut visualiser une solution de navigation encore très approximative.

Création du fichier de points dans le système origine

On crée un ficher qui contient les coordonnées Lambert III des points d'appui.
Choisir DATUM MAPVMPORT-EXPORTCOORDINATE SETS. Si le fichier de points n'existe pas déjà, on peut en créer un nouveau avec $A D D$. On nomme le fichier et on vérifie le type de fichier (input type $=$ Manual Input Of Grid Coordinates).

Dès lors, on peut remplir le fichier :

On utilise $N E X T$ pour passer au point suivant et EDIT pour relire le fichier.
Le fichier est désormais dans la bibliothèque des fichiers de points mais n'est rattaché à aucun projet précis. L'extension F1 sert à indiquer qu'il s'agit d'un fichier de coordonnées de points d'appui dans le système origine (Lambert III pour nous).

Transformation de coordonnées.

Il faut d'abord s'assurer que les paramètres de la transformation désirée soit intégrés dans le logiciel. Pour cela, on se reporte dans le menu DATUM MAPVMPORT EXPORTMAP PROJECTION SETS. Il se peut que la projection ne soit pas intégrée au logiciel. Dans ce cas, avec la commande $A D D$ on peut créer ses propres transformations. Les paramètres servant à la projection dans le système Lambert III sont inscrits ci dessous.

On commence par choisir le type de projection : Transverse Mercator, UTM, Lambert ou autre. Il faut en suite entrer les renseignements de la fenêtrel. Reste alors à définir les éléments de la transformation. Pour cela, on ouvre la fenêtre DATUM MAP\TRANSFORMATION PARAMETERS\CLASSICAL\VIEW AND EDIT 3D 4 ADD (fenêtre 2).

On dispose désormais de tous les éléments nécessaires au calcul des coordonnées dans le système WGS. Pour cela, sélectionner DATUM MAP\TRANSFORM COORDINATES . Après avoir choisi le nom du fichier ***F1 (Coordinate sets), on sélectionne la transformation NTF $>$ WGS84 (Transformation Set), la projection undefined (Projection set) car il n'y a pas de projection sur WGS 84 et le modèle géoìdal undefined (Geoidal Model). En validant, on voit apparaître les coordonnées de tous les points du fichier en coordonnées WGS 84. On les enregistre dans un nouveau fichier ${ }^{* * *}$ F2 pour montrer qu'il s'agit des points transformés en WGS 84.

Transfert du fichier de coordonnées ***F2 dans le projet SKI actif

La manipulation se fait simplement avec DATUM MAPVIMPORT EXPORTCOORDINATE SETSDISPLAY. On voit apparaître tous les coordonnées des points transformés. On sélectionne ceux que l'on veut insérer au projet et on sélectionne TRANSFERT. SKI. Ce sont sur ces points que SKI s'appuiera pour le calcul des tous les autres points.

Rq: les points d'appui insérés dans le projets apparaissent désormais sous forme de triangles dans le plan affiché avec View Edit.

Calcul des coordonnées des points du mobile (nouveaux)

En cliquant sur DATA PROCESSING on voit apparaitre l'inventaire des jours où ont été effectuées les mesures. On sélectionne les jours que l'on veut traiter puis on valide. C'est alors que jour par jour, il faut sélectionner (choisir MANUEL) les périodes correspondant aux références (Reference) et
celles correspondant aux nouveaux points (Rover). Lorsque tous les jours ont été traités, on sélectionne COMPUTE et le logiciel va calculer toutes les lignes de base. En fin de calcul, on obtient des renseignements sur le déroulement du calcul (si par exemple certains points n'ont pu être déterminés) et la précision des résultats.

A la fin du calcul, il faut enregistrer les résultats avec STORE.
Rq: avec View Edit, on peut afficher la solution de navigation finale. On peut y ajouter les lignes de base, les ellipses d'incertitudes, les coordonnées en choisissant le système approprié... Plusieurs options sont offertes par ce menu du logiciel pour l'exploitation des résultats.

Stockage des résultats dans un fichier ***F3.

La manipulation est similaire à la précédente. On sélectionne DATUM MAPVIMPORT EXPORTICOORDINATE SETSLADD en choisissant input type = Input from SKI DATA BASE. Il suffit de rentrer le nom du fichier en n'oubliant pas d'ajouter F3 à la fin.

Transformation des coordonnées de ***F3 de WGS vers Lambert III

Pour pouvoir exploiter les résultats, il faut récupérer les coordonnées des points dans le système Lambert III. On utilise la même méthode que précédemment avec DATUM MAP\TRANSFORM COORDINATES. Il faut cependant faire attention aux informations entrées. En effet, dans le sens WGS > Lambert, la projection n'est pas undefined mais de type Lambert III.

III.4.D Fiche signalétique du point 10

III.4.E Mesures des lignes de base du projet "canevas"

?us\%	Mybile	des	
100	10	30/06	1
100	P1	30/06	2
100	P2	30/06	3
100	20	01/07	4
200	20	01/07	5
200	10	01/07	6
200	P1	02/07	7
200	P2	02/07	8
200	100	02/07	9
P2	10	07/07	10
P2	20	07/07	11
P2	P1	07/07	12
P2	10	08/07	13
P1	10	08/07	14

III. 5 Traitement des mesures

III.5.A Tachéométrie

Reportez vous à la disquette ci-jointe. Elle comporte les fichiers 7a97.rec, 7a97_0.xls, 7a97_1.xls, 7a97_2.xls, 7a97_3.xls et pts97.xls qui résultent du traitement par le programme conçu cet été.

III.5.B GPS

III.5.B.a Projet Adriano

III.5.B.ai Photos aériennes

Pages 25 a à 25 k .
Ces agrandissements sont tirés de la photo aérienne de 1995.

III.5.B.aii Plan du projet

Projet Adriano

(points de calage pour MNT)

1000 m

GPS 1 (1995) - Coordonnees approchees:
$X=945858$
$Y=3237358$
$Z=1685$ (bloc de droite)

GPS 2 (1995) - Coordonnees approchees
$X=946275$
$Y=3237093$
$Z=1881$

GPS 3 (1995) - Coordonnees approchees:
$\mathrm{X}=946229$
$Y=3236481$
$Z=2033$

GPS 4 (1995) - Coordonnees approchees
$X=946061$
$Y=3236399$
$Z=2081$ (gros bloc)

GPS 5 (1995) - Coordonnees approchees
$X=945968$
$\mathrm{Y}=3236667$
$Z=1940$

GPS 6 (1995) - Coordonnees approchees :
$X=945865$
$Y=3236631$
$Z=1926$

GPS 7 (1995) - Coordonnees approchees :
$X=945375$
$\mathrm{Y}=3236257$
$Z=2137$

GPS 8 (1995) - Coordonnees approchees :
$X=945409$
$Y=3236885$
$Z=1940$

GPS 9 (1995) - Coordonnees approchees:
$X=945663$
$Y=3237110$
$Z=1819$

GPS 10 (1995) - Coordonnees approchees:
$X=945735$
$Y=3237044$
$Z=1794$

III.5.B.b Projet Super-Sauze

III.5.B.bi Plan de la solution de navigation approximative

III.5.B.bii Plan de la solution de navigation définitive

P2 \triangle P1 Projet Super-Sauze

III.5.B.biii Coordonnées Lambert des points du réseau

P2 $\triangle \triangle$ P1	Projet Super-Sauze
$\begin{aligned} & { }^{1} \odot 5 \\ & { }_{7} \stackrel{S}{S}_{8} \end{aligned}$	
$\begin{gathered} 11 \propto 10 \\ 14 \odot^{10} 25 \\ 21 \& 22_{23}^{23} \\ 32 \odot^{29} \\ 33 \% \odot^{26} \end{gathered}$	\mathfrak{H}
	π
$\triangle 20$	

Onit: Coordinate type: m Reference ellipsoid: Grid Projection set: Clarke 1880 IGN	

\%				
1	945790.2007	237126.0034	1739.9633	borne du réseau
5	945807.9660	237088.1065	1755.6324	borne du réseau
7	945827.8355	237051.5132	1773.5425	borne du réseau
8	945837.7641	237054.7595	1772.3710	borne du réseau
10	945852.4647	236976.2506	1790.8798	borne du réseau
11	945813.5642	236974.1290	1796.6560	borne du réseau
14	945836.1756	236937.5956	1804.9420	borne du réseau
21	945856.6047	236873.6765	1826.6703	borne du réseau
22	945866.7350	236879.6755	1826.8658	borne du réseau
23	945885.8058	236891.0272	1826.9625	borne du réseau
26	945946.9759	236762.2254	1869.0716	borne du réseau
29	945881.9158	236776.8482	1862.7599	borne du réseau
32	945829.8791	236751.7720	1872.0659	borne du réseau
33	945816.6607	236736.4235	1878.7715	borne du réseau
36	945789.6844	236641.9542	1905.3624	borne du réseau
37	945812.7925	236644.2408	1905.8396	borne du réseau
39	945873.1445	236654.6897	1909.0255	borne du réseau
44	945891.6112	236530.2009	1957.8189	borne du réseau
48	945955.2178	236543.0853	1960.2911	borne du réseau
49	945974.8586	236588.9608	1958.9326	borne du réseau
50	945975.7988	236662.6222	1937.6370	borne du réseau
500	945819.2758	236889.7512	1813.6179	initialisation du profil
501	945813.6988	236886.8244	1813.7981	profil
502	945806.8235	236886.6961	1811.6203	pronil
503	945803.1648	236883.8355	1811.6729	pronil
504	945802.5800	236883.4613	1810.9818	protil
505	945802.1766	236883.3057	1811.4403	profil
506	945801.7089	236882.9773	1811.4485	protil
507	945798.4781	236880.4061	1811.7826	protil
508	945796.2388	236878.3679	1811.4177	protil
509	945792.5366	236874.7142	1810.7169	profil
510	945789.3799	236872.3775	1809.8415	pronil
511	945788.3152	236872.0178	1809.4169	protil
512	945785.1656	236871.5523	1805.9652	profil
513	945782.3745	236870.8436	1806.2406	profil
514	945779.8129	236868.8576	1806.7771	profil
515	945774.4287	236864.5464	1810.5595	protil
516	945767.8096	236860.2275	1815.9470	profil

III.5.B.biv Le profil

Apercu

Coordonnées

		Nkiknkin		Kikuks,		
500	945819,276	236889,751	1813,618	171,342	330,365	1813,680
501	945813,699	236886,824	1813,798	177,542	329,268	1813,862
502	945806,824	236886,696	1811,620	183,057	325,166	1811,686
503	945803,165	236883,836	1811,673	187,700	325,190	1811,740
504	945802,580	236883,461	1810,982	188,391	325,128	1811,049
505	945802,177	236883,306	1811,440	188,805	325,004	1811,508
506	945801,709	236882,977	1811,449	189,376	324,978	1811,516
507	945798,478	236880,406	1811,783	193,503	325,035	1811,851
508	945796,239	236878,368	1811,418	196,520	325,277	1811,487
509	945792,537	236874,714	1810,717	201,682	325,902	1810,788
510	945789,380	236872,378	1809,842	205,608	325,820	1809,914
511	945788,315	236872,018	1809,417	206,670	325,453	1809,490
512	945785,166	236871,552	1805,965	209,446	323,896	1806,040
513	945782,375	236870,844	1806,241	212,086	322,749	1806,316
514	945779,813	236868,858	1806,777	215,326	322,753	1806,853
515	945774,429	236864,546	1810,560	222,219	322,868	1810,636
516	945767,810	236860,228	1815,947	230,092	322,234	1816,024

III.5.B.c Projet couronne

III.5.B.ci Apercu général

III.5.B.cii Plan détaillé

III.5.B.ciii Coordonnées des points

Coordonnées Lambert et indépendantes.

	-			1-		
						期
10	946277,302	237754,829	1772,003	-719,876	-73,540	1771,748
20	946118,065	236416,076	2073,330	224,698	887,592	2073,416
100	942365,650	240780,750	1127,340	522,734	-4858,343	1126,791
200	945904,619	236349,951	2095,622	433,908	809,335	2095,745
201	945903,900	236338,509	2098,216	441,473	817,942	2098,342
202	945912,205	236330,184	2097,334	439,998	829,604	2097,462
203	945916,371	236325,305	2096,065	439,688	836,010	2096,194
204	945949,055	236320,159	2098,048	416,991	860,068	2098,174
205	945970,802	236320,784	2092,812	399,414	872,875	2092,938
206	945978,141	236317,669	2091,169	395,517	879,827	2091,296
207	945989,180	236314,356	2094,086	388,813	889,196	2094,212
208	946001,423	236313,642	2091,366	379,570	897,249	2091,492
209	946010,350	236319,412	2088,269	368,983	898,147	2088,393
210	946019,919	236328,365	2085,666	355,942	896,920	2085,787
211	946026,852	236331,115	2084,525	348,779	898,986	2084,645
212	946034,889	236335,562	2081,285	339,705	900,386	2081,403
219	946047,211	236372,982	2075,361	307,078	878,334	2075,468
220	946046,802	236373,280	2075,180	307,220	877,848	2075,287
221	946046,766	236373,299	2075,180	307,236	- 877,811	2075,287
104	946056,569	236469,293	2056,104	240,783	807,906	2056,186
106	946030,948	236445,185	2061,469	275,784	811,299	2061,560

III.5.B.d Projet La Valette

III.5.B.di Plan d'ensemble

III.5.B.dii Schématisation

III.5.B.diii Coordonnées des points

Unit:	\mathbf{m}
Coordinate type:	Grid
Reference ellipsoid:	Clarke 1880 IGN
Projection set:	Lambert 3

			篓	
1	942656.9638	242817.9856	1502.8383	pivot sur le site
2	942666.0681	242828.2435	1505.9131	cible du réseau
3	942674.4802	242809.2229	1504.0756	chemin
4	942671.9333	242806.7480	1503.7842	chemin
5	942669.7579	242815.2794	1503.4960	chemin
6	942664.9382	242813.5328	1503.5773	chemin
7	942660.0998	242834.1028	1504.3786	chemin
8	942656.2423	242833.9989	1504.2152	chemin
9	942650.5037	242851.8488	1506.1075	chemin
10	942646.3825	242850.3463	1506.7425	chemin
11	942636.9832	242872.4059	1510.5870	chemin
12	942633.2294	242870.8676	1510.6401	chemin
13	942625.2531	242897.0997	1511.1579	chemin
14	942620.4511	242895.6654	1511.3771	chemin
15	942619.5910	242915.0332	1511.9827	chemin
18	942621.3405	242929.2400	1513.1031	chemin
19	942625.9245	242939.5970	1512.8298	chemin
20	942622.4101	242939.1501	1513.0729	chemin
21	942615.6371	242963.4751	1514.0951	chemin
22	942612.7004	242961.3857	1513.6715	chemin
23	942601.4863	242968.0308	1511.8046	entrée buse
24	942598.7634	242965.3519	1511.7253	sortie buse
25	942613.0093	242969.3761	1514.0903	limite $\mathrm{N}-\mathrm{W}$ du glissement
26	942623.2809	242971.7246	1518.8567	limite N-W du glissement
27	942639.8518	242981.4911	1525.6924	limite N-W du glissement
28	942661.7345	243001.9518	1537.3617	limite N-W du glissement
34	942900.7947	243106.1127	1603.4078	cible du réseau
44	942658.2525	242816.5118	1502.5899	réinitialisation
45	942676.2250	242782.6249	1550.3652	limite S-E du glissement
46	942716.1743	242846.0449	1522.9708	limite S-E du glissement
47	942751.8988	242897.5637	1535.7926	limite S-E du glissement
48	942771.1356	242917.3249	1547.4875	limite S-E du glissement
52	942822.1667	242969.0968	1566.7007	limite S-E du glist. + réinitialisation
53	942802.5465	242953.8336	1561.5638	limite S-E du glissement
54	942769.3615	242917.9099	1544.1604	limite S-E du glissement
55	942754.4321	242898.2123	1535.9562	limite S-E du glissement
56	942730.7962	242870.8138	1526.6641	limite S-E du glissement
57	942703.2866	242844.7359	1518.9343	limite S-E du glissement
58	942675.4348	242811.6541	1507.2825	limite S-E du glissement
100	942365.6500	240780.7500	1127.3400	Point d'appui de Barcelonnette

Points non calculables

Points non calculables		
\%		23,
16	chemin	Non expliqué
17	chemin	Non expliqué
29 a 33	limite S-E du glissement	Résinitialistation à une heure défavorable
49 à 5	centre de la coulse	Réinitialistation à une heure défavorable

III.5.C Exemples de diagrammes cinétiques

Page 33a.

III. 6 Divers

III.6.A Matrices des coefficients de la transformation de coordonnées "intermédiaires * vers "indépendants "

1	0	0	49,900	0	-1739,907	125,771
0	1	0	125,771	1739,907	0	-49,900
0	0	1	1739,907	-125,771	49,900	0
1	0	0	59,046	0	-1755,674	166,643
0	1	0	166,643	1755,674	0	-59,046
0	0	1	1755,674	-166,643	59,046	0
1	0	0	65,715	0	-1773,588	207,791
0	1	0	207,791	1773,588	0	-65,715
0	0	1	1773,588	-207,791	65,715	0
1	0	0	55,863	0	-1772,389	211,274
0	1	0	- 211,274	1772,389	0	-55,863
0	0	1	1772,389	-211,274	55,863	0
1	0	0	92,283	0	-1790,797	282,415
0	1	0	282,415	1790,797	0	-92,283
0	0	1	1790,797	-282,415	92,283	0
1	0	0	124,361	0	-1796,585	260,285
0	1	0	260,285	1796,585	0	-124,361
0	0	1	1796,585	-260,285	124,361	0
1	0	0	128,820	0	-1804,870	303,033
0	1	0	303,033	1804,870	0	-128,820
0	0	1	1804,870	-303,033	128,820	0
1	0	0	151,760	0	-1826,571	366,163
0	1	0	366,163	1826,571	0	-151,760
0	0	1	1826,571	-366,163	151,760	0
1	0	0	140,072	0	-1826,769	367,626
0	1	0	367,626	1826,769	0	-140,072
0	0	1	1826,769	-367,626	140,072	0
1	0	0	118,031	0	-1826,878	370,292
0	1	0	370,292	1826,878	0	-118,031
0	0	1	1826,878	-370,292	118,031	0
1	0	0	148,388	0	-1869,050	509,635
0	1	0	509,635	1869,050	0	-148,388
0	0	1	1869,050	-509,635	148,388	0
1	0	0	190,996	0	-1862,667	458,300
0	1	0	458,300	1862,667	0	-190,996
0	0	1	1862,667	-458,300	190,996	0
1	0	0	247,500	0	-1871,978	446,288
0	1	0	446,288	1871,978	0	-247,500
0	0	1	1871,978	-446,288	247,500	0
1	0	0	267,324	0	-1878,667	450,334
0	1	0	450,334	1878,667	0	-267,324
0	0	1	1878,667	-450,334	267,324	0
1	0	0	346,458	0	-1905,247	508,630
0	1	0	508,630	1905,247	0	-346,458
0	0	1	1905,247	-508,630	346,458	0
1	0	0	326,794	0	-1905,735	520,930
0	1	0	520,930	1905,735	0	-326,794
0	0	1	1905,735	-520,930	326,794	0
1	0	0	272,628	0	-1909,007	549,583
0	1	0	549,583	1909,007	0	-272,628
0	0	1	1909,007	-549,583	272,628	0
1	0	0	334,202	0	-1957,690	659,473
0	1	0	659,473	1957,690	0	-334,202
0	0	1	1957,690	-659,473	334,202	0
1	0	0	275,956	0	-1960,162	688,186
0	1	0	688,186	1960,162	0	-275,956
0	0	1	1960,162	-688,186	275,956	0
1	0	0	232,323	0	-1958,832	663,905
0	1	0	663,905	1958,832	0	-232,323
0	0	1	1958,832	-663,905	232,323	0
1	0	0	186,530	0	-1937,606	606,121
0	1	0	606,121	1937,606	0	-186,530
0	0	1	1937,606	-606,121	186,530	0

	-0,004
	0,014
	0,056
	-0,024
	-0,011
	-0,042
	-0,030
	-0,056
	-0,045
	-0,019
	-0,034
	-0,018
	-0,049
	-0,073
	0,083
	-0,054
	-0,058
	0,071
	-0,055
	-0,073
	0,072
	-0,061
	-0,140
	0,099
	-0,057
	-0,152
	0,097
	-0,046
	-0,134
	0,085
	-0,015
	-0,164
	0,022
	-0,096
	-0,192
	0,093
	-0,095
	-0,170
	0,088
	-0,073
	-0,158
	0,105
	-0,083
	-0,217
	0,115
	-0,099
	-0,192
	0,105
	-0,070
	-0,197
	0,019
	-0,110
	-0,305
	0,129
	-0,066
	-0,306
	0,129
	-0,031
	-0,305
	0,101
	-0,037
	-0,222
	0,031

III．6．B Jonction des deux demi profils

III．6．B．a Partie levée au tachéomètre

Coordonnées

	納紋	＊＊＊＊	䊩
24	99，278	358，409	1815，589
25	104，552	355，996	1817，482
26	110，025	353，814	1819，809
27	113，858	350，033	1819，074
28	119，161	347，740	1819，572
29	122，891	346，090	1818，981
30	125，481	345，093	1818，710
31	126，542	342，356	1817，738
32	135，053	340，249	1816，185
33	140，032	338，737	1814，305
34	149，040	337，530	1812，555
35	153，501	336，537	1812，764
36	157，769	335，653	1812，995
37	158，849	335，547	1813，011
38	162，117	336，131	1810，593
40	169，648	331，738	1813，486
41	171，422	330，535	1813，542
42	177，622	329，704	1813，765

Représentation

Profil géophysique（tachéo）

III．6．B．b Partie levée au GPS

Première étape du calcul

500	945819，276	236889，751	1813，618	945819，276	236889，751	1813，618
501	945813，699	236886，824	1813，798	945813，699	236886，824	1813，798
502	945806，824	236886，696	1811，620	945806，824	236886，696	1811，620
503	945803，165	236883，836	1811，673	945803，165	236883，836	1811，673
504	945802，580	236883，461	1810，982	945802，580	236883，461	1810，982
505	945802，177	236883，306	1811，440	945802，177	236883，306	1811，440
506	945801，709	236882，977	1811，449	945801，709	236882，977	1811，449
507	945798，478	236880，406	1811，783	945798，478	236880，406	1811，783
508	945796，239	236878，368	1811，418	945796，239	236878，368	1811，418
509	945792，537	236874，714	1810，717	945792，537	236874，714	1810，717
510	945789，380	236872，378	1809，842	945789，380	236872，378	1809，842
511	945788，315	236872，018	1809，417	945788，315	236872，018	1809，417
512	945785，166	236871，552	1805，965	945785，166	236871，552	1805，965
513	945782，375	236870，844	1806，241	945782，375	236870，844	1806，241
514	945779，813	236868，858	1806，777	945779，813	236868，858	1806，777
515	945774，429	236864，546	1810，560	945774，429	236864，546	1810，560
516	945767，810	236860，228	1815，947	945767，810	236860，228	1815，947

Deuxième étape

Coordonnées définitives

	.	r	\%
0	171,342	330,365	1813,600
501	177,542	329,268	1813,862
502	183,057	325,166	1811,686
503	187,700	325,190	1811,740
504	188,391	325,12	1811,049
505	188,805	325,004	1811,508
506	189,376	324,978	1811,516
507	193,503	325,035	1811,851
508	196,520	325,277	1811,487
509	201,682	325,902	1810,788
510	205,608	325,820	1809,914
511	206,670	325,453	1809,490
512	209,446	323,896	1806,040
513	212,086	322,749	1806,316
514	215,326	322,753	1806,853
515	222,219	322,868	1810,636
516	230,092	322,234	1816,024

Représentation

Profil géophysique (GPS)

III.6.B.c Fusion
III.6.B.ci $y=f(x)$

III.6.B. $c i i \quad z=f(x)$

Coupe selon (ox)

III.6.B.ciii $z=f(y)$

Coupe du profil selon (Oy)

III.6.C Image radar du glissement

Page36a.

III.6.D Articles divers

Pages 36b à fin.
La Valette
$\begin{aligned} & \text { 10-March-1996 } \\ & \text { 13-August-1995 }\end{aligned}$ differences of the
rates of movement

Code VBA
 du programme

transfert

```
Macro enregistrée le 23/06/1997 par Loic Galisson
format des carnets terrain: "code2: n}\mp@subsup{}{0}{\circ}stat-hi-hp
                                    "code3: hauteur de prisme inhabituelle"
                                    "n}\mp@subsup{}{}{\circ
procédure pour créer les cellules des premières lignes de tableaux
Proc entete()
    Sélection.Bordures(xlGauche).StyleTrait = xlAucun
    Sélection.Bordures(xlDroite).StyleTrait = xlAucun
    Sélection.Bordures(xlHaut).StyleTrait = xlAucun
    Sélection.Bordures(xlBas).StyleTrait = xlAucun
    Sélection.Contour Epaisseur:=xlMoyen; IndexCouleur:=xlAutomatique
    Sélection.Police.Gras = Vrai
    alignement
Fin Proc
Proc cellule()
    Sélection.Bordures(xlGauche).StyleTrait = xlAucun
    Sélection.Bordures(xlDroite).StyleTrait = xlAucun
    Sélection.Bordures(xlHaut).StyleTrait = xlAucun
    Sélection.Bordures(xlBas).StyleTrait = xlAucun
    Sélection.Contour Epaisseur:=xlMince; IndexCouleur:=xlAutomatique
    Sélection.Police.Gras = Faux
    alignement
Fin Proc
' procédure pour centrer le texte horizontal et vertical
Proc alignement()
    Avec Sélection
                            .AlignementHorizontal = xlCentre
            .AlignementVertical = xlCentre
            .RenvoiLigneAutomatique = Faux
            .Orientation = xlHorizontal
        Fin Avec
Fin Proc
' procédure pour remplir le tableau
Proc transfert()
'ouverture d'un carnet terrain sous format ".rec"
    file = Application.LireBoîteDialogueOuvrir("Fichiers rec (*.rec),*.rec "; Ti
tre:="Sélectionner le fichier brut")
'conversion du fichier texte en tableau excel
        Classeurs.OuvrirTexte NomFichier:=file;
        Origine:=xlWindows; LigneDépart:=1; TypeD
        ; InformationChamp:=Tableau(Tableau(0; 1); Tableau(2; 1); Tableau(7; 1)
        ; Tableau(15; 1); Tableau(23; 1); Tableau(31; 1); Tableau(39; 1); Tableaū(47
;
    1); Tableau(55; 1); Tableau(63; 1); Tableau(70; 1); Tableau(79; 1); Tableau(
    - 86; 1); Tableau(95; 1); Tableau(102; 1))
'mise en forme du tableau
    Colonnes("B:B").Sélectionner
    Sélection.Supprimer DécaléVers:=xlVersGauche
    Colonnes("C:C").Sélectionner
    Sélection.Supprimer DécaléVers:=xlVersGauche
    Colonnes("D:D").Sélectionner
```

Sélection.Supprimer DécaléVers:=xlVersGauche Colonnes("E:E").Sélectionner
Sélection.Supprimer DécaléVers:=xlVersGauche Colonnes ("F:F"). Sélectionner
Sélection.Supprimer DécaléVers:=xlVersGauche Colonnes("G:G"). Sélectionner
Sélection.Supprimer DécaléVers:=xlVersGauche Colonnes("H:H"). Sélectionner
Sélection.Supprimer DécaléVers:=xlVersGauche Lignes("1:1"). Sélectionner
Sélection.Insérer DécaléVers:=xlVersBas
Sélection.Insérer DécaléVers:=xlVersBas
Sélection. HauteurLigne $=30$
Plage("B2"). Sélectionner
Sélection.LargeurColonne $=6$
entete
CelluleActive. FormuleL1C1 $=$ " N° Pt"
Plage("C2"). Sélectionner
Sélection.LargeurColonne $=10$
entete
CelluleActive.FormuleL1C1 = "AH"
Plage ("D2"). Sélectionner
Sélection.LargeurColonne $=10$
entete
CelluleActive.FormuleLIC1 = "AV"
Plage("E2"). Sélectionner
Sélection.LargeurColonne $=9$
entete
CelluleActive.FormuleL1C1 = "DO"
Plage("F2"). Sélectionner
Sélection. LargeurColonne $=9$
entete
CelluleActive.FormuleL1C1 = "X"
Plage("G2"). Sélectionner
Sélection.LargeurColonne $=9$
entete
CelluleActive.FormuleL1C1 = "Y"
Colonnes("B:B"). Sélectionner
Sélection.LargeurColonne $=5$
Sélection. Insérer DécaléVers:=xlVersDroite
Plage("B2").Sélectionner
entete
Sélection.LargeurColonne $=5$
CelluleActive.FormuleL1c1 = "Stat."
Colonnes("G:G"). Sélectionner
Sélection.LargeurColonne $=9$
Sélection. Insérer DécaléVers:=xlVersDroite
Plage("G2"). Sélectionner
entete
CelluleActive.FormuleLIC1 = "DH"
Colonnes("H:H"). Sélectionner
Sélection. Insérer DécaléVers:=xlVersDroite
Plage("H2"). Sélectionner
Sélection.LargeurColonne $=9$
entete
CelluleActive.FormuleL1C1 = "Dén."
Colonnes("I:I").Sélectionner
Sélection.Insérer DécaléVers:=xlVersDroite
Plage("I2"). Sélectionner
Sélection.LargeurColonne $=9$
entete
CelluleActive. FormuleL1C1 = "HP"
Colonnes("J:J"). Sélectionner
Sélection.Insérer DécaléVers:=xlVersDroite

```
    Plage("J2").Sélectionner
    Sélection.LargeurColonne = 9
    entete
    CelluleActive.FormuleL1C1 = "Hi"
    Plage("C1:K1").Sélectionner
    CelluleActive.FormuleL1C1 = "Observations brutes"
        Avec Sélection
            .AlignementHorizontal = xlCentréSurPlusieursColonnes
        Fin Avec
' détermination de la dimension k du tableau
    i = 3
    Faire TantQue Cellules((i); 3) <> Vide
            Cellules((i); 3).Sélectionner
            alignement
            i = i + l
    Boucle
    k = i - 1
' formatage du contenu des cellules concernant les angles
    Pour j = 4 à 5 ParPasDe 1
            Pour i = 3 à (k + 1) ParPasDe 1
                    Cellules((i); j).Sélectionner
                    alignement
                    Sélection.FormatNombre = "0,0000"
                    CelluleActive.Valeur = CelluleActive.Valeur / 100000
            Suivant i
        Suivant j
' formatage du contenu des cellules concernant les distances
    Pour i = 3 à (k + 1) ParPasDe 1
            Cellules((i); 6).Sélectionner
            alignement
            Sélection.FormatNombre = "0,000"
            CelluleActive.Valeur = CelluleActive.Valeur / 1000
        Suivant i
' formatage du contenu des cellules concernant les coordonnées
    Pour j = 11 à 12 ParPasDe 1
            Pour i = 3 à (k + 1) ParPasDe 1
                    Cellules((i); j).Sélectionner
                    alignement
                    Sélection.FormatNombre = "0,000"
                    CelluleActive.Valeur = CelluleActive.Valeur / 1000
            Suivant i
    Suivant j
carroyage-
    Plage(Cellules(3; 2); Cellules(k + 1; 12)).Sélectionner
    Avec Sélection.Bordures(xlGauche)
            .Epaisseur = xlMince
            .IndexCouleur = xlAutomatique
        Fin Avec
    Avec Sélection.Bordures(xlDroi.te)
            .Epaisseur = xlMince
            .IndexCouleur = xlAutomatique
    Fin Avec
    Avec Sélection.Bordures(xlHaut)
            .Epaisseur = xlMince
            .IndexCouleur = xlAutomatique
    Fin Avec
    Avec Sélection.Bordures(xlBas)
            .Epaisseur = xlMince
            .IndexCouleur = xlAutomatique
        Fin Avec
    Sélection.Contour Epaisseur:=xlMince; IndexCouleur:=xlAutomatique
```


transfert

- colonne numéro de station

```
m}=
Pour i = 3 à k ParPasDe 1
    Cellules((i); 1).Sélectionner
    Si (CelluleActive.Valeur = 41) Alors
            Si (Cellules((i); 3).Valeur = 2) Alors
                m = i
            Fin Si
        Sinon
            Cellules((m); 4).Sélectionner
            numerostat = "P" + (CelluleActive.Valeur * 100)
            Cellules((i); 2).Valeur = numerostat
            Colonnes("B:C").Sélectionner
            alignement
        Fin Si
Suivant i
```

' colonne hauteur de prisme, hauteur de station, DH, Dén.
$\mathrm{m}=0$
Pour i $=3$ à k ParPasDe 1
Si (Cellules((i); 1).Valeur = 41) Alors
-si (Cellules((i); 3).Valeur = 2) Alors
$\mathrm{m}=\mathrm{i}$
Fin Si
Sinon
Cellules((i); 9).Valeur = Cellules((m); 6).Valeur
Cellules((i); 10).Valeur $=$ (Cellules ((m); 5).Valeur) * 100
Cellules((i); 8).Valeur $=$ (Cellules((i); 6).Valeur) * Cos((Cellules ((i);
5). Valeur) * 3,14159265359 / 200)
Cellules((i); 7).Valeur $=$ (Cellules ((i); 6).Valeur) * Sin((Cellules ((i);
5). Valeur) * 3,14159265359 / 200)
Fin Si
Si (Cellules((i); 1).Valeur $=41$) Alors
Si (Cellules((i); 3).Valeur $=3$) Alors
$i=i+1$
Cellules ((i); 9).Valeur $=($ Cellules $((i-1) ; 4) . V a l e u r) * 100$
Cellules((i); 10).Valeur $=$ (Cellules ($(\mathrm{m}) ; 5$).Valeur) $* 100$
Cellules((i); 8).Valeur $=$ (Cellules ((i); 6).Valeur) * Cos((Cellules ((i
); 5).Valeur) * 3,14159265359 / 200)
Cellules((i); 7).Valeur $=$ (Cellules((i); 6).Valeur) * Sin((Cellules ((i)
); 5).Valeur) * 3,14159265359 / 200)
Fin Si
Fin Si
Plage(Cellules((i); 7); Cellules((i); 10)).Sélectionner
alignement
Sélection.FormatNombre $=$ "0,000"
Suivant i
' suppression des lignes exédentes

```
Pour i = 3 à k ParPasDe 1
    Si Cellules((i); 1) = 41 Alors
            Plage(Cellules((i); 1); Cellules((i); 12)).Sélectionner
            Sélection.Supprimer DécaléVers:=xlVersHaut
            i = i - 1
            k = k - 1
```

 Fin Si
 Suivant i
Colonnes("A:A"). Sélectionner
Sélection.Supprimer DécaléVers:=xlVersGauche

- classement par point

```
    Plage(Cellules((3); 1); Cellules((k); 11)).Sélectionner
    Sélection.Trier Clél:=Plage("B3"); Ordre1:=xlCroissant; entete:= _
    xlProposition; OrdrePersonnalisé:=1; RespectCasse:=Faux;
    Orientation:=xlHautVersBas
' classement par station
    C = 3
    cont = k
    Pour i = 4 à k ParPasDe I
        j = i - 1
        Si Cellules((i); 2).Valeur <> Cellules((j); 2).Valeur Alors
            cont = cont + 1
                Plage(Cellules((C); I); Cellules((j); 11)).Sélectionner
                Si (i - C - 1) > 0 Alors
                    Sélection.Trier Clél:=Cellules((C); 1); Ordrel:=xlCroissant; entete:=
- xlProposition; OrdrePersonnalisé:=1; RespectCasse:=Faux;
                Orientation:=xlHautVersBas
                C = i
            Fin Si
            Fin Si
        Suivant i
' insertion des lignes d'observations moyennes
    i = 3
    Faire TantQue ((Cellules((i); 1).Valeur <> Vide) Et (Cellules((i + 1); 1).Va
leur <> Vide))
            i = i + 1
            Si ((Cellules((i); 2).Valeur <> Cellules((i - 1); 2).Valeur) Ou (Cellules(
(i); 1).Valeur <> Cellules((i - 1); 1).Valeur)) Alors
            Plage(Cellules((i); 1); Cellules((i); 11)).Sélectionner
            Sélection.Insérer DécaléVers:=xlVersBas
            Sélection.Police.Gras = Vrai
            i=i + 1
            Fin Si
        Boucle
remplissage des lignes vides
    k = i
    j = 3
    m = 0
    n}=
    O = 0
    Pour i = 3 à (k + 1)
        Si Cellules((i); 3) <> Vide Alors
            m=m + Cellules((i); 3)
            n = n + Cellules((i); 4)
            o = 0 + Cellules((i); 5)
            Fin Si
            Si Cellules((i); 3).Valeur = Vide Alors
            Cellules((i); 3).Valeur = m / (i - j)
            Cellules((i); 4).Valeur = n / (i - j)
            Cellules((i); 5).Valeur = 0/ (i - j)
            Cellules((i); 1).Valeur = Cellules((i - 1); 1).Valeur
            Cellules((i); 2).Valeur = Cellules((i - 1); 2).Valeur
            Cellules((i); 8).Valeur = Cellules((i - 1); 8).Valeur
            Cellules((i); 9).Valeur = Cellules((i - 1); 9).Valeur
                    Cellules((i); 6).Valeur = (Cellules((i); 5).Valeur) * Sin((Cellules((i);
4).Valeur) * 3,14159265359 / 200)
                    Cellules((i); 7).Valeur = (Cellules((i); 5).Valeur) * Cos((Cellules((i);
4).Valeur) * 3,14159265359 / 200)
```

```
            m}=
            n = 0
            0 = 0
            j = i + l
            Fin Si
Suivant i
i = i - 1
Plage(Cellules((i); 1); Cellules((i); 11)).Sélectionner
alignement
Sélection.Police.Gras = Vrai
Plage(Cellules((i); 7); Cellules((i); 10)).Sélectionner
alignement
Sélection.FormatNombre = "0,000"
' enregistrement du fichier excel
NameClasseur = Application.LireBoîteDialogueEnregistrerSous(filtreFichier:=" Fichiers excel (*.xls),*.xls"; Titre:="Nom de sauvegarde de votre nouveau classe ur")
Si NameClasseur = Faux Alors
Message "Programme interrompu !"
Sinon
Si Vdconfirmation Alors
Sinon
ClasseurActif.EnregistrerSous NomFichier:=NameClasseur; FormatFichier _
:=xlNormal; MotPasse:=""; MotPasseRéservéEcriture:="";
LectureSeuleRecommandée:=Faux; CréationCopieSauvegarde:=Faux
Fin Si
Fin Si
' détection des observations erronnées
Pour i \(=4\) à \((k+1)\)
ind \(=0\)
Cellules((i); 1). Sélectionner
Si Sélection. Police. Gras = Vrai Alors
\(j=i-1\)
Faire TantQue ((Cellules((j); 1).Valeur = Cellules((i); 1).Valeur) Et (C ellules((j); 2).Valeur = Cellules((i); 2).Valeur)) ind \(=\) ind +1
j = j - 1
Boucle
\(j=j+1\)
Si ind > 1 Alors
Pour \(1=j\) à \(i-1\)
Si ((Abs (Cellules ((I); 3).Valeur - Cellules ((i); 3).Valeur) > 0,001)
Ou (Abs(Cellules((1); 4) - Cellules((i); 4)) >0,001) Ou (Abs(Cellules((1); 6)
- Cellules((i); 6)) > 0,005)) Alors
Plage (Cellules((l); 1); Cellules((1); 11)).Sélectionner
Avec Sélection. Intérieur
.IndexCouleur \(=3\)
.Motif = xlUni
Fin Avec
Fin Si
Suivant 1
Fin Si
Fin Si
Suivant i
- insertion de la feuille de calcul \(\mathrm{n}^{\circ} 2\)
Plage (Cellules((2); 1); Cellules((k + 1); 11)). Sélectionner
Sélection. Copier
Feuilles.Ajouter
```

```
    FeuilleActive.Nom = "Feuil2"
    Feuilles("Feuil2").Sélectionner
    Cellules((2); 1).Sélectionner
    FeuilleActive.Coller
' intervention de l'opérateur
    Message "Vérifiez les hauteurs de prisme et lancez rotations pour corriger u
n défaut d'orientation"; vdinformation
    Message "Supprimez ou modifiez les observations erronnées puis lancez EXTRAC
TION"; vdinformation
Fin Proc
Proc rotation()
    s = BoîteSaisie("Entrez le nom de la station à réorienter"; "Réorientation d
'une station")
    v = BoîteSaisie("Entrez la valeur de l'angle de rotation (gr)"; "Réorientati
on d'une station")
    k = 3
    Faire TantQue Cellules((k); 1) <> Vide
        k = k + 1
    Boucle
    k = k - I
    Pour i = 3 à k
        Si Cellules((i); 1).Valeur = s Alors
            t = Cellules((i); 3).Valeur
            Cellules((i); 3).Valeur = t + v
        Fin Si
    Suivant i
    Plage(Cellules((k + 1); 3); Cellules((k + 1); 10)).Sélectionner
    Avec Sélection
        .AlignementHorizontal = xlCentréSurPlusieursColonnes
    Fin Avec
    CelluleActive.FormuleL1C1 = "Rotation de " + s + " de " + v + "gr."
Fin Proc
Proc extraction()
' détermination de la nouvelle dimension du tableau
    k = 3
    Faire TantQue Cellules((k); 1).Valeur <> Vide
        k=k+1
    Boucle
    k=k-1
    Plage(Cellules((1); 1); Cellules((k); 12)).Sélectionner
        Avec Sélection.Intérieur
            .IndexCouleur = 0
            .Motif = xlUni
        Fin Avec
    calcul des nouvelles observations moyennes
    j = 3
    m}=
    n =0
    o = 0
    Pour i = 3 à (k + 1)
        Cellules((i); 3).Sélectionner
        Si Sélection.Police.Gras = Faux Alors
            m = m + Cellules((i); 3)
            n = n + Cellules((i); 4)
            o = o + Cellules((i); 5)
        Fin Si
        Si Sélection.Police.Gras = Vrai Alors
```

```
    Cellules((i); 3).Valeur = m / (i - j)
    Cellules((i); 4).Valeur = n / (i - j)
    Cellules((i); 5).Valeur = o / (i - j)
    Cellules((i); 1).Valeur = Cellules((i - 1); 1).Valeur
    Cellules((i); 2).Valeur = Cellules((i - 1); 2).Valeur
    Cellules((i); 8).Valeur = Cellules((i - 1); 8).Valeur
    Cellules((i); 9).Valeur = Cellules((i - 1); 9).Valeur
    Cellules((i); 6).Valeur = (Cellules((i); 5).Valeur) * Sin((Cellules((i);
4).Valeur) * 3,14159265359 / 200)
    Cellules((i); 7).Valeur = (Cellules((i); 5).Valeur) * Cos((Cellules((i);
4).Valeur) * 3,14159265359 / 200)
    m = 0
    n = 0
        0 = 0
        j = i + 1
        Fin Si
    Suivant i
    i = i - l
    Plage(Cellules((i); 1); Cellules((i); 11)).Sélectionner
    alignement
    Sélection.Police.Gras = Vrai
    Plage(Cellules((i); 7); Cellules((i); 10)).Sélectionner
    alignement
    Sélection.FormatNombre = "0,000"
insertion de la feuille de calcul n}\mp@subsup{n}{}{\circ}
    Plage(Cellules((2); 1); Cellules((k + 1); 11)).Sélectionner
    Sélection.Copier
    Feuilles.Ajouter
    FeuilleActive.Nom = "Feuil3"
    Feuilles("Feuil3").Sélectionner
    Cellules((2); 1).Sélectionner
    FeuilleActive.Coller
' suppression des lignes d'observations brutes
    i = 3
    Faire TantQue Cellules((i); 1) <> Vide
        Cellules((i); 1).Sélectionner
        Si Sélection.Police.Gras = Faux Alors
            Plage(Cellules((i); 1); Cellules((i); 11)).Sélectionner
            Sélection.Supprimer DécaléVers:=xlVersHaut
            k = k - 1
            i = i - I
        Fin Si
        Si Sélection.Police.Gras = Vrai Alors
            Plage(Cellules((i); 1); Cellules((i); 12)).Sélectionner
            Sélection.Police.Gras = Faux
        Fin Si
        i = i + 1
Boucle
' mise en forme du tableau récapitulatif
Colonnes("A:B"). Sélectionner
Sélection.LargeurColonne \(=6\)
Colonnes("C:I").Sélectionner
Sélection. LargeurColonne \(=8\)
Colonnes("J:J"). Sélectionner
Sélection. Insérer DécaléVers:=xlVersDroite
Plage ("J2"). Sélectionner
entete
CelluleActive.FormuleL1C1 = "X"
```

```
Colonnes("J:L").Sélectionner
Sélection.LargeurColonne = 10
Lignes("1:2").Sélectionner
alignement
Sélection.Police.Gras = Vrai
Plage("K2").Sélectionner
CelluleActive.FormuleL1C1 = "Y"
Plage("L2").Sélectionner
CelluleActive.FormuleL1Cl = "z"
Flage("A1:L1").Sélectionner
CelluleActive.FormuleL1Cl = "Observations moyennnes"
    Avec Selection
        .AlignementHorizontal = xlCentréSurPlusieursColonnes
        Fin Avec
```

entree des cordonnées de stations
Plage(Cellules((3); 1); Cellules((k); 1)).Sélectionner
Sélection. Copier
Cellules ($k+3$); 1). Sélectionner
FeuilleActive.Coller
Sélection.Police.Gras = Faux
$\mathrm{i}=\mathrm{k}+4$
Faire TantQue Cellules((i); 1).Valeur <> Vide
$j=k+3$
Faire TantQue $j<i$
Si Cellules ((i); I).Valeur = Cellules((j); 1).Valeur Alors
Plage(Cellules((j); 1); Cellules((j); 1)).Sélectionner
Sélection.Supprimer DécaléVers:=xlVersHaut
i = i - 1
Fin Si
$j=j+1$
Boucle
$i=i+1$
Boucle
$\mathrm{i}=\mathrm{k}+3$
Faire TantQue Cellules((i); 1) <> Vide
Pour j $=1$ à 4
Cellules((i); j).Sélectionner
entete
Suivant j
$i=i+1$
Boucle
Plage (Cellules ($k+2$); 1); Cellules ($k+2$); 12)). Sélectionner
Sélection. Insérer DécaléVers:=xlVersBas
Cellules ($k+3$); 1).Sélectionner
entete
CelluleActive.FormuleL1C1 $=" N^{\circ}$ "
Cellules $((k+3) ; 2) . S e ́ l e c t i o n n e r ~$
entete
CelluleActive.FormuleLic1 = "X"
Cellules ($k+3$); 3).Sélectionner
entete
CelluleActive. FormuleLiC1 = "Y"
Cellules ($k+3$); 4).Sélectionner
entete
CelluleActive.FormuleL1C1 = "Z"
Plage(Cellules ($k+2$); 1); Cellules ($k+2$); 4)). Sélectionner
CelluleActive.FormuleL1C1 = "Coordonnées des stations"
Sélection. Police.Gras = Vrai
Avec Sélection
.AlignementHorizontal $=$ xlCentréSurPlusieursColonnes
Fin Avec
Message "Saisissez les coordonnées des stations dans le tableau et lancez la

```
    procedure COORDONNEES"; vdinformation
```

Fin Proc

- calcul des cooedonnées des points de détail station par station
' à partir des observations moyennes

```
Proc coordonnees()
    k = 3
    Faire TantQue Cellules((k); 1) <> Vide
        k = k + 1
    Boucle
    j = k + 3
    Faire TantQue Cellules((j); 1) <> Vide
        Pour i = 3 à k
            Si Cellules((i); 1).Valeur = Cellules((j); 1).Valeur Alors
                Cellules((i); 10).Valeur = Cellules((j); 2).Valeur + Cellules((i); 6).
Valeur * Sin(Cellules((i); 3).Valeur * 3,14159265 / 200)
                Cellules((i); 11).Valeur = Cellules((j); 3).Valeur + Cellules((i); 6).
Valeur * Cos(Cellules((i); 3).Valeur * 3,14159265 / 200)
                Cellules((i); 12).Valeur = Cellules((j); 4).Valeur + Cellules((i); 7).
Valeur + Cellules((i); 9).Valeur - Cellules((i); 8).Valeur
                    Fin Si
            Suivant i
    j = j + 1
    Boucle
- calcul des coordonnées approchées
    m = 4
    cont = 1
    j = 1
    i = 4
    x = Cellules((3); 10).Valeur
    y = Cellules((3); 11).Valeur
    z = Cellules((3); 12).Valeur
    Faire TantQue Cellules((i - 1); 1) <> Vide
            Si Cellules((i); 2).Valeur = Cellules((i - 1); 2).Valeur Alors
                    x = x + Cellules((i); 10)
                y = y + Cellules((i); 11)
                z = z + Cellules((i); 12)
                cont = cont + 1
                m=m+1
            Fin Si
        Si Cellules((i); 2).Valeur <> Cellules((i - 1); 2).Valeur Alors
            Cellules(( }k+2+j); 10).Valeur = x / con
            Cellules((k + 2 + j); 11).Valeur = y / cont
            Cellules(( }k+2+j); 12).Valeur = z / con
            Cellules((k + 2 + j); 9).Valeur = Cellules((i - 1); 2).Valeur
            Pour f =m - 1 à i - 1
                Cellules((k + 2 + j); 13).Valeur = 2000 * Abs(Cellules((f); 10).Valeu
r - Cellules((k + 2 + j); 10).Valeur)
                        Cellules((k+2 + j); 14).Valeur = 2000 * Abs(Cellules((f); 11).Valeu
r - Cellules((k + 2 + j); 11).Valeur)
                    Cellules((k + 2 + j); 15).Valeur = 2000 * Abs(Cellules((f); 12).Valeu
r - Cellules((k + 2 + j); 12).Valeur)
                Suivant f
                m = i
                j = j + 1
                cont = 1
                x = Cellules((i); 10).Valeur
                y = Cellules((i); 11).Valeur
                z = Cellules((i); 12).Valeur
            Fin Si
        i = i + 1
    Boucle
    Plage(Cellules((k + 1); 9); Cellules((k + 1); 12)).Sélectionner
```


transfert

```
    CelluleActive.FormuleL1C1 = "Coordonnées approchées"
    Sélection.Police.Gras = Vrai
        Avec Sélection
            .AlignementHorizontal = xlCentréSurPlusieursColonnes
    Fin Avec
Plage(Cellules((k + 1); 13); Cellules((k + 1); 15)).Sélectionner
CelluleActive.FormuleL1C1 = "Ecarts entre points"
Sélection.Police.Gras = Vrai
Avec Sélection
            .AlignementHorizontal = xlCentréSurPlusieursColonnes
        Fin Avec
Plage(Cellules((k + 2); 1); Cellules((k + 2); 4)).Sélectionner
Sélection.Copier
Cellules((k + 2); 9).Sélectionner
FeuilleActive.Coller
Cellules((k + 2); 13).Sélectionner
CelluleActive.FormuleL1C1 = "DX (mm)"
Avec CelluleActive.Caractères(Départ:=1; Longueur:=1).Police
                    .Nom = "Symbol"
    Fin Avec
    Avec CelluleActive.Caractères(Départ:=2; Longueur:=6).Police
            .Nom = "Times New Roman"
        Fin Avec
    entete
    Cellules((k + 2); 14).Sélectionner
    CelluleActive.FormuleL1C1 = "DY (mm)"
    Avec CelluleActive.Caractères(Départ:=1; Longueur:=1).Police
        .Nom = "Symbol"
    Fin Avec
    Avec CelluleActive.Caractères(Départ:=2; Longueur:=6).Police
        .Nom = "Times New Roman"
    Fin Avec
    entete
    Cellules((k + 2); 15).Sélectionner
    CelluleActive.FormuleL1C1 = "DZ (mm)"
    Avec CelluleActive.Caractères(Départ:=1; Longueur:=1).Police
        .Nom = "Symbol"
    Fin Avec
    Avec CelluleActive.Caractères(Départ:=2; Longueur:=6).Police
        .Nom = "Times New Roman"
    Fin Avec
    entete
    i = k + 3
    Faire TantQue Cellules((i); 9).Valeur <> Vide
    Pour j = 9 à 15
        Cellules((i); j).Sélectionner
            Si (j = 9) Ou (j > 12) Alors
                Sélection.FormatNombre = "0"
                entete
            Sinon
                Sélection.FormatNombre = "0,000"
                entete
            Fin Si
        Suivant j
        i = i + 1
    Boucle
Fin Proc
```


préparation

```
' compensation des fichiers formatés avec le modulel
'
Proc planimetrie()
- recopiage des données de la feuille 3
    k = 3
    Faire TantQue Cellules((k); 1) <> Vide
        k = k + 1
    Boucle
    k = k - 1
    Plage(Cellules((1); 1); Cellules((k); 21)).Sélectionner
    Sélection.Copier
    Feuilles.Ajouter
    FeuilleActive.Nom = "Feuil4"
    Feuilles("Feuil4").Sélectionner
    Cellules((1); 1).Sélectionner
    FeuilleActive.Coller
determination des points mesurés une seule fois
    cont = 1
    p = k
    i = 3
    Feuilles.Ajouter
    FeuilleActive.Nom = "Feuil5"
    Feuilles("Feuil4").Sélectionner
    Faire TantQue i <= k
        Si Cellules((i); 2).Valeur = Cellules((i + 1); 2).Valeur Alors
                cont = cont + 1
        Fin Si
        Si Cellules((i); 2).Valeur <> Cellules((i + 1); 2).Valeur Alors
                Si cont = 1 Alors
                    Cellules((i); 1).LigneEntière.Sélectionner
                        Sélection.Supprimer DécaléVers:=xlVersHaut
                        k = k - 1
                i = i - 1
                Fin Si
                cont = 1
        Fin Si
        i = i + 1
    Boucle
mise en forme du tableau
    Colonnes("D:E").Sélectionner
    Sélection.Supprimer DécaléVers:=xlVersGauche
    Colonnes("E:J").Sélectionner
    Sélection.Supprimer DécaléVers:=xlVersGauche
    Plage(Cellules((3); 1); Cellules((k); 1)).LigneEntière.Sélectionner
    Sélection.Trier Clél:=Plage("A4"); Ordre1:=xlCroissant; entete:=
    xlProposition; OrdrePersonnalisé:=1; RespectCasse:=Faux;
    Orientation:=xlHautVersBas
' recopiage des numeros de points pour la compensation des distances
    Plage(Cellules((2); 1); Cellules((k); 4)).Sélectionner
    Sélection.Copier
    Cellules((k + 1); 1).Sélectionner
    FeuilleActive.Coller
' recopiage du tableau des coordonnées approchées
```

```
Feuilles("Feuil3").Sélectionner
l = 3
Faire TantQue Cellules((1); 9) <> "Coordonnees approchées"
    l = l + 1
Boucle
m=1
Faire TantQue Cellules((1); 9) <> Vide
    l = l + 1
Boucle
l = l - 1
Plage(Cellules((m); 9); Cellules((l); 12)).Sélectionner
Sélection.Copier
Feuilles("Feuil4").Sélectionner
Cellules((2 * k + 1); 1).Sélectionner
FeuilleActive.Coller
recopiage du tableau des coordonnées de stations
Feuilles("Feuil3").Sélectionner
s = m
Faire TantQue Cellules((s); 1) <> Vide
        s = s + 1
Boucle
s = s - 1
Plage(Cellules((m); 1); Cellules((s); 4)).Sélectionner
Selection.Copier
Feuilles("Feuil4").Sélectionner
Cellules(( }k+1+2); 1).Sélectionner
FeuilleActive.Coller
calcul des gisements et distances approchées
Plage("A1").Sélectionner
CelluleActive.FormuleL1C1 = "Tableau des coefficients"
Plage("D2").Sélectionner
Sélection.LargeurColonne = 10
entete
CelluleActive.FormuleL1C1 = "V'"
Plage("E2").Sélectionner
Sélection.LargeurColonne = 10
entete
CelluleActive.FormuleL1C1 = "V.'"
Plage("F2").Sélectionner
Sélection.LargeurColonne = 10
entete
CelluleActive.FormuleLICl = "D'"
Cellules(( }k+1); 3).Sélectionner
CelluleActive.FormuleL1C1 = "V'"
Cellules((k + 1); 6).Sélectionner
entete
CelluleActive.FormuleLIC1 = "D'"
Cellules((k + 1); 5).Sélectionner
entete
i = k + l + 4
Faire TantQue Cellules((i); 1) <> Vide
        xs = Cellules((i); 2).Valeur
        ys = Cellules((i); 3).Valeur
    Pour j = 3 à k + 1
        Si Cellules((j); 1).Valeur = Cellules((i); 1).Valeur Alors
            m=2 * k + 3
            Faire TantQue Cellules((m); 1) <> Vide
                Si Cellules((m); 1) = Cellules((j); 2) Alors
                    xp = Cellules((m); 2)
```

```
    Fin Si
    Si Cellules((i); 1).Valeur <> Cellules((i - 1); l).Valeur Alors
        v = s / cont
        Pour l = j à i - 1
        Cellules((l); 6).Valeur = v
    Suivant l
    j = i
    cont = 1
    s = Cellules((i); 5).Valeur
Fin Si
Boucle
Cellules((2); 6).Sélectionner
entete
CelluleActive.FormuleLlC1 = "V."
détermination des points a compenser
```

```
Plage(Cellules((3); 2); Cellules((k); 2)).Sélectionner
```

Plage(Cellules((3); 2); Cellules((k); 2)).Sélectionner
Sélection.Copier
Sélection.Copier
Feuilles("Feuil5").Sélectionner
Feuilles("Feuil5").Sélectionner
Cellules((1); 20).Selectionner
Cellules((1); 20).Selectionner
FeuilleActive.Coller
FeuilleActive.Coller
Plage(Cellules((1); 20); Cellules((k - 2); 20)).Sélectionner
Plage(Cellules((1); 20); Cellules((k - 2); 20)).Sélectionner
Sélection.Trier Clél:=Plage("T1"); Ordre1:=xlCroissant; entete:=
Sélection.Trier Clél:=Plage("T1"); Ordre1:=xlCroissant; entete:=
xlProposition; OrdrePersonnalisé:=1; RespectCasse:=Faux;
xlProposition; OrdrePersonnalisé:=1; RespectCasse:=Faux;
Orientation:=xlHautVersBas
Orientation:=xlHautVersBas
i = 2
i = 2
Faire TantQue Cellules((i); 20) <> Vide
Faire TantQue Cellules((i); 20) <> Vide
Si Cellules((i); 20) = Cellules((i - 1); 20) Alors
Si Cellules((i); 20) = Cellules((i - 1); 20) Alors
Cellules((i - 1); 20).Sélectionner
Cellules((i - 1); 20).Sélectionner
Sélection.Supprimer DécaléVers:=xlVersHaut
Sélection.Supprimer DécaléVers:=xlVersHaut
Fin Si
Fin Si
i = i + 1
i = i + 1
Boucle
Boucle
i = 1
i = 1
j = 1
j = 1
Faire TantQue Cellules((i); 20) <> Vide
Faire TantQue Cellules((i); 20) <> Vide
Cellules((i); 20).Sélectionner
Cellules((i); 20).Sélectionner
Sélection.Copier
Sélection.Copier
Feuilles("Feuil4").Sélectionner
Feuilles("Feuil4").Sélectionner
Cellules((2); 7 + j).Sélectionner
Cellules((2); 7 + j).Sélectionner
FeuilleActive.Coller
FeuilleActive.Coller
Cellules((2); 8 + j).Sélectionner
Cellules((2); 8 + j).Sélectionner
FeuilleActive.Coller
FeuilleActive.Coller
Feuilles("Feuil5").Sélectionner
Feuilles("Feuil5").Sélectionner
j = j + 2
j = j + 2
i = i + 1
i = i + 1
Boucle
Boucle
Plage(Cellules((1); 20); Cellules((i); 20)).Sélectionner
Plage(Cellules((1); 20); Cellules((i); 20)).Sélectionner
Selection.Supprimer
Selection.Supprimer
Feuilles("Feuil4").Sélectionner
Feuilles("Feuil4").Sélectionner
colonnes des dV
colonnes des dV
Cellules((2); 7 + j).Sélectionner
Cellules((2); 7 + j).Sélectionner
entete
entete
Cellules((2); 7 + j).Valeur = Cellules((3); 1).Valeur
Cellules((2); 7 + j).Valeur = Cellules((3); 1).Valeur
j = j + 1
j = j + 1
Pour i = 4 à k
Pour i = 4 à k
Si Cellules((i); 1).Valeur <> Cellules((i - 1); 1).Valeur Alors
Si Cellules((i); 1).Valeur <> Cellules((i - 1); 1).Valeur Alors
Cellules((2); 7 + j).Sélectionner
Cellules((2); 7 + j).Sélectionner
entete
entete
Cellules((2); 7 + j).Valeur = Cellules((i); 1).Valeur
Cellules((2); 7 + j).Valeur = Cellules((i); 1).Valeur
j = j + 1

```
    j = j + 1
```

```
    Fin Si
    Suivant i
    l=8
    Faire TantQue Cellules((2); l) <> Vide
        l = l + 1
    Boucle
    l = l - 1
' calcul de la matrice A et de la matrice K (Attention, ce n'est pas -K)
' pour les observations angulaires
    Pour i = 3 à k
    j = 8
    Faire Jusque Cellules((i); 2).Valeur = Cellules((2); j).Valeur
        j = j + 2
    Boucle
    Cellules((i); j).Valeur = Cos(Cellules((i); 4).Valeur * 3,14159265 / 200) *
6366,2 / Cellules((i); 7).Valeur
    Cellules((i); j + 1).Valeur = -Sin(Cellules((i); 4).Valeur * 3,14159265 / 20
0) * 6366,2 / Cellules((i); 7).Valeur
    j = 8
    Faire Jusque Cellules((i); 1).Valeur = Cellules((2); j).Valeur
        j = j + 1
    Boucle
    Cellules((i); j).Valeur = -1
    Suivant i
    Pour i = 3 à k
        Pour j = 8 à l
            Si Cellules((i); j).Valeur = Vide Alors
                    Cellules((i); j).Valeur = 0
                Fin Si
        Suivant j
    Suivant i
    Pour i = 3 à k
        Cellules((i); l + 1).Valeur = (Cellules((i); 6).Valeur + Cellules((i); 3).Va
leur - Cellules((i); 4).Valeur) * 10000
        Si Abs(Cellules((i); j).Valeur) > 10000 Alors
                Si Cellules((i); j).Valeur > 0 Alors
                    Cellules((i); j).Valeur = Cellules((i); j).Valeur - 4000000
                Fin Si
                Si (Cellules((i); j).Valeur < 0) Et (Abs(Cellules((i); j).Valeur) > 10000)
Alors
                    Cellules((i); j).Valeur = Cellules((i); j).Valeur + 4000000
                Fin Si
        Fin Si
    Suivant i
pour les distances
    Pour i = k + 2 à 2 * k - 1
        j = 8
        Faire Jusque Cellules((i); 2).Valeur = Cellules((2); j).Valeur
                j = j + 2
    Boucle
    Cellules((i); j).Valeur = Sin(Cellules((i); 3).Valeur * 3,14159265 / 200) *
5
    Cellules((i); j + 1).Valeur = Cos(Cellules((i); 3).Valeur * 3,14159265 / 200
* 5
    Suivant i
    Pour i = k + 2 à 2 * k - 1
    Pour j = 8 à l
                Si Cellules((i); j).Valeur = Vide Alors
                Cellules((i); j).Valeur = 0
            Fin Si
```

```
        Suivant j
    Suivant i
    Pour i = k + 2 à 2 * k - 1
        Cellules((i); l + 1).Valeur = (Cellules((i); 4).Valeur - Cellules((i); 7).Va
leur) * 500
        Si Abs(Cellules((i); j).Valeur) > 10000 Alors
            Si Cellules((i); j).Valeur > 0 Alors
            Cellules((i); j).Valeur = Cellules((i); j).Valeur - 4000000
        Fin Si
        Si (Cellules((i); j).Valeur < 0) Et (Abs(Cellules((i); j).Valeur) > 10000)
    Alors
                Cellules((i); j).Valeur = Cellules((i); j).Valeur + 4000000
            Fin Si
        Fin Si
    Suivant i
    Cellules((2); l + 1).Valeur = "-k"
    Cellules((2); l + 1).Sélectionner
    entete
Fin Proc
```


compensation

```
    ' module du calcul matriciel
Proc calcul()
    ' declarations et défintions des matrices
    k = 3
    Faire TantQue Cellules((k); 1) <> Vide
        k = k + l
    Boucle
    k = k - 1
    l = 7
    Faire TantQue Cellules((2); l) <> Vide
        l = 1 + I
    Boucle
    l=1 - 1
    C=3
    Faire TantQue Cellules((C); 1) <> "Stat."
        C = C + 1
    Boucle
    Cellules((C); 1).LigneEntière.Sélectionner
    Sélection.Supprimer DécaléVers:=xlVersHaut
    k = k - 1
' ecriture de la matrice N = transposée(A).A et de la matrice X = transposée(A).
    matk = Plage(Cellules((3); l); Cellules((k); l))
    Pour i = 7 à l
        Cellules((2); i).Sélectionner
        Si Sélection.Police.Gras = Faux Alors
            g = i - 7
        Fin Si
    Suivant i
    g = g / 2
    cont = 0
    matI = Plage(Cellules((3); 2 * g + 8); Cellules((k); 1 - 1))
    Pour i = 8 à 2 * g + 6 ParPasDe 2
        matA = Plage(Cellules((3); i); Cellules((k); i + 1))
        Feuilles("Feuil5").Sélectionner
        ' matrice N
        Plage(Cellules((1 + 2 * cont); 1 + 2 * cont); Cellules((2 + 2 * cont); 2 + 2
* cont)) = Application.ProduitMat(Application.Transpose(matA); matA)
    Plage(Cellules((1 + 2 * g); 1 + 2 * cont); Cellules((2 + 2 * g); 2 + 2 * con
t)) = Application.ProduitMat(Application.Transpose(matI); matA)
    Plage(Cellules((1 + 2 * cont); 1 + 2 * g); Cellules((2 + 2 * cont); 2 + 2 *
g)) = Application.ProduitMat(Application.Transpose(matA); matI)
    ' matrice X
        Plage(Cellules((1 + 2 * cont); l); Cellules((2 + 2 * cont); l)) = Applicatio
    n. ProduitMat (Application.Transpose(matA); matk)
        Feuilles("Feuil4").Sélectionner
        cont = cont + 1
    Suivant i
    matA = Plage(Cellules((3); 2 * g + 8); Cellules((k); 2 * g + 9))
    Feuilles("Feuil5").Sélectionner
    Plage(Cellules((1 + 2 * cont); 1 + 2 * cont); Cellules((2 + 2 * cont); 2 + 2 *
    cont)) = Application.ProduitMat(Application.Transpose(matA); matA)
    Plage(Cellules((1 + 2 * cont); l); Cellules((2 + 2 * cont); l)) = Application.
ProduitMat(Application.Transpose(matA); matk)
    Pour i = 1 à 2 + 2 * cont
        Pour j = 1 à 2 + 2 * cont
            Si Cellules((i); j).Valeur = Vide Alors
                Cellules((i); j).Valeur = 0
```

 Fin Si
[^0]: CEREG

