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A B S T R A C T

Slow-moving landslides are widespread in many landscapes with significant impacts on the topographic
relief, sediment transfer and human settlements. Their area-wide mapping and monitoring in mountain-
ous terrain, however, is still challenging. The growing archives of optical remote sensing images offer great
potential for the operational detection and monitoring of surface motion in such areas. This study proposes
a multiple pairwise image correlation (MPIC) technique to obtain a series of redundant horizontal displace-
ment fields, and different multi-temporal indicators for a more accurate detection and quantification of
surface displacement. The technique is developed and tested on a series of monoscopic and stereoscopic
Pléiades satellite images at a test site in the South French Alps. Empirical tests confirm that MPIC signifi-
cantly increased detection accuracy (F−measure = 0.85) and that the measurement error can be reduced by
averaging velocities from all pair combinations covering a given time-step (i.e. when stereo-pairs are avail-
able for at least one date). The derived inventory and displacement fields of 169 slow-moving landslides
show a positive relationship between the landslide size and velocities, as well as a seasonal acceleration
of the largest landslides in response to an increase in effective precipitation. The processing technique can
be adapted to better exploit increasingly available time-series from a variety of optical satellites for the
detection and monitoring of landslide displacement.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Landslides constitute a major natural hazard and a dominant
geomorphic agent in many mountainous landscapes with diverse
impacts on topographic relief, sediment transport and human settle-
ments. Rapid slope failures triggered by earthquakes and rain storms
account for the vast majority of related casualties (Petley, 2012) but
also continuously active, slow-moving landslides are a widespread
phenomenon causing severe damages to infrastructure and alter-
ations of the sediment budget (Mackey and Roering, 2011; Mansour
et al., 2011). Landslide inventory maps are, therefore, fundamental
for the quantification of sediment budgets and natural hazards but
their elaboration through field work and visual image interpretation
often remains a tedious task (Guzzetti et al., 2012).

Consequently, considerable research efforts have already been
dedicated to the development of more automated remote sensing
techniques for landslide inventory mapping. Studies on the analysis

* Corresponding author at: Laboratoire Image Ville Environnement, CNRS UMR
7362, Université de Strasbourg, 3 rue de l’Argonne, Strasbourg F-67083, France.

of optical satellite data, focus predominantly on the mapping of rapid
landslides which typically lead to a removal of the vegetation cover
in post-failure state (e.g. Behling et al., 2016, 2014; Joyce et al., 2009;
Kurtz et al., 2014; Li et al., 2016; Lu et al., 2011; Martha et al., 2010,
2012; Mondini et al., 2011; Stumpf and Kerle, 2011; Stumpf et al.,
2014a). For the detection and monitoring of very slow and extremely
slow landslides (Cruden and Varnes, 1996), in contrast, Interferomet-
ric Synthetic Aperture Radar (InSAR) has proven to be particularly
suitable (e.g. Handwerger et al., 2013; Lauknes et al., 2010; Zhao et
al., 2012). The use of InSAR is typically limited to landslides slower
than 1.0 m • yr−1, on slopes without dense vegetation cover, with
favorable slope exposition, and with significant displacement along
the line-of-sight of the satellite (Wasowski and Bovenga, 2014). The
detection and frequent monitoring of slow-moving landslides with
such techniques remains challenging (Schlögel et al., 2015a).

Template-based matching of optical remote sensing images is
used frequently to measure surface displacement related to geomor-
phological and tectonic processes at sub-pixel precision (Leprince et
al., 2008; Stumpf et al., 2016, and references therein). Despite the
sub-pixel precision of available image correlation algorithms (e.g.
Debella-Gilo and Kääb, 2011; Leprince et al., 2007; Rosu et al., 2015),
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a number of potential error sources still often lead to false detections
or biased measurements. Limitations can arise from imperfect sen-
sor models, co-registration and orthorectification residuals linked to
the DSM (Digital Surface Model) errors, but also from the study site
characteristics such as the presence of a dense vegetation cover, cast
shadows, low contrast areas or apparent movement caused by specu-
lar reflectance features and strong soil surface state changes (Stumpf
et al., 2014b). Such factors often impact the accuracy of the calculated
displacement fields and impose the need for careful post-processing
to correct for geometric errors, outliers and noise.

Proposed techniques for the correction of geometric errors
include for example destriping to correct for orbital and sensor errors
(Leprince et al., 2007), and the modeling of systematic DSM errors
(Scherler et al., 2008). Calibration techniques used for the latest gen-
eration of optical satellites can compensate for sensor misalignments
and orbital jitter (Lebegue et al., 2012). However, non-systematic
DSM errors and decorrelation due to changes in the surface aspect
remain critical issues, especially for the orthorectification of very-
high spatial resolution (VHSR) images acquired at variable incidence
angles. Post-processing thus frequently includes masking based on
the correlation coefficient (Berthier et al., 2005) or signal-noise-ratio
(Scherler et al., 2008), and the application of low-pass denoising fil-
ters to filter out false matches (Heid and Kääb, 2012; Stumpf et al.,
2014b). For gravitational processes such as landslides and glaciers,
filters related to the direction and maximum velocity of the motion
have also proven useful to remove outliers (Kääb, 2005; Scherler
et al., 2008; Stumpf et al., 2014b). For surfaces with dense vegeta-
tion cover such filters can be complemented by vegetation masks
obtained from multi-spectral images (Stumpf et al., 2014b) which,
however, incur the possibility of not detecting surface motion in
vegetated areas.

The constantly growing archives of optical remote sensing images
(e.g. Landsat, SPOT-Satellite Pour l’Observation de la Terre, ALOS-
Advanced Land Observation Satellite, Sentinel-2) bear a great poten-
tial to study seasonal and long-term patterns of surface motion
with image correlation techniques. Given the above-mentioned lim-
itations, however, image correlation is currently mainly suitable
for the quantification of surface displacements which are coherent
over large areas (e.g. coseismic slip), localized in flat terrain (e.g.
dune migration) or in areas with little vegetation cover (e.g. alpine
glaciers). While SAR interferometry time-series processing methods
have been developed for two decades to better deal with coher-
ence loss and atmospheric noise (Hooper et al., 2012), the fusion of
time series from optical data has only recently been demonstrated
to improve the coverage and accuracy of glacier flow estimates
over large areas (Dehecq et al., 2015; Fahnestock et al., 2016; Rose-
nau et al., 2015). Applications to landslides have focused mainly on
the investigation of known active landslides (Casson et al., 2005;
Delacourt et al., 2004; Leprince et al., 2008; Stumpf et al., 2014b;
Yamaguchi et al., 2003). Lacroix et al. (2015) demonstrated the
potential of optical image correlation for the detection and quan-
tification of landslide activations due to seismic shaking, whereas
comprehensive automatic methods for the analysis of optical Satel-
lite Image Time Series (SITS) are, to the best of our knowledge, still
lacking. The usefulness of image correlation as a reliable tool for
the detection and monitoring of slow-moving landslides, which can
remain inactive for several years or develop on previously stable
slopes, remains limited by numerous false detections.

To fill this gap, the objective of this work is to propose and
test several approaches for the exploitation of optical SITS in order
to improve the measurement accuracy and reduce false detections.
They are based on the hypothesis that landslides feature a displace-
ment which is more coherent in space and time than residuals
resulting from imperfect co-registration, orthorectification and false
matches. The technique takes advantage of multiple-pairwise image
matching (MPIC) to increase the redundancy of the measurements

and exploits the resulting stack of displacement fields to quantify
the displacement coherence over time. The effectiveness of several
multi-temporal indicators and the accuracy of the resulting veloc-
ity fields is assessed in the Ubaye valley (South French Alps) with a
multi-temporal dataset of Pléiades satellite images.

The paper is structured as follows. Section 2 introduces a
multiple-pairwise image correlation scheme and the techniques to
jointly analyze the resulting stack of velocity fields. The section also
describes the study site along with the analyzed datasets, and the
experimental protocol for assessing the sensitivity and accuracy of
the proposed processing techniques. Section 3 presents the results
of the sensitivity analysis, provides a discussion of the accuracy and
limitations of the best performing technique, and gives an interpreta-
tion of relationships between landslide kinematics and variations of
the seasonal precipitation. Finally conclusions are drawn in Section 4.

2. Methods and data

2.1. Multiple-pairwise image correlation

The processing strategy (Fig. 1) is based on the image corre-
lation algorithm implemented in the MicMac open-source library
(Pierrot-Deseilligny et al., 2015; Rosu et al., 2015). It enables par-
allel processing and is employed for batch-processing on High-
Performance Computing (HPC) infrastructure. The algorithm follows
a hierarchical matching scheme using normalized cross-correlation
(NCC) with a non-linear cost function and spatial regularization to
eliminate outliers. Sub-pixel resolution is achieved through step-wise
interpolation of the input images which is computationally expensive
but also more precise than interpolation of the correlation surface
or peak-fitting methods (Debella-Gilo and Kääb, 2011). NCC-based
correlation is better adapted for the use of smaller matching win-
dows targeting small landscape features (Heid and Kääb, 2012). The
proposed analysis technique, however, does not depend on a par-
ticular correlation algorithm and can be easily extended using other
image correlation algorithms (e.g. Heid and Kääb, 2012; Leprince et
al., 2007) for pairwise matching. The MicMac correlator has a num-
ber of parameters which can be adapted to the particular application.
This comprises the size of the template window y and the sub-pixel
resolution as a parameter to negotiate between sub-pixel precision
and computational runtime. The matching cost function is evaluated
from the normalized cross-correlation coefficient taking into account
only correlation coefficients C ≥ Cmin. The exponent c can be used to
increase the relative influence of high correlation values (Rosu et al.,
2015). The most likely match for each pixel is determined considering
the cost-function at the pixel and the gradient to the displacement of
neighboring pixels along a defined number of scan directions ndir. The
influence of the gradient can be adapted with a regularization param-
eter reg and enforces a spatial smoothness on the displacement field
which allows to reduce noise and outliers. The settings used in this
study are summarized in Table 1. For y, ndir, reg the default values
of the implementation were used. The threshold parameter Cmin was
set to 0.3 to account for typically stronger surface changes of land-
slides with respect to the default value of 0.5 targeting in particular
measurements of co-seismic slip (Rosu et al., 2015). The sub-pixel
resolution was decreased from its default of 0.05 pixel to 0.1 pixel to
reduce the computational costs.

Given a sequence of orthorectified and co-registered monoscopic
images and stereo-pairs acquired at n different dates over the same
area, a possible strategy is the correlation among only the multi-
temporal pairs with the smallest spatial baselines to minimize the
differences in incidence angles and the influence of DSM errors. This
leads to a sequence of m = n − 1 measurements or m =

∑t
i=1(n − i)

if the matching is not only performed sequentially but over a range
of t subsequent dates. If the sequence includes multiple images per
date, (e.g. stereo-pairs) each date can be denoted as a tuple of the
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Multiple-pairwise image correlation (MPIC)
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• Remove noisy measurements
NCC < 0.33 (low correlation)
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Fig. 1. Flowchart illustrating the overall processing strategy comprising multiple-pairwise image correlation among images from multiple time steps ti and stereo-pairs si

(Section 2.1), the comparison of four different multi-temporal indicators with the vector coherence V C being the most effective (Section 2.2), and morphological and topographic
filtering (Section 2.3).

form K = {k1, k2, . . . kn} (e.g. ki = 1 → monoscopic, ki = 2 →
stereoscopic, etc.). Considering the number of images ki acquired at
the ith date and the simple case of t = 1, the number of possible
combinations can be denoted as in Eq. (1).

m = k1 − 1 +
n∑

i=1

ki(ki+1) + ki+1 − 1 (1)

Note that this formulation implies that matching is also performed
among orthoimages of stereo-pairs of the same date (k1 −1, ki+1 −1).
This approach was tested with the intention to measure false positive
displacements among stereo-pairs resulting from orthorectification

errors, and analyze if their inclusion in the indicators (Section 2.2)
reduces spurious detections. For each pixel, the MPIC scheme yields
a total of m displacement measurements constituted by two compo-
nents of the horizontal displacement Dx and Dy and the correlation
coefficient C. They assemble the respective image stacks denoted
as IDx, ID y and IC. Before any further processing, stable terrain and
decorrelated areas can be removed directly at this stage. For each
pixel the mean displacement magnitude d̄ over the entire stack can
be computed as in Eq. (2) where ‖‖ denotes the Euclidean norm.

d̄ =

∥∥∥∥∥∥
⎛
⎝ 1

m

m∑
j=1

Dxj

⎞
⎠ ,

⎛
⎝ 1

m

m∑
j=1

Dyj

⎞
⎠

∥∥∥∥∥∥ (2)
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Table 1
Parameter settings for the image correlation.

Parameter Value

y 9
Sub-pixel resolution 0.1
Cmin 0.3
ndir 14
reg 0.2

A threshold tC is defined so that all measurements in a given
stack layer with C ≤ tC are flagged as missing data for the compu-
tation of the multi-temporal indicators (Section 2.2). The threshold
can be adapted according to the specific application and study site,
and is set to 0.33 according to a preliminary analysis of the detection
accuracy with respect to changes tC on the validation areas (Supple-
mentary Data, Fig. S2a). Based on this analysis approximately 1

3 of
the measurements are rejected. Considering the uncertainty of the
measurements, which depends on the input data and the sub-pixel
precision of the matching, a threshold td̃ =0.1 m is defined so that
all pixels with d̄ ≤ td̃ are flagged as stable and excluded from the
analysis. Unlike for tC this operation masks out pixels over the entire
stack. This permits to eliminate numerous noisy measurements with
a mean close to zero (Supplementary Data, Fig. S2c), whereas with
longer time series td̃ should be used conservatively to avoid masking
of small one-time displacements.

2.2. Multi-temporal fusion

In order to formulate meaningful indicators that enable to sum-
marize the information in the stack of m displacement fields, it is
useful to consider some physical properties of mass movements.

• coherent displacement direction over time: By definition the
displacement will follow the force of gravity and is therefore
very likely to maintain the same direction.

• strong correlation of spatially close displacement vectors: The
rheology (e.g. cohesion, internal friction and viscosity) of the
moving mass typically leads to a spatially smooth motion field.

• temporal variability of the displacement rates: Mass move-
ments such as glaciers and landslides are controlled by changes
of the material properties and external forcing factors leading
to phases of acceleration and deceleration (Lacroix et al., 2015;
Malet et al., 2005a; Quincey et al., 2011).

Based on those hypotheses, four indicators for the detection of
persistent surface displacements are proposed. The collection of m
displacement measurements for an image position (x, y) and neigh-
boring pixels with the coordinates x − r ≤ x ≤ x + r and y − r to y + r
components Dx and Dy can be denoted by the vectors DX(x, y, m, r)
and DY(x, y, m, r), respectively, where r controls the size of the con-
sidered neighborhood. For convenience, those vectors are, denoted
as DX and DY. To avoid unreliable estimates in areas where due to the
applied thresholds tC and d̃ relatively few measurements are avail-
able, the computed indicator value is considered valid only if at least
40% of measurements in the spatio-temporal neighborhood defined
by (x, y, m, r) are valid and otherwise set to zero. The respective
threshold parameter tm = 0.4 was determined according to a pre-
liminary analysis of the detection accuracy with respect to changes
tm on the validation areas (Supplementary Data, Fig. S2b).

2.2.1. Spatio-temporal mean
The most straightforward way to summarize a series of uncertain

measurements is the use of the arithmetic mean. Extending the for-
mulation in Eq. (2), the mean spatio-temporal displacement (d̄x,y,m,r)
in the neighborhood of a given pixel can be computed as in Eq. (3)
where || denotes the cardinality of the set of measurements.

d̄x,y,m,r =

∥∥∥∥∥∥
⎛
⎝ 1

|DX|
|DX|∑
i=1

DXi

⎞
⎠ ,

⎛
⎝ 1

|DX|
|DY|∑
i=1

DYi

⎞
⎠

∥∥∥∥∥∥ (3)

2.2.2. Spatio-temporal median
While the arithmetic mean is an unbiased estimator of the

expected value if the underlying distribution is normal, it is suscep-
tible to outliers. Furthermore, it tends to blur edges in areas with
strong displacement gradients as for example at the limits between
the moving mass and the stable terrain. Studies on the satellite-
based derivation of glacier flow velocities, therefore, often favor the
median (e.g. Dehecq et al., 2015) as a more robust summary statis-
tic. From the obtained measurements, the spatio-temporal median
displacement (d̃x,y,m,r) can be computed as denoted in Eq. (4).

d̃x,y,m,r =‖ med(DXi), med(DYi) ‖ (4)

Some examples of the variations of the proposed statistics are
given in Fig. 2. Compared to the mean, the median yields a lower
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estimate of the average displacement (Fig. 2a) when the sampled
location was moving only for a short time period and most of the
measurements show no displacement. For stable areas with mea-
surement noise (Fig. 2b) or significant outliers (Fig. 2c), the median,
however, better approximates the zero displacement.

2.2.3. Focal principal component analysis
Fig. 2c also provides an example for displacement measurements

which point in different directions and are inconsistent with a land-
slide that maintains a coherent direction. Since simple averages
cannot account for such cases, two additional indicators are pro-
posed to quantify the coherence of the displacement direction over
time. The first is based on the geometric interpretation of principal
component analyses (PCA) as a best line-fit in a 2D space (Fig. 2).
Given the matrix of eigenvectors S resulting from the PCA, a linear
transform can be applied to project the displacement measurements
along the first principal component (PC1) as denoted in Eq. (5).

Drot = SD (5)

No scaling and centering is used in the PCA so that this operation
is essentially a rotation from D = [DX,DY]T to Drot = [DXrot,DYrot]T.
In the rotated coordinate system, the measurements can be divided

in two groups being D1 = {D : DXrot > 0} and D2 = {D : DXrot < 0}.
For each of those groups, the average displacements can be com-
puted as in Eq. (3); the resulting means can be denoted as d̄→ and d̄←,
respectively. A geometric interpretation of this operation is depicted
in Fig. 2b. The second principal component (PC2) divides the 2D space
into two half spaces and for each of those half spaces the mean dis-
placement is computed. The ratio between the means in the two
half spaces then provides a measure to quantify if the measurements
point in similar directions or if they diverge in opposite directions.
The ratio of the two means ( fPCA) is hence computed using Eq. (6).

fPCA =
max

(
d̄→, d̄←

)
min

(
d̄→, d̄←

) (6)

Here the min and max operators are used to assure that
0 ≤ fPCA ≤ +∞. If the average displacement magnitude in the
two half spaces are equal, fPCA will be zero, and fPCA → +∞ as one
of the two means dominates the other. Eq. (5) is not defined for
min(d̄→, d̄←) = 0 in which case fPCA is defined as +∞.
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Table 2
Overview of the timing and geometry of the processed Pléiades satellite images. GSD is the ground sampling distance.

Satellite Date Time Across track incidence
angle

Along track incidence
angle

Across track GSD Along track GSD

PHR1A 2012-08-07 10:34:25 −7.06 5.79 0.72 0.71
PHR1A 2012-10-05 10:30:18 −4.02 12.28 0.74 0.71
PHR1A 2012-10-05 10:30:39 8.98 9.35 0.73 0.72
PHR1B 2013-07-31 10:30:51 −6.68 12.65 0.74 0.72
PHR1B 2013-07-31 10:31:26 14.39 7.84 0.74 0.74
PHR1B 2013-09-21 10:30:37 −5.07 12.88 0.74 0.71
PHR1B 2013-09-21 10:31:09 13.72 8.62 0.74 0.74
PHR1B 2014-06-20 10:37:39 −13.04 0.65 0.72 0.73
PHR1B 2014-06-20 10:38:21 11.42 −5.73 0.72 0.73

2.2.4. Vector coherence
A second measure (which relies on the vector direction, rather than

on the magnitude) can be proposed considering the triangle equality
which states that in the given 2D space ‖DX +DY ‖≤‖ DX ‖ + ‖ DY ‖.
This leads to a measure of the coherence of the vectors which is
computed as in Eq. (7).

VC =

∥∥∥∥∥
(

|DX|∑
i=1

DXi

)
,

(
|DY|∑
i=1

DYi

)∥∥∥∥∥
|DX|∑
i=1

‖ DXi,DYi ‖
(7)

The vector coherence V C takes values in the interval [0,1] with
V C = 1 if all displacement measurements are perfectly aligned
in the same direction. This measure was also proposed in Dehecq
et al. (2015) but not tested or exploited as a detector for surface
displacement.

Among the four proposed indicators, d̄x,y,m,r and d̃x,y,m,r rely on
the persistence of the displacement magnitude in space and time,
whereas fPCA and V C take into account both direction and magni-
tude to quantify the coherence of the velocities in space and time.
The effectiveness of those indicators to distinguish actual ground
displacement from spurious detections in time-series is evaluated
experimentally as described in Section 2.5.

2.3. Morphological and topographic filtering

By applying a simple threshold, any of the proposed indicators
can be converted into a binary map which indicates areas with coher-
ent and non-coherent displacement by 1 and 0, respectively. To
further improve the binary detection map, three filters are applied
which take into account the morphology, slope and orientation of
the detected areas. As a first step, morphological filters (Serra, 1983)
composed of a closing operation (disk structuring element with a
radius of 10 pixels) and an opening operation (disk structuring ele-
ment with a radius of 20 pixels) are applied. The main purpose of
this step is to fill in small gaps in the detected areas and remove
small isolated detections that resemble salt-and-pepper noise. All
8-connected neighboring pixels marked as 1 are then grouped into
connected components. For each of the resulting patches the median
slope angle h is computed and all patches with h < 15◦ are set to 0.
This allows removal of multiple spurious detections that are located
along the valley bottom and on agricultural areas with frequent
strong changes of the surface appearance. For each of the remaining
patches, the mean direction of the slope is computed (Wood, 1996)
and compared to the mean direction of the detected displacements.
If the difference among them exceeds p

5 , the measurements are con-
sidered inconsistent with a mass movement that should follow the
general slope direction. The specific thresholds were selected based

on the analysis of the validation areas (Section 2.4.2) and in order to
maximize the sum of user’s and producer’s accuracies.

2.4. Study site and data

The technique is used to investigate the landslide dynamics in
the Ubaye valley (South French Alps); (Fig. 3) from 2012 to 2014.
The area has a long-standing record of landslide activity including
translational and rotational landslides as well as mudslides (Schlögel
et al., 2015b). Recent studies have shown the potential of remote
sensing to monitor individual slow-moving landslides in the valley
using interferometric methods (Schlögel et al., 2015a), SAR pixel off-
set tracking (Raucoules et al., 2013) and optical image correlation
(Stumpf et al., 2014b) but did not address the automatic detection
and monitoring of different landslides at the catchment scale. The
rugged alpine terrain (1100–3000 m), the complex topography, and
a forest cover of 40% render the site a challenging test case for the
proposed methods and the use of image correlation techniques in
general.
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2.4.1. Satellite image time series and pre-processing
A total of 9 Pléiades panchromatic images were acquired at 5

dates between August 2012 and June 2014 comprising 4 stereo-
pairs and 1 monoscopic image with variable incidence angles and
temporal baselines (Table 2).

Stumpf et al. (2014b) demonstrated that a precise co-registration
and orthorectification can be achieved without ground control
through a global bundle-adjustment of all images in one block and
the use of the DSMs derived from the stereo-pairs for the orthorec-
tification. Here we follow this processing strategy with the minor
modification that the iterative bundle-adjustment is, in each iter-
ation, re-initialized from the sensor model’s rational polynomial
coefficients (RPC) as specified in the image metadata. This avoids a
bias accumulation in the absolute geolocation accuracy (see Supple-
mentary Data - Fig. S1 for details) while retaining the benefits of a co-
registration at sub-pixel precision. The bundle-adjustment resulted
in a root-mean-squared error (RMSE) of 0.32 pixel in image geom-
etry which quantifies the average co-registration quality among
all images. From each of the 4 stereo-pairs, one respective DSM
was generated at a pixel resolution of 0.5 m and each panchro-
matic image was orthorectified with the temporally closest DSM. The
orthorectification was performed using a bicubic resampling scheme
and the same grid for all orthoimages to assure the alignment of the
pixel grid at a resolution of 0.5 m.

2.4.2. Reference data to assess the detection performance
To test the performance of the multi-temporal indicators

(Section 2.2), two reference datasets were elaborated through the
visual analysis of the orthoimages, the derived displacement fields
and field surveys. Three areas in which recent landslide kinematics
are well understood were selected as validation areas to compare the
indicators and assess the sensitivity of the detection to the algorithm
parameters. These areas comprise the La Valette landslide, the Super-
Sauze landslide and a cross-section traversing the lower part of the
Ubaye valley (Fig. 3). Considering all orthoimages, raw displacement
fields, multiple field surveys, and CGPS (Continuous Global Position-
ing System) measurements (Section 2.4.3) these areas were classified
into stable and unstable zones during the period August 2012 to
June 2014. For an independent assessment of the detection accu-
racy an additional reference dataset was developed for several test
areas depicted in Fig. 3. Considering that landslides typically cover
only minor fractions of the landscape, a stratified sampling scheme
was employed to obtain a sample which is representative for both

stable and unstable slopes. A total of 550 points were sampled in
equal parts from two strata using non-aligned systematic sampling
(Rosenfield et al., 1982) where one strata corresponded to slopes
with at least one landslide activity between 1956 and 2009 (Schlögel
et al., 2015b) and the second strata to slopes which remained stable
during this period. The sampled point locations were visited during
several field surveys to investigate signs of recent landslide activity
and were marked as stable or unstable taking into account features
such as fresh scarps and fractures, fresh polished surfaces and stri-
ations, disturbed drainage, no soil development, only fast growing
and/or tilted vegetation, and considerable differences between form,
roughness, texture and vegetation between slide and non-slide areas
(Dikau, 1999). This analysis also included the visual interpretation
of all available orthoimages and raw displacement fields to verify
that measured displacement vectors are consistent with the slope
morphology and surface texture, color, and shape depicted in the
images. Following this analysis, 439 points were considered stable,
104 points unstable and 7 points were excluded since field visits and
visual image interpretation remained inconclusive.

2.4.3. Continuous GPS measurements
Four dual-frequency CGPS receivers (Trimble NetR9 and NetRS)

are installed at the La Valette and Super-Sauze landslides and are
considered as reference sensors for the displacement field. The
acquisition is performed daily at a frequency of 30 s for session
durations of 24 h. The CGPS observations are processed using a PPP
(Precise Point Positioning) approach which is a positioning method
used to calculate precise positions using a single receiver from un-
differenced phase measurements, precise clocks and precise satellite
orbits. The positions time series are computed with the NRCan (Nat-
ural Resource Canada) PPP software (Malet et al., under review). For
the CGPS located at La Valette and Super-Sauze landslides, the accu-
racy of the position is in the range of 5–8 mm horizontal and 8–13
mm in vertical.

2.4.4. Rainfall data
The Precipitation (P) data are hourly measurements of rain

and snowfall (heated tipping bucket rain gauge) at Barcelonnette
(1140 m, Météo-France station) which are summed for periods of 24 h
(from 6 a.m. the first day to 5 a.m. the second day). The potential evap-
otranspiration (PET) is estimated daily with the Penmann-Monteith
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equation from the minimum and maximum daily air temperature,
the mean average wind velocity, the mean air’s vapor content, the
insolation time and the net radiation. The Effective Precipitation (EP)
is then calculated as the daily difference P-PET, whereas negative EP
values are set to zero. The EP is preferred here over P for two main rea-
sons being, the time scale of the displacement measurements which
capture only seasonal trends rather than short-term responses, and
the fact that known slow-moving landslides in the area are primarily
controlled by fluctuations in the ground-water table.

2.5. Experimental sensitivity analysis and accuracy assessment

Receiver operating characteristics (ROC) are used with the ground
reference of the validation areas as the binary response variable
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Fig. 6. Final landslide detection maps obtained with VC, m = 14, and r = 10 (a) before
and (b) after morphological and topographic filtering.

to assess the detection performance of the four proposed indica-
tors (Section 2.2) independently of any particular threshold (i.e. the
threshold applied to produce a binary map for landslide occurrence).
All possible thresholds on the respective indicator are tested, and
for each possible threshold the respective resulting binary map is
compared against the ground reference in the validation areas. The
ROC curve is drawn in a 2-D space constituted by the sensitivity
(or true positive rate) and the specificity (or 1-false positive rate), and
the area-under-the-curve (AUC) provides a global performance rat-
ing (Fawcett, 2006). The AUC is used to compare the performance
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Fig. 7. Two subsets showing (a) an example for the non-detection of very slow dis-
placement under dense vegetation, and (b) an example for the successful detection of
a slow-moving landslide under dense vegetation.
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of the four indicators and the impact of changes in the considered
spatial neighborhood r = {2, 5, 7, 10, 12, 15}. In addition, it is impor-
tant to consider that the length of the time-series and the number
of available stereo-pairs may have a significant impact on the per-
formance of the indicators derived through multi-temporal fusion.
The vector of available images per time steps can be denoted as
K = {1, 2, 2, 2, 2} which according to Eq. (1) yields m = 18 measure-
ments. To assess the effectiveness of the proposed MPIC scheme and
the impact of limited data availability, m is reduced stepwise consid-
ering m = {18, 14, 13, 12, 11, . . . , 1} and the corresponding AUCs are
computed each time. All ROC-based analyses are carried out using
only the proposed indicators excluding subsequent morphological
and topographic filtering. The best performing indicator is subse-
quently used to assess the user’s and producer’s accuracy (Story and
Congalton, 1986) of the method against the ground reference devel-
oped for the test areas. This analysis includes the morphological and
topographic filtering and thus provides an estimate of the accuracy
of the complete processing chain. The measured displacement is
assessed quantitatively against the permanent CGPS measurements.

3. Results and discussion

3.1. Sensitivity analysis

A ROC-based comparison of the multi-temporal indicators com-
puted with r = 5 and the full time series (m = 18) is presented
in Fig. 4. It illustrates that the indicators which are based on the
coherence of the displacement vectors (V C and fPCA) significantly
outperform spatio-temporal averages of the displacement magni-
tude (d̄x,y,m,r and d̃x,y,m,r). Among the two vector-based indicators, V C
provides a slightly higher sensitivity and was consequently used in
all further experiments. With respect to the considered character-
istics of landslide motion (coherent direction, spatial smoothness,
temporal variability, Section 2.2), strategies taking into account both
magnitude and direction of the motion are more robust. Simple aver-
ages of the magnitude, however, are rather sensitive to temporal and
spatial gradients existing in the displacement fields.

Fig. 5a shows that the AUC generally increases if VC is computed
based on larger spatial neighborhoods. This experimentally confirms
the benefit of indicators which do not only consider the temporal
information for each pixel in the stack but also information from
neighboring pixels. The fitted negative exponential function suggests
that the AUC increases are rather small beyond r = 10 and approach
a maximum of AUC = 0.93.

The results of sensitivity analyses regarding the time-series
length and the effectiveness of MPIC are presented in Fig. 5b. It shows
that the AUC increases significantly from 0.75 to 0.94 with length of
the time-series and the number of pair-wise matches added to the
stack. The fact that the AUC increases not only when new dates are
added but also through adding multiple matches among the same
dates (points with identical color in Fig. 5b) confirms that the pro-
posed MPIC matching scheme effectively improves the robustness
of the detection. The increase of the detection accuracy is especially
pronounced when moving from only 2 to about 10 combinations
and slowly saturates towards 14 multi-temporal combinations. This
indicates that, for the studied landslides, the proposed technique
is already efficient with rather shorter time-series and few stereo-
pairs, while the additional benefits from adding further dates might
not outweigh the additional costs of data and computation. It is also
notable that adding pair-wise matches among the orthoimages of the
stereo-pairs rather reduces the performance. This is probably due to
fact that the matching algorithm used for the stereo-reconstruction
is similar to the MicMac correlator and will hence also produce sim-
ilar errors in the same regions. The pair-wise matches among the
orthoimages of the stereo-pairs were therefore excluded for further
processing.

3.2. Accuracy assessment

To assess the overall accuracy of the detection after multi-
temporal fusion and morphological-topographic filtering, 543 point
locations in the test areas are considered (Fig. 3). The raw binary
map resulting from an ROC-based thresholding (Fig. 4) of the vec-
tor coherence (VC, r = 10, m = 14) map is presented in Fig. 6a.
While the raw output already provides an accuracy of F = 0.81, a
significant amount of salt-and-pepper noise and false detections are
still visible. The morphological-topographic filtering largely elimi-
nates the salt-and-pepper noise and further improves the accuracy
to F = 0.85, at the expense of a slight decrease in the producer’s
accuracy (Fig. 6b). All filtering steps contribute to the elimination
of initial detections, whereas the morphological filtering step is in
particular effective. While the applied slope threshold of 15◦ maybe
still too rigorous for other sites with landslides on gentler slopes, the
results also indicate that increased false detection rates with lower
slope thresholds can be largely compensated with the subsequently
applied aspect filter (Supplementary Data, Fig. S2c). Overall, these
figures show that the combination of multi-temporal fusion and
morphological-topographic filtering is effective to suppress nearly all
spurious detections while retaining high sensitivity for real surface
displacement. The few undetected landslide areas are mainly very
slow moving parts of large landslides where dense vegetation omits
reliable measurements of small displacements (Fig. 7a). While there
are also counter examples where the proposed processing tech-
nique allows the detection of landslides with significant vegetation
cover (Fig. 7b, Supplementary Data, Fig. S6d), small displacements
under dense vegetation constitute an inherent limitation for the use
of optical satellite data. Furthermore, it should be noted that the
calculations based on spatial neighborhoods and morphological fil-
tering (closing with a disk radius 20 pixels) impose limitations on the
detectability of small or very elongated landslides.
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The 4 CGPS receivers at the La Valette (LVA1, LVA2) and the
Super-Sauze landslides (SAZ1, SAZ2) allow to quantify the accuracy
of the correlation-based velocity vectors. For this purpose the mean-
absolute error (MAE) and the root-mean-squared errors (RMSE) are
reported for both components of the horizontal displacement. To
obtain the final displacement maps from a series of redundant mea-
surements for each time step different strategies are possible. Given
that orthorectification errors are proportional to the convergence
angle, using the pairs with the smallest spatial baseline is a logical
choice. Taking into account all reference measurements the misfit
amounts to an RMSExy = 0.36 m (RMSEx = 0.14 m and RMSEy =
0.33 m). The distribution of the errors among the four stations is
reported in greater detail in the Supplementary Data (Fig. S3). An

alternative strategy that takes into account all redundant measure-
ments is to compute the mean displacement rates among all pair
combinations of each time step. Greater robustness against outliers
can also be obtained when considering in addition a small spatial
neighborhood around the center of each CGPS station for the com-
putation of the mean. The spatial neighborhood was set to a radius
of 2.5 m to consider the area covered by the tripod of the CGPS
receiver and closely adjacent pixels. The residual error when using
this approach amounts to RMSExy = 0.26 m (RMSEx = 0.10 m and
RMSEy = 0.25 m). The reduction of the RMSExy by 74% shows the
benefit of using stereo-pairs and averaging redundant measurements
from all pair combinations covering a given time-step. The RMSEs for
most measurements range between 0.04 and 0.13 m which is in line
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with previous studies suggesting decimetric accuracies are feasible
(Lacroix et al., 2015; Stumpf et al., 2014b). At two stations LVA1, LVA2,
however, the RMSEy reaches up to 0.42 m. This appears to be related
to higher residual errors in NS-direction observed during the bundle
adjustment (Supplementary Data, Fig. S1) and could indicate higher-
order geometric distortions which are not fully accounted with an
affine refinement model.

3.3. Landslide kinematics and forcing conditions

After the ROC-based thresholding of VC and subsequent filtering a
total of 169 active landslides are detected. An overview of their mean
displacement rates and size distribution is given in Fig. 8. Besides
the three largest landslides in the valley (La Valette, Super-Sauze,
Poche) numerous landslides smaller than 10 , 000 m2 are detected,
most of which have not yet been registered in existing inventories
for the period 1956–2009. Indeed Schlögel et al. (2015b) pointed out
that the general difficulties in the mapping of small landslides with
sparse image time-series lead to an underestimation of the lower
area frequencies which would explain the observed discrepancy. At
the same time it cannot be excluded that many of the detected
smaller landslides have been activated only after 2009. The detected
landslides concentrate in three spatial clusters located in the North-
West (Riou-Bourdoux catchment), in the South (Sauze catchment)
and in the East (Poche catchment). Most of the detections qualify as
slow-moving flow-type landslides. The average displacement rates
per pixel over all multi-temporal pairs for the entire study period
range from 0.001 to 0.061 m • d−1. The highest displacement rates
of 0.17 m • d−1 were measured during the period 2013/07/31–2013
/09/21 on the Sanières rockslide which was triggered in early 2013.

A global analysis of the changes in the displacement rates of
the detected landslides (i.e. all pixels which fall into the VC-based
mask) for the four monitoring periods P1 (2012/08/07–2012 /10/05),
P2 (2012/10/05–2013/07/31), P3 (2013/07/31–2013/09/21), and P4
(2013/09/21–2014/06/20) is presented in Fig. 9a. The distributions
for the two periods that cover mainly autumn, winter and spring
(P2 and P4) show long tails towards higher displacement rates
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Fig. 10. Relationship between the evolution of the cumulative and mean effective pre-
cipitation and the changes of the mean displacement rates of the two fastest moving
quartiles of all pixels, and landslides with a surface area 20,000 m2. The similar evo-
lution suggests a strong control of seasonal hydrological conditions on the motion of
large landslides and the faster 50% of the detected slope sections.

indicating an acceleration. Given that the number of available mea-
surements depends on the surface area, it should be noted that
those summary statistics are strongly dominated by larger land-
slides. Grouping all detected pixels according to the quartiles of their
average displacement rate (2012/08/07–2014/06/20) also shows that
mainly the fastest 50% of all pixels are accelerating during the peri-
ods P2 and P4. Fig. 9b presents the statistical distributions of all
measurements on the detected landslides, when the measurements
are grouped according to the surface area of the detected landslide
they belong to. It shows that larger landslides tend to have higher
average displacement rates and that the largest group (¿20 , 000
m2) shows an acceleration during the periods P2 and P4 (Fig. 9b).
To the best of our knowledge, a relationship between displacement
rates and landslide extent has not been documented previously in
the literature. While the roles of landslide material and slip surface
geometry on the spatial variability of the displacement rates still
require further investigation, the relationship could be explained by
higher displacement rates contributing to a faster propagation of the
landslide mass along the channel and thus to a greater extent. This
seasonal pattern (acceleration during the periods P2 and P4) is simi-
lar to the one of the fastest 50% of all pixels (Fig. 9a). Surprisingly an
inverse trend can be observed for medium size and small landslides
(<20,000 m2) which appear to feature slightly higher displacement
rates during the summer month corresponding with the evolution
of the slowest moving 50% of all detected pixels (Fig. 9a). The inter-
pretation of this temporal pattern must, however, take into account
the uncertainty of the measurement. The estimated RMSExy = 0.26
m propagates, due to different measurement intervals, unequally
into the seasonal displacement rates (Supplementary Data, Fig. S5)
and leads to apparently higher rates for the shorter summer periods
(52 and 59 days). While several medium size and small landslides
show clear signs of acceleration during the periods of P2 and P4
(e.g. Fig. 11), their summary statistics seem to be dominated by the
measurement uncertainty. While these uncertainties hinder a fur-
ther interpretation of the seasonal trends of very slow moving slope
sections, it must be emphasized that they do not explain the acceler-
ation of the fastest moving 50% during the two winter periods which
is visible despite the bias towards higher summer displacement
rates. Numerous previous studies have already demonstrated close
links between seasonal rainfall patterns, groundwater flows and the
kinematics of slow-moving landslides (Bennett et al., 2016; Handw-
erger et al., 2013; Hsu et al., 2014; Iverson and Major, 1987; Malet et
al., 2005b; Reid, 1994; Zerathe et al., 2016). In the absence of com-
prehensive groundwater data for all detected landslides (only pore
water pressure measurements for the La Valette and Super-Sauze
landslides are available) we consider the mean effective precipitation
(mm • d−1) as a first order proxy for the hydrological conditions dur-
ing each period. As demonstrated in Fig. 10, a close relationship exists
between the seasonal pattern of the mean effective precipitation and
the displacement rates of large landslides (20,000 m2) and the fastest
50% of all detections. In this context, it should be mentioned that
two seismic events occurred in the region on February 2012 (Mw
4.1) and April 2014 (Mw 4.9) leading to a peak ground acceleration
(PGA) of up to 60 cm • s−2 (Courboulex et al., 2014). While Lacroix
et al. (2015) observed an acceleration of slow-moving landslides at
a comparable PGA, the CGPS measurements on the La Valette and
Super-Sauze landslides, do not show any change of the displacement
rates in response to the seismic events. This supports the view that
the change in the hydrological conditions is the main driver of the
acceleration during the periods P2 and P4. Further analyses of inter-
dependencies among factors such as landslide material, slip surface
geometry and water flow paths would be necessary to better under-
stand the spatial pattern of the surface motion (e.g. Handwerger et
al., 2015; Krzeminska et al., 2013; Malet et al., 2005b; Van Asch
et al., 2007). In the absence of sufficient background data for most
of the observed landslides, however, we limit the remainder of the
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discussion to a qualitative analysis of displacement fields for some
exemplary landslide complexes.

The landslide complex presented in Fig. 12 features a strong
acceleration during the autumn-winter-spring periods P2 and P4
with displacement rates of up to 0.064 m • d−1 between September
2013 and June 2014 (Fig. 12d).

In particular the southern (upslope) section is covered by dense
vegetation (Supplementary Data, Fig. S6b) which could not have
developed if such high displacement rates had persisted over longer
time spans. This indicates that the observed acceleration significantly
exceeds the long-term average. The displacement fields for the sum-
mer months show low displacement rates except for the period P3
during which the south-eastern section (activated during the period
P2) remains active. The displacement in this zone persists also during
period P4 but is partially masked due to strong surface changes and
thus temporary decorrelation (Fig. 12d). Decorrelation also occurs at

a steep secondary scarp in the central part of the landslide which, due
to a lack of coherent measurements, is excluded during the detec-
tion phase. Fig. 13 displays the headwaters of the Riou-Bourdoux
catchment where an acceleration during the periods P2 and P4 is
visible (Fig. 13b, d). In particular the south-western landslide (Les
Aiguettes) shows a clear acceleration with a consistent spatial pat-
tern during those periods with higher average effective rainfall.
While previous studies that relied on detailed tree ring analysis and
visual analysis of orthophotographs have shown no activity for the
years 2004–2010 (Saez et al., 2013), the correlation-based displace-
ment measurements clearly indicate a reactivation of the landslide
complex with displacement rates of up to 0.03 m • d−1. The very
high resolution of the derived displacement field allows to identify a
stable zone within the center of the landslide which corresponds
to an in-situ crest of the underlying stable bedrock. During the sum-
mer month (Fig. 13a, c) the landslide complex shows very limited

Fig. 11. Series of displacement rate maps [m • d−1] for a small landslide in the Riou-Bourdoux catchment for the monitoring periods (a) P1, (b) P2, (c) P3, and (d) P4.
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activity. A zone of higher summer velocities that can be noted in the
north-western corner is likely an artefact resulting from dense vege-
tation and steep slope at the scarp of the landslide. These zones were,
nevertheless, detected since the winter velocities were sufficiently
high and coherent to outweigh the co-registration noise.

4. Conclusion

This study targeted the development and testing of a new method
for the detection and monitoring of slow-moving landslides through
the correlation-based analysis of optical SITS. The developed MPIC
processing scheme is developed and tested with a sequence of multi-
temporal Pléiades monoscopic and stereoscopic images, and applied
to investigate a landslide-prone landscape in the South French Alps.

Among four tested indicators for the spatio-temporal persistence of
the displacement measurements, the vector coherence V C is found
to be the most robust. A sensitivity analysis regarding the length of
the time-series shows, that even with a limited number of dates,
the MPIC scheme greatly improves the detection accuracy. Further
accuracy gains are achieved through the consideration of larger
spatial neighborhoods in the computation of the vector coherence.
The particular window size, however, depends on the respective
applications case and should take into account the expected spatial
smoothness of the displacement field and the size of the searched
features. A detection based on V C allows to considerably reduce
the number of false detections while still retaining a high sensitiv-
ity with a producer’s accuracy of 77%. A sequence of morphological
and topographic filters further eliminates nearly all false detections
while a producer’s accuracy of >73% is preserved. The technique, in

Fig. 12. Series of displacement rate maps [m • d−1] for a landslide complex located south of the Poche landslide for the monitoring periods (a) P1, (b) P2, (c) P3, and (d) P4.
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Fig. 13. Series of displacement rate maps [m • d−1] for a large landslide complex in the Riou-Bourdoux catchment for the monitoring periods (a) P1, (b) P2, (c) P3, and (d) P4.

many cases, detects movement under significant vegetation cover,
whereas false negatives can still arise in areas with very slow move-
ment (<1.6 m • yr−1) and dense vegetation cover. An assessment of
the derived displacement fields at the location of dual-frequency
CGPS measurements shows that averaging measured velocities from
all pairs covering a given time-step (i.e. when stereo-pairs are avail-
able for at least one date) reduces RMSExy by about 74% to an
RMSExy = 0.26 m. The averaging enables to reduce the measurement
variance, whereas the remaining RMSExy is dominated by a residual
bias in the north-south component. Further research should address
the elimination of this geometric bias which is likely the result of
higher order terms that are not properly addressed with an affine
error model during bundle adjustment. The derived motion fields
provide a detailed view into the spatio-temporal dynamics of numer-
ous slow-moving landslides in the investigated catchment, many
of which were previously unrecorded or could only be surveyed at
specific points and very irregular time intervals. A joint analysis of
the derived multi-temporal motion fields shows a close relationship
between the seasonal averages of the effective precipitation and the
displacement rates of larger, slow-moving landslides. The proposed
technique opens new perspectives in the operational exploitation of

optical SITS for a more accurate detection and monitoring of slow-
moving landslides over wide areas. The current implementation
relies on high-performance infrastructure and parallel processing
and is undergoing active development to allow an efficient process-
ing of SITS from Sentinel-2, Landsat-8 and similar satellite platforms
on ESA’s cloud-based processing infrastructure (ESA, 2016). While
this could enable an effective background monitoring with a dense
temporal sampling of seasonal dynamics further improvements of
the measurement accuracy are still required to account for the
coarser spatial resolution. This may include inversion strategies (e.g.
Casu et al., 2011) and the estimation of higher order residuals in the
co-registration based on measurements over stable terrain.
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