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Abstract The deformation of slow-moving landslides developed in clays induces endogenous seismicity
of mostly low-magnitude events (ML < 1). Long seismic records and complete catalogs are needed to
identify the type of seismic sources and understand their mechanisms. Manual classification of long records
is time-consuming and may be highly subjective. We propose an automatic classification method based on
the computation of 71 seismic attributes and the use of a supervised classifier. No attribute was selected a
priori in order to create a generic multi-class classification method applicable to many landslide contexts.
The method can be applied directly on the results of a simple detector. We developed the approach on the
seismic network of eight sensors of the Super-Sauze clay-rich landslide (South French Alps) for the detection
of four types of seismic sources. The automatic algorithm retrieves 93% of sensitivity in comparison to a
manually interpreted catalog considered as reference.

1. Introduction

Recent studies have demonstrated the presence of endogenous seismicity induced by the deformation of
slow-moving clay-rich landslides, whereas aseismic creeping was previously assumed [Gomberg et al., 1995;
Tonnellier et al., 2013; Walter et al., 2013]. Slidequakes have been recorded on these unstable slopes proving
the presence of material failures and shearing at the contact with the bedrock or directly within the moving
mass. Locally, rockfalls can also be recorded on steep slopes [Tonnellier et al., 2013]. Tremor-like signals have
also been observed [Gomberg et al., 2011] and may be linked to fluid transfer or transient slip. In the case of
clay-rich landslides, analysis of the microseismicity is a challenging task because the signals are of low magni-
tude (ML < 1), low amplitude (<10000 nm/s), and are generally highly attenuated at short distances (<200 m).
Dense seismic arrays should therefore be installed over long observation periods to obtain numerous sig-
nals with high signal-to-noise ratio (SNR). Analysis of long seismological records (>2 years) has been realized
[Spillmann et al., 2007; Helmstetter and Garambois, 2010] resulting in the detection of several thousands of
landslide seismic events. In these studies, the seismic events are classified manually after detection and rely
on the personal experience of the human operator which can be subjective and time-consuming.

Automatic classification methods have been developed for detecting the sources in volcanic areas [Langer
et al., 2006; Curilem et al., 2009] to differentiate earthquakes and blasts [Fäh and Koch, 2002; Laasri et al., 2015]
or for characterizing large rockslides [Dammeier et al., 2016]. For multiclass problems, many classifiers were
used such as hidden Markov models (HMMs), artificial neural networks, and support vector machines (SVMs),
mainly on a reduced number of seismic attributes [Curilem et al., 2009; Hibert et al., 2014; Ruano et al., 2014].
Recently, some studies [Beyreuther and Wassermann, 2008; Ruano et al., 2014; Quang et al., 2015] focused on the
classification of continuous seismic records discriminating the background noise from the signal of interest.
HMM was modified to detect one type of signal from few to one single example which is interesting for the
detection of rare seismic sources [Hammer et al., 2012, 2013; Dammeier et al., 2016]. However, the use of a
unique seismic signal as reference lacks to capture the influence of the travel path effects on the waveform and
the frequency content of the recorded signal [Hammer et al., 2013]. The authors hence suggested to use one
example for different source-receiver distances. Finally, Ruano et al. [2014] applied SVM for the discrimination
of earthquake and explosion from background noise, but the method requires a further interpretation of the
detected events.

We propose a generic (applicable to various objects) and automatic (no fine-tuning required) method to clas-
sify the endogenous seismicity of slow-moving landslides.The Super-Sauze landslide data set is used as an
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Figure 1. Seismic signals, sources, and mechanisms observed on clay-rich landslides based on analyst interpretation: (a) Location of the microseismic arrays
(A and B) and of the sources at the Super-Sauze landslide (Southeast France); (b) examples of seismic signal for each class with the display of the waveform (trace
with the higher SNR, first and second column) and (third column) stacked spectrogram.

example to test the method. We decided to use the Random Forest (RF) supervised classifier [Breiman, 2001]

on a large training set. Four classes of seismic events are identified: two classes are related to events asso-

ciated with the landslide deformation (e.g., quakes and rockfalls) and two classes of external sources (e.g.,

regional/global earthquakes and natural and anthropogenic noise). To train the model, 71 seismic attributes

are computed (waveform, spectral content, spectrogram content, polarization, and attributes related to the

seismic network geometry). We here focused on the results of the classification method on a sample data set

and discuss possible improvement for its implementation as a near real-time classifier.
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2. Data

The seismic records are acquired by two permanent arrays of the French Landslide Observatory OMIV
(Observatoire Multi-disciplinaire des Instabilités de Versants) installed at the east and west sides of the
Super-Sauze landslide (Southeast France) developed in weathered black marls [Malet et al., 2005]. The seis-
mic stations consist of short period seismometers (Noemax and Sercel L4C) with a flat response in the range
5–100 Hz; the signals are recorded with two broadband seismic recorders (RefTek 130S-01) at a 250 Hz sam-
ple frequency. The seismometers are arranged as tripartite array of 40 m layout around one three-component
center site and three vertical one-component organized as equilateral triangle. The array thus forms a
six-channel seismic recorder. The experiment data set consists of three acquisition periods from 11 October to
19 November 2013, from 10 to 30 November 2014, and from 9 June to 15 August 2015. The investigated
data set consists of 418 “Rockfall” events, 239 “Quake” events, 407 “Earthquake” events (EQ), and 395
“Natural/Anthropogenic noise” events (“N and A” noise) (Figure 1).

1. The Rockfall events take place mostly in the landslide main scarp where rigid blocks fall from steep slopes
(>100 m high). The block impacts are visible both in the signal waveform and in the stacked spectrogram
for most of the events but can also present cigar shapes when finer material is falling.

2. The Quake events are likely to be triggered by material failures, surface fissure openings, and shear stress
release at the landslide boundaries or at the contact with the bedrock. They are usually strongly attenuated
and not recorded by all the seismometers and last less than 5 sec.

3. The Earthquake events cluster all the regional seismic events triggered in the region [Jenatton et al.,
2007] and the teleseisms. Their pseudospectrograms have typically a triangle shape with a decrease of
high-frequency content with time.

4. The Natural/Anthropogenic noise events cluster all the anthropogenic (footsteps, car and helicopter
motors, ski lifts, etc.) and environmental (wind, storm, water streams, etc.) noise in the vicinity of the land-
slide. Those events usually last several tens of seconds and illuminate either several frequencies or only
specific ones in the spectrogram.

For more details on the endogenous signals observed at Super-Sauze landslide, the reader may refer to
[Helmstetter and Garambois, 2010; Walter et al., 2012; Tonnellier et al., 2013]. It must be noted that it can be diffi-
cult to differentiate certain signals such as a succession of quakes from small-volume rockfalls or to distinguish
footsteps and small-volume rockfalls.

3. Methods

The processing chain consists in successive stages with (1) the detection of signals of potential interest, (2) the
computation of the seismic attributes, and (3) the classification of the signals. The method relies on a detec-
tion algorithm that must be carefully chosen depending depending on the signals of interest and the study
area. We used a spectrogram analysis [Helmstetter and Garambois, 2010] to detect the signals. The method
is equivalent to a STA/LTA algorithm applied in the frequency domain. An event is detected when the seis-
mic signal spectrum is larger than 1.5 times the noise spectrum level. The spectrogram is computed in the
frequency range 5–100 Hz for each vertical sensor. Second, we calculated 71 seismic attributes (Table 1) to
describe the signals in terms of signal waveform, signal frequency content, pseudospectrogram, polarity, and
some attributes related to the seismic network geometry. The signal waveform and the frequency content are
computed on the trace with the highest SNR. The spectrogram attributes are computed on the summed spec-
trogram, and the polarity attributes are computed separately on the three-component seismometers. Some
of these attributes are commonly used in signal classification and have been described in previous studies
[Bessason et al., 2007; Curilem et al., 2009; Hammer et al., 2012; Hibert et al., 2014]. We explored here additional
attributes related to the seismic network geometry. All the attributes are computed automatically on the raw
signal window and do not require any human interpretation such as wave onset identification or location. Only
the kurtosis attribute requires setting manually various frequency bands (here 5–10 Hz, 5–50 Hz, 10–70 Hz,
50–100 Hz, and 5–100 Hz).

The selected supervised classifier is the Random Forest algorithm (RF), which is an ensemble learning method
based on decision trees [Breiman, 2001]. It is based on several (> 500) decision trees trained on the data set.
The class is assigned by the majority of the decision tree votes. RF has proven to be one of the most efficient
algorithm for the classification of 121 complex data sets among 17 families of classifiers [Fernández-Delgado
et al., 2014]. Moreover, it is simple to use and does not require any fine-tuning [Stumpf and Kerle, 2011]. It also
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Table 1. Attributes Table

Number Description Formula

Waveform Attributes:

1 Duration tf − ti , with ti and tf : beginning and end of the signal

2 Ratio of the mean over the maximum of the envelop signal −
3 Ratio of the median over the maximum of the envelop signal −
4 Ratio between ascending and descending time tmax−ti

tf −tmax
, with tmax : time of the largest amplitude

5 Kurtosis of the raw signal (peakness of the signal) m4
𝜎4 , with m4: fourth moment, 𝜎: standard deviation

6 Kurtosis of the envelop see 5

7 Skewness of the raw signal m3
𝜎3 , with m3: third moment

8 Skewness of the envelop see 7

9 Number of peaks in the autocorrelation function −

10 Energy in the first third part of the autocorrelation function ∫
T
3

0 C(𝜏)d𝜏 , with T : signal duration, C: autocorrelation function

11 Energy in the remaining part of the autocorrelation function see 10

12 Ratio of 11 and 10 −
13–17 Energy of the signal filtered in 5–10 Hz, 10–50 Hz, 5–70 Hz, 50–100 Hz, ∫ T

0 yf (t)dt , with yf : filtered signal in the frequency range [f1-f2]

and 5–100 Hz

18–22 Kurtosis of the signal in 5–10 Hz, 10–50 Hz, 5–70 Hz, 50–100 Hz, and 5–100 Hz see 5

frequency range

23 RMS between the decreasing part of the signal and l(t) = Ymax −
Ymax

tf −tmax
t

√
Y(t) − l(t)

2
, with Y: envelop of the signal

Spectral attributes:

24 Mean of the DFT DFT: discrete Fourier transform

25 Max of the DFT −
26 Frequency at the maximum −
27 Central frequency of the 1st quartile −
28 Central frequency of the 2nd quartile −
29 Median of the normalized DFT −
30 Variance of the normalized DFT −
31 Number of peaks (> 0.75 DFTmax) DFTmax: maximum of the DFT

32 Number of peaks in the autocorrelation function −
33 Mean value for the peaks −
34–37 Energy in [0, 1

4
]Nyf , [ 1

4
,

1
2
]Nyf , [ 1

2
,

3
4
]Nyf , [ 3

4
, 1]Nyf ∫ f2

f1
DFT(f )df with f1, f2: the considered frequency range

38 Spectral centroid 𝛾1 = m2
m1

, with m1 and m2 are the first and second moment

39 Gyration radius 𝛾2 =
√

m3
m2

, with m3 is the third moment

40 Spectral centroid width
√

𝛾2
1 − 𝛾2

2

Spectrograma attributes:

41 Kurtosis of the maximum of all discrete Fourier transforms (DFTs) Kurtosis
[

max
t=0,..,T

(SPEC(t, f ))
]

with SPEC(t,f ): the spectrogram

as a function of time t

42 Kurtosis of the maximum of all DFTs as a function of time t see 41

43 Mean ratio between the maximum and the mean of all DFTs mean
(

max(SPEC)
mean(SPEC)

)

44 Mean ratio between the maximum and the median of all DFTs see 43

45 Number of peaks in the curve showing the temporal evolution of the −
DFTs maximum −

46 Number of peaks in the curve showing the temporal evolution of the DFTs mean −
47 Number of peaks in the curve showing the temporal evolution of the DFTs median −
48 Ratio between 45 and 46 −
49 Ratio between 45 and 47 −
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Table 1. (continued)

Number Description Formula

50 Number of peaks in the curve of the temporal evolution of the DFTs central frequency −
51 Number of peaks in the curve of the temporal evolution of the DFTs maximum frequency −
52 Ratio between 50 and 51 −
53 Mean distance between the curves of the temporal evolution of the DFTs maximum frequency and −

mean frequency −
54 Mean distance between the curves of the temporal evolution of the DFTs maximum frequency and −

median frequency −
55 Mean distance between the 1st quartile and the median of all DFTs as a function of time −
56 Mean distance between the 3rd quartile and the median of all DFTs as a function of time −
57 Mean distance between the 3rd quartile and the 1st quartile of all DFTs as a function of time −
58 Number of gaps in the signal −

Network attributes:

59 SNR maximum −
60 Station with maximum SNR −
61 Station with maximum amplitude −
62 Station with minimum amplitude −
63 Ratio between attributes 62 and 61 −
64 Mean correlation −
65 Maximum correlation −
66 Mean correlation lag in between station −
67 Standard deviation correlation lag in between station −

Polarity attributes:

68 Rectilinearity 1 − 𝜆11+𝜆22
2𝜆33

with 𝜆33 >>𝜆22 >>𝜆11

69 Azimuth arctan(𝜆23∕𝜆13) × 180∕𝜋
70 Dip arctan(𝜆33∕

√
𝜆2

23 + 𝜆2
13) × 180∕𝜋

71 Planarity 1 − 2𝜆11
𝜆33+𝜆22

aThe spectrogram is the collection of the DFTs computed for signal windows of 1s with an overlap of 90%. The spectrogram is represented as a two-dimensional
matrix representing the evolution of the frequency content (rows) through time (columns).

enables to compute which attributes are the most discriminant for the classification. This is done through the
estimation of the Variable Importance as defined by Breiman [2001] and consists in randomly swapping the
values of one attribute over all the samples of the training data set. The Variable Importance is the variation
in the out-of-bag error computed before and after the permutation. The larger the error variation the more
important is the attribute. We worked with the TreeBagger version of RF implemented in the MATLAB Sta-
tistical Toolbox. For the tests, successively 10%, 30%, 50%, and 70% of each class were randomly selected as
training set for the classifier. The RF model was evaluated for each test on 70 events randomly chosen in each
class in the events not used in the training set. One hundred model runs were performed for each test, and
the classification results are averaged.

Table 2. Mean Confusion Matrix for 100 Runs of Random Foresta

Class. Rockfall Class. Quake Class. EQ Class. N and A Noise

Ref. Rockfall 94% 1% 3% 2%

Ref. Quake 3% 93% 3% 1%

Ref. EQ 1% 2% 94% 3%

Ref. N and A Noise 2% 3% 3% 92%
aThe classified (Class.) events are represented with respect to the events of the reference

catalog (Ref.).
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Figure 2. Sensitivity for different sizes of the training set: 10%, 30%, 50%, and 70% of each class. The training set is
randomly selected 100 times, and the sensitivity is averaged for each run.

4. Results

The sensitivity reaches 93% ± 1.5% and the specificity 97% ± 0.5% in average for 100 runs of Random Forest.
Table 2 presents the confusion matrix that represents the comparison between the reference interpretation
and the automated classification of the data set. The Earthquake and Rockfall events are better classified with
a sensitivity of 94%, whereas the Quake and the Natural/Anthropogenic noise events have a sensitivity of 93%
and 92%, respectively.

The sensitivity increases with the number of examples in the training set (Figure 2). We observe that for above
50% of examples introduced in the training set for each class, the increase in sensitivity is not significative
anymore (< 1%). However, it seems that the sensitivity of the classes Earthquake and Natural/Anthropogenic
noise increases more than for the two others; thus, more examples of these two classes may improve the
sensitivity.

Figure 3. Mean variable importance for 100 runs of Random Forest. The attributes are presented with their respective numbers (Table 1) and by category:
Waveform, Spectral (attributes computed on the FFT of the signal), Spectrogram (attributes computed on the pseudospectrogram of the signal), Network
geometry (attributes taking into account the geometry of the network), and Polarity. The polarity attributes of the three-component seismometers are
represented successively for microseismic array A and B.

PROVOST ET AL. SEISMIC SOURCES AUTOMATIC CLASSIFICATION 6
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The importance of the attributes in the classification are presented in Figure 3. In our case, we observe that
the most discriminant attribute is the ratio between the maximum and minimum amplitude recorded in the
network (A63). The other most discriminant attributes are, successively, the ratio between the ascending and
descending duration of the signal (A4), the signal duration (A1), the station with the maximum amplitude
(A61), the median correlation (A65), the energy in the first third of the autocorrelation function (A10), the
energy in the signal spectrum between 0 and 31.25 Hz (A34), the planarity (A71), the mean correlation lag in
between traces (A66), and the energy of the signal filtered in 50–100 Hz (A16). No attribute from the spectro-
gram analysis appears in the 10 most discriminant attributes. The less discriminant attributes are respectively
the azimuth (A69, A73) and the ratio between the number of peaks in the pseudospectrogram function (A52).

5. Discussion and Conclusion

The more classes are discriminated by an attribute, the more important the attribute is. Therefore, all the
seismic sources can be separated by attribute 63 (A63EQ >= A63N and Anoise >A63ROC > = A63Q) because the
waves created by the local sources travel through the subsurface and may be highly attenuated at short dis-
tances (<100 m), while for the external sources, the waves travel in the consolidated bedrock and are thus
less attenuated. In the same manner, the ratio between the ascending and descending phase can separate
the highly nonsymmetrical sources (Rockfall and Earthquake) from the symmetrical signal generated by the
quakes (A4ROC > = A4Q >A4EQ). The duration finally discriminates mostly the “Natural and Anthropogenic
noise” events (A1N and Anoise > 20s) and the quakes (A1Q < 5s). Finally, the next attributes in the order of impor-
tance mainly discriminate only one class: the “N and A noise” events are highly not correlated compared to
the other signals (A65), and the rockfall events mainly occur in the scarp so the sensors with the maximum
amplitude are the closer ones (A61).

The azimuth of the particle motion is, in theory, a useful information to discriminate the sources because it
gives the source location direction. Here it seems that the station with the maximum amplitude (A61) gives
more robust information on the source location by discriminating the rockfall events. The attributes implying
the number of peaks are also not very discriminating here probably because it is rather difficult to set an
efficient threshold above which a peak is considered relevant.

Considering only the 10 most discriminant attributes slightly deteriorates the classification with a sensitivity
of 92% ± 1.5% while not reducing significantly the computing time (e.g., the attributes can currently be cal-
culated from the raw signal in approximately 1 second). Therefore, no attribute should be removed from the
model even the one with the lower discriminating rate. Moreover, the list of attributes enables the method
to be easily applied to various contexts since they allow to fully describe each signal. The most discriminant
attributes will probably be different at other landslides, but this will not decrease the accuracy of the method.
The number of attributes also enables the method to be adaptative to possible temporal variations of the
source mechanisms.

Sensitivity is a common measure used to evaluate a classifier, but this criterion requires a reference catalog
constructed by one analyst. Because the human interpretation is subjective [Langer et al., 2006; Hibert et al.,
2014; Laasri et al., 2015], the sensitivity may not reflect the complexity of the data set. We, thus, tested the
human subjectivity on a smaller data set of 60 events with 20 human analysts and compared the results. The
total of the analysts’ votes agrees fully with the reference interpretation, thus validating the reference catalog
used to compute the sensitivity. The mean sensitivity for the human interpretation is 82% (Table 3). It must
be noted that the information given to the human analysts was slightly different to the one introduced in
the statistical model as the seismic network geometry and the polarity attributes were not presented to the
analysts. We ran the RF model with the same information as given to the analysts (A1 to A58) and obtained
a mean sensitivity of 90% (Table 3). In both cases, the automatic method obtains higher or similar maximal
sensitivity than the analysts (Table 3). The automatic method is hence comparable to the human analysis,
while a larger sensitivity of the automatic method would overfit the interpretation of one particular analyst.

We propose an automatic classifier based on RF and a large number of attributes to describe the seismic
signals. The obtained sensitivity is 93% ± 1.5% for a complex multiclass problem (low-magnitude events and
intraclass heterogeneity). The method requires at least 150 examples for the different event types to train the
model; it further allows separating the highly heterogeneous class (e.g., “N and A noise”) with the same success
rate than the other classes. RF provides probability estimates on the classification that are useful to accept or
reject a new classification and determine when the model needs to be retrained. The latter could also provide
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Table 3. Sensitivity Results for the Set of 20 Human Analysts, for the RF
Model With All Attributes Taken Into Account and for the RF Model
With A1 to A58a

Mean Sensitivity 82% 93% 90%

Maximum Sensitivity 95% 96% 94%

Minimum Sensitivity 58% 90% 86%
aThe RF model is tested 100 times using 70% of the data set as train-

ing set and testing the model on the 30% of the data set (not selected
as training set).

new insights to detect changes of the seismicity with time. In summary, the method is easily applicable to
classify the seismicity of various objects (volcanoes, geothermal fields, and earthquake detection) and can
be used even for studies where only one single sensor is available. The implementation of the method for
real-time applications is in progress.
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