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Prediction of changes in landslide rates induced
by rainfall

Abstract This work focuses on the development of a combined
statistical-mechanical approach to predict changes in landslide
displacement rates from observed changes in rainfall amounts.
The forecasting tool FLAME (Forecasting Landsl ides
Accelerations induced by Meteorological Events) associates (1) a
statistical impulse response (IR) model to simulate the changes in
landslide rates by computing a transfer function between the input
signal (e.g. rainfall) and the output signal (e.g. displacement) and
(2) a simple 1D mechanical (MA) model (e.g. viscoplastic rheology)
to take into account changes in pore water pressure. The models
have been applied to forecast the displacement rates at the Super-
Sauze landslide (South East France). The performance of different
combinations of models (IR model alone, MA model alone and a
combination of the IR and MA models) is evaluated against
observed changes in pore water pressures and displacement rates
at the study site. Results indicate that the three models are able to
reproduce the displacement pattern in the general kinematic re-
gime (succession of acceleration and deceleration phases); con-
versely, extreme kinematic regimes such as fluidization of part of
the landslide mass are not being reproduced. The approach con-
stitutes however a robust tool to predict changes in displacement
rates from rainfall or groundwater time series.
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Introduction
Forecasting the displacement pattern of continuously active land-
slides is a challenge for scientists and risk managers. Changes in
displacement rates over time are mostly controlled by hydro-
meteorological triggers (e.g. rainfalls, rapid snowmelt) and the
consequent increase of pore water pressure and by changes in
geomorphology (e.g. changes in landslide geometry and stress
conditions, changes in material rheology).

Prediction of rainfall-induced landslides is complex since a lot
of variables may have a large influence on this phenomenon
(Michiue 1985), namely mechanical and hydraulic slope properties,
slope morphology, presence of vegetation, and the rainfall features
(intensity, duration). Most of the landslides’ monitoring systems
consist of measurements of rain, pore water pressure and
displacements.

The most used and reliable approach to forecast the time of
failure at a single slope scale makes use of displacement (and its
derivative, velocity) observations. This is based on the fact that,
viewed over a long period of time, measured slope displacements
may take the form of a standard creep curve, wherein accelerating
slope displacements are taken as a warning of imminent failure
(Fukuzono 1990; Kawamura 1985; Voight 1988; Zvelebill and Moser
2001; Petley et al. 2005; Eberhardt 2008; Mufundirwa et al. 2010).
However, because the fundamental physics controlling the nature
and shape of the creep curves has not yet been cleared up, a degree
of uncertainty exists in such estimates (Hutchinson 2001).

Other approaches consider the use of rainfall thresholds to
analyse the relationship between the triggering precipitation and
the movement. The threshold may correspond to a critical value
above which the probability of landslide occurrence is higher.
Intensity-duration (I-D) thresholds are the most common type of
empirical threshold (Caine 1980; Cancelli and Nova 1985;
Wieczorek 1987; Larsen and Simon 1993). For homogeneous slope
conditions, the assumption is that landslides may occur once a
precipitation threshold is reached. In most cases, the threshold
equations are defined without any rigorous mathematical statisti-
cal or physical criterion, when visualizing the logarithmic plot of
the intensity-duration of rainfall events (Guzzetti et al. 2007). I-A-
D (intensity-antecedent rain-duration) models are based on a
power law function defining a lower bound to global observations
of landslide-triggering storms. This function has been widely used
for estimating thresholds at all geographic scales (Guzzetti et al.
2008).

Other threshold models are based on dynamic temporal anal-
yses of the rainfall pattern. The FLaIR model (Sirangelo and
Versace 1992) estimates slope susceptibility through the identifica-
tion of a mobility function Y() obtained by the convolution be-
tween rainfall Intensity R() and a transfer function psi(),
considered as an indicator of slope stability. The model connects
then this function to the probability of a new landslide movement.
In the FLaIR model, the shape of the transfer function depends on
the geotechnical characteristics of the landslide (Sirangelo et al.
2003). It allows analysing the influence of short-term and long-
term rainfall components (Capparelli and Tiranti 2010) and has
been applied to several documented case studies (Capparelli and
Versace 2010; Versace and Capparelli 2008; Greco et al. 2013).

However, the aforementioned methods do not explicitly con-
sider observed and measured landslide quantities, as they are
based on a binary classification (e.g. occurrence or not of a land-
slide). Analysing the temporal component of a landslide consti-
tutes thus a major improvement in the development of forecasting
methods, as suspended and dormant landslides can be reactivated
in periods of heavy rainfall, while active landslides may show
phases of acceleration and deceleration (Flageollet 1996;
Corominas 2000).

As a consequence, multi-observation prediction strategies (e.g.
forecasting the time to failure with different observations and
models) are being developed (Intrieri 2012). Such models aim at
describing the relationships among time series of measured quan-
tities such as displacement rates (considered as the output time
series) and, for instance, rainfall, pore water pressure and soil
moisture (considered as the input time series).

Several models exist to analyse these relationships such as the
finite impulse response (FIR) model, the Box-Jenkis (BJ) model,
the output-error (OE) model, the autoregressive moving average
with exogenous inputs (ARMAX) model, and the autoregressive
with exogenous inputs (ARX) model. Artificial neural network
(ANNs) techniques (Mayoraz et al. 1996) have also been used to
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extract time scales and functionals among multi-parameter time
series in order to predict, for instance, pore water pressure as a
function of the rainfall, velocity as a function of pore water
pressure or velocity as a direct function of rain. Such type of
models has for instance, been applied to the Chénaula, Sallèdes
and La Frasse landslides with relative good accuracy (Mayoraz and
Vulliet 2002).

In addition, simple or complex fully coupled hydro-mechanical
models can be introduced in the forecasting framework (van Asch et
al. 2007a). Application of these models necessitates to characterize
the physical mechanism initiating a landslide (through slope stability
analyses; Maugeri et al. 2006) and to use stress-strain models to
compute landslide dynamics (Corominas et al. 2005; van Asch et al.
2007b; Pouya et al. 2007). For instance, Angeli et al. (1998) proposed
a simple reservoir conceptual model to model the water flow dis-
charge and the groundwater level within a slope and then considered
a mechanical viscoplastic model to predict the velocity based on
equilibrium equations. In the approach developed by Calvello et al.
(2007), the hydrological component is computed using a finite ele-
ment approach, whereas the displacement rate is obtained from an
empirical relationship between the safety factor of the slope and the
velocity. The approach developed by Herrera et al. (2009) considers a
simple consolidation equation to relate effective rainfall intensity
and dissipation of the excess pore pressure; the landslide kinematic
is then computed by considering a viscoplastic rheology.

The objective of this work is thus to develop a combined
statistical-mechanical model to investigate multi-parametric times
series of landslide displacements, pore water pressure and rainfall
in order to define possible causal inferences among the triggers
and the responses of the slope and to predict the slope kinematics.
Three combinations of models are tested. The first model uses a
statistical impulse response (IR) function (e.g. TEMPO; Pinault
and Schomburgk 2006), which allows us to predict the changes
in the landslide rate by computing the transfer function between

an input signal (e.g. rain and evapotranspiration) and an output
signal (e.g. displacement velocity or water table level). This model
has successfully been applied to Salazie cirque landslides in
Reunion Island (Belle et al. 2013), permitting to predict deep-
seated landslide movements and for studying their mechanism.
The second model uses a simple 1D mechanical (MA) model which
combines a simple 1D infiltration model and a viscoplastic rheol-
ogy to take into account changes in pore water pressure. The third
model (IRMA) is a combination of the previous ones; the IR model
allows to obtain the groundwater level from the precipitation time
series, and the viscoplastic model is applied using the computed
groundwater level time series to predict the displacements.

The performance of different combinations of models is evalu-
ated against the multi-parametric and multi-year dataset acquired
at the Super-Sauze landslide (South East France), one of the

Fig. 1 Schematic framework of application of the impulse response (IR) model

Fig. 2 Schematic representation and parameters of the viscoplastic model (from
Herrera et al. 2009)
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continuously active (with velocities from 0.001 to 0.4 m.day−1)
and instrumented clayey landslide in the European Alps.

Description of the forecasting models

Impulse response model—IR
The impulse response model (IR) is derived from the TEMPO
modelling approach (Pinault and Schomburgk 2006), originally
developed for the analysis of hydrogeological and hydrogeochem-
ical time series and successfully tested for landslide analysis (Belle
et al. 2013).

The IR model reproduces a discrete output signal S using the
convolution product of a discrete input signal E by a transfer
function G as described in Eq. 1 and illustrated in Fig. 1. The
convolution is based on impulse response functions.

S n⋅dtð Þ ¼ Γ � E tð Þ ¼
Xk

i¼1
Γ i⋅dtð Þ⋅E n−iþ 1ð Þ⋅dtð Þ ð1Þ

where n is the discretized interval time, and k is the order (length)
of the impulse response.

In the described methodology, the impulse response model
is used for two purposes: (1) the prediction of the fluctuation
of the water table due to the infiltration of water from
rainfall and melting of the snow pack and (2) the prediction
of the landslide velocity also based on the same water inputs.

The water is, indeed, the main driver of both the phenom-
ena of interest. Therefore, the shape of the transfer functions
(Γ) we used is a usual shape in hydrological modelling: i.e.
the convolution of a Gaussian function by an exponential
function.

Γ tð Þ ¼ exp −ln 2ð Þ t−T
D

� �2� �
*exp −t

ln 2ð Þ
L

� �
ð2Þ

The three degrees of freedom to optimize are the following:

– T≥0—the lag in the response of the system after a rainfall
event;

– D>0—the duration of this response;
– L—the duration of the relaxation of the system

Fig. 3 The Super-Sauze Landslide Observatory; landscape represented on an airborne LiDAR point clouds (left) and position of the monitoring systems (right)
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Based on optimization and inversion techniques, the IR model
is able to combine several types of input data (e.g. evapotranspi-
ration, internal source input, snow melt water), thus allowing us to
analyse the contribution of additional non-correlated entries to
the model.

The relationships linking a single output time series S to several
input data Ei are the following:

S ¼ β⋅
X

iγi
Γ i*Ei tð Þð Þ þ cst

� �
with

X
iγi
¼ 1 ð3Þ

Where β is a normalization constant, and γi and Γi, re-
spectively, are the contribution coefficient and the transfer
function of the input Ei, and cst, a constant corresponding
to constant contribution.

To characterize the contribution of melting snow as water
infiltration, a simple degree-day model has been used to create
time series of melt water from precipitation and air temperature
observations (Kustas et al. 1994). The model used in this work is
based on simple parameters such as a critical temperature Tc (in
°C) to characterize the quality of the precipitation (e.g. solid or
liquid) and a coefficient a (in m.°C−1.day−1) which define the
rate of snow melting (Eq. 4):

Potential snowmelt ¼ a⋅ T tð Þ–Tcð Þ if T tð Þ > Tc

Potential snowmelt ¼ 0 if T tð Þ < Tc

ð4Þ

According to sensitivity analysis further described in the
“Characteristics of the Super-Sauze Landslide Observatory”

Fig. 4 Spatial and temporal kinematic pattern observed at Super-Sauze; average velocity field observed during the period 1996–2007 from a network of ca. 40
benchmarks (a); observed ‘pore water pressure-displacement’ pattern at the annual scale (b) and at the event scale for a period of high groundwater level in May 1999 (c)
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section, the inputs data used for the IR modelling of both phe-
nomena (displacement velocities and fluctuation of water table
level) are the rainfall and the melting of the snow pack. A supple-
mentary water input, a source, is also considered, but as it can be
assumed to be constant (see the “Characteristics of the Super-
Sauze Landslide Observatory” section), it is integrated in the IR
models as a constant (constant of Eq. 3).

Mechanical viscoplastic model—MA
A simple 1D mechanical model based on the theory of limit
equilibrium of soil slopes and on a constitutive viscoplastic law
is considered from Herrera et al. (2009). The model consists of two
parts; the first part simulates the deformation of the mass and the
displacement pattern and the second part simulates the variations
in water table level and in pore water pressure. The model assumes
a rigid body, with an infinite mass of thickness h, sliding over a
pre-existing slip surface, characterized by an infinite slope, with a
shear zone of thickness d and an inclination α (Fig. 2).

Assuming that a Mohr-Coulomb criterion and a Bingham mod-
el can be used to estimate, respectively, the resisting forces and a
viscous force, the momentum equation along the slope direction is
defined by Eq. 5:

τ− cþ σn−pw tð Þ� �
⋅tanϕ

� 	 ¼ ρ⋅h⋅a tð Þ þ η
d
v tð Þ ð5Þ

where τ (in Pa) is the destabilizing shear stress, σn is the normal
stress (in Pa),∅ (in °) is the material friction angle, c (in Pa) is the
material cohesion, ρ is the soil density (in kg.m−3), η is the
viscosity (in Pa.s−1), d (in m) is the thickness of the shear zone,
pw(t) (in Pa) is the pore water pressure as a function of time, a(t)
(in m.s−2) is the acceleration as a function of time, and v(t) (in
m.s−1) is the velocity as a function of time.

The evolution of the water inside the landslide is evaluated
through two antagonist approaches: the increase in water level
through infiltration and the evacuation of water through
relaxation.

The daily effective precipitation amounts (e.g. water incoming
either from rainfall or from snowmelt, as defined in §2.1) are used
as direct inputs. Changes in groundwater level due to precipita-
tions are supposed, in first instance, to be directly proportional to
the effective rainfall intensity:

dzrecharge ¼ Iprecipitation
n

ð6Þ

where Iprecipitation is the effective precipitation (addition of rainfall
with snowmelt, in mm−2.day−1), n is the material porosity and
dzrecharge the daily change in groundwater level due to water
infiltration (in m).
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The dissipation of excess pore-fluid pressure in the saturated
layer is computed using Terzaghi’s one-dimensional consolidation
theory (Eq. 7):

epw tð Þ ¼ epw0⋅e
−k=Tv ð7Þ

where epw0 (in Pa) is the initial excess pore water pressure, k is the
number of days since the last recharge and Tv (in day) is the time
factor controlling the dissipation of the excess pore pressure.

With the assumptions of a groundwater flow parallel to the
slope surface, the pore water pressure is defined by Eq. 8:

pw ¼ z tð Þγw⋅cos2a ð8Þ

where z(t) (in m) is the position of the groundwater level, and γw is
the unit weight of water (in N.m−3).

According to these assumptions, the initial excess pore water
pressure (epw0) was estimated according to Eq. 9:

epw0 ¼ zmax tð Þ−z0½ �⋅γw⋅cos2a ð9Þ

where zmax (t) is equal to the highest groundwater level since the
last recharge (i.e. since the last time the effective rainfall has been
positive), and z0 is the groundwater when the landslide is at rest.

Hence, the variation of the pore water pressure is given by
Eq. 10 and the variation of water table level by Eq. 11:

Δpw ¼ Δpw ;recharge þ Δpw;dissipation ¼ Iprecipitation
n

⋅γw⋅cos
2αþ epw0⋅e

− k
Tv ⋅ 1−e

1
Tv

� � ð10Þ

Δz ¼ Δpwγw⋅cos
2α ð11Þ

The displacements are then computed by solving Eq. 5
using sequential quadratic programming algorithms (SQP)
(Boggs and Tolle 1996) to optimize some parameters, among

geometry parameters (h, d) and material properties (ρ, ϕ, η,
n, Tv). The choices of the parameters to be optimized as well
as the range values chosen for the optimisation, are discussed
in the “Characteristics of the Super-Sauze Landslide
Observatory” section.
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Coupled statistical-mechanical (IRMA) model
This model combines the IR and MA models. The IR model is
used to simulate groundwater level from the time series of ob-
served rain and temperature; then the mechanical part of the MA
model is used to compute the displacement rate of the landslide
directly from the computed groundwater levels converted into
pore water pressure.

Characteristics of the Super-Sauze Landslide Observatory
The Super-Sauze landslide is located in the French South Alps
(Barcelonnette Basin) and is continuously active since its trigger-
ing. The landslide is typical of flow-type gravitational processes
developed in Callovo-Oxfordian clay shales (e.g. called black marls
in the region). In the mid-1960s, the upper part of the Sauze
torrential catchment was affected by rock failures along pre-
existing lithological and tectonic discontinuities. The failed mate-
rial was composed of rocky panels progressively transformed into
a silty-sandy matrix. During successive weathering cycles, the
matrix has been altered resulting in marly fragments of heteroge-
neous sizes. From the 1970s until today, the landslide material has
been gradually filling the thalweg (Fig. 3). In 2007, the landslide
extents over a distance of 920 m between an elevation of 2,105 m at
the scarp and 1,740 m at the toe with an average width of 135 m and
an average slope of 25°. The total volume is estimated at
560,000 m3 (Travelletti and Malet 2012). The landslide consists of
two vertical units: the upper unit (5 to 10 m thick) is a moderately
stiff and semi-permeable material, while the second unit (with a
maximum thickness of 10 m) is a stiff and impervious material
(Malet and Maquaire 2003). A slip surface of 5 to 10 cm thick is
separating these two landslide units, as it was evidenced from
inclinometer measurements and observation of borehole samples
(Malet and Maquaire 2003). Detailed information on the hydro-
logical and geomechanical properties of this low plasticity and
intensely fissured reworked material can be found in Malet
(2003). These two landslide units overlay a bedrock of intact clay
shales.

The landslide is part of the French Multidisciplinary
Observatory of Versant Instabilities (OMIV) which aims at acquir-
ing and distributing multi-parameter observations on different
types of landslides through geomorphologic, geologic, hydrologic,
geophysical and seismological long-term monitoring. In this con-
text, the kinematics of the landslide is currently monitored by
differential Global Positioning System (campaigns and permanent
receivers), terrestrial laser scanning (TLS) surveys, remote very
high-resolution cameras and an extensometer (Travelletti and
Malet 2012).

Pore water pressures are monitored automatically in four pie-
zometers (B2, BV16, C3 and EV2; Fig. 4a) which are installed at
−4 m in depth with the top of the filter zone at −3 m sealed with
bentonite plugs. The high displacement rates require installation
of new piezometers approximately every 2 years at the same
location to monitor the hydrological features of the landslide over
long periods.

Meteorological parameters are monitored on the East part
of the landslide, at a distance of about 500 m (Fig. 3). The
maximum observed daily precipitation for the period 1999–
2010 reaches 81.4 mm.day−1, and the yearly total amount has
important variability ranging from 540 to 935 mm.year−1

(Fig. 5).

The deformation pattern is controlled by changes in the vertical
position of a perennial groundwater table resulting in the devel-
opment of positive/negative pore water pressure in the moving
material. These groundwater level fluctuations are controlled by
flow in the soil matrix and flow in large cracks and by in-depth
recharge from the torrents or from uphill springs bordering the
landslide (Malet et al. 2005; de Montety et al. 2007).

The displacement pattern is spatially heterogeneous (Fig. 4a);
the landslide is characterized by zones with different velocities
(0.001 to 0.03 m.day−1) according to the underlying bedrock
geometry and the average position of the groundwater level
(Travelletti and Malet 2012). Accelerations with velocities up to
0.4 m.day−1 may be observed each spring season (Fig. 4b).
Displacements are mainly parallel to the dip direction of the slope.

As an example, Fig. 4 shows the ‘pore water pressure-displace-
ment’ pattern at the annual (Fig. 4b) and event scales (Fig. 4c) at
several locations, for the period 1997–2001. Landslide fluidization
events have also been observed with velocity larger than
1 m.min−1; such as in 1999, 2001 and 2006 (van Asch et al. 2006).

The analysis focuses on the displacement time series of the
location BV16 (Figs. 4b and 5) which corresponds to the most
active part of the landslide; at that position, displacements are
measured in continuous by a wire extensometer (Malet et al.
2002), the total displacements observed for the period 1999–2010
reach more than 20 m (Fig. 5). The data displacements have been
previously smoothed to avoid negative displacement velocities.
When looking at the relationship between precipitations and land-
slide velocities, landslide velocities appear to be more influenced
by cumulative amounts of precipitation over several days than
maximum daily rainfall. For instance, the November 1st, 2003
heavy rainfall triggered neither acceleration of the mass nor a
fluidization event (Fig. 7). Moreover, when analysing the 10- and
50-day cumulative rainfall amounts (Fig. 6), we observe that flu-
idization events occur once the cumulative rainfall reaches more
than 160 mm. However, this threshold is not enough to
predict fluidization of the landslide. It has been overpassed
several times without any changes in the displacement re-
gimes of the landslide.

Table 1 Mean values of statistical criteria for the optimization of the IR, MA and
IRMA models

Prediction Optimized calibration
IR model MA model IRMA model

RMSE (m.day−1) 0.0043 0.0053 0.0049

Nash 0.4892 0.2037 0.2812

Table 2 Values of the viscoplastic model

Fixed
parameters

Values Optimized
parameters

Range of
value

α 25° Tv 4–400 days

g 10 m·s−2 n 0.001–0.59

d 0.2 m ϕ 18°–35°

c 14 kPa ρ 16–24 kN·m−3

h 9 m η 108–3 1011 Pa·s
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Before the occurrence of a fluidization event, the velocity of the
mass increases (Fig. 7). Compared with the evolution of the veloc-
ity modelled with the changes in pore water pressure, these indi-
cators could provide some rigorous criteria to forecast the possible
occurrence of a fluidisation event.

Validation of the methodology: model calibration and performance
evaluation
The objective of the model application is to predict daily displace-
ment from the precipitation time series. Therefore, the calibration
procedure has been performed on a daily basis by optimizing
model performance over several sizes of time windows. The used
optimization algorithm is the SQP method (sequential quadratic
programming) (Boggs and Tolle 1996) which is adapted to the
optimization of non-linear dynamic systems. Several parameters
have to be optimized with this procedure:

– For the IR model, for each time series of input (i.e. rainfall and
snow melt) the parameters T, D and L of the transfer function
are optimized. The respective contributions of these input
components (γi) as well as the coefficient β (defined in the
“Impulse response model—IR” section) are also optimized. So,

in the case of two input data (rainfall and snow), eight param-
eters have to be optimized (T1, D1, L1, T2, D2, L2, β, γ1).

– For the MA model, the choice of the parameters to be opti-
mized depends on the knowledge of the parameters for the
specific site. For instance, in the case of the Super-Sauze land-
slide and taking into account the outcomes of the sensitivity
analysis, six parameters are optimized, namely ϕ, ρ, η, n, Tv
and h while the other parameters are considered constant.

Indeed, the value of the parameters α and c are well established
in this site, thanks to in situ measurements (Spickermann et al.
2009; van Asch and Malet 2009). The parameters d and h are
directly related to η and ρ in Eq. 5, so it is also fixed. Concerning
the parameters ϕ, ρ, η, n and Tv, the range value for each of them
has been determined depending on the uncertainty of the values
and on the value which can be found in the literature. Thus, the
range for ϕ corresponds to the interval of uncertainty on the site;
for η and Tv, large ranges have been considered as reported in
different studies from the literature. For the IRMA model, the
same parameters of the IR model are optimized, including also
the zmax (defined in the “Mechanical viscoplastic model—MA”
section) and the adequate parameters of the mechanical part of
the MA model, so in this case ϕ, ρ and η.

The three models have been applied to the complete period (01/
01/1999–31/10/2006). A first validation of the model is performed
over 100-day successive periods. The different models are calibrat-
ed over periods of 100 days, displacements velocities are computed
on the same periods and then compared with the observed dis-
placements (Fig. 8). We can see that the cumulative displacements
computed by the three models fit the observed data with a very
good accuracy. The difference of values between observed and
calculated displacements is lower than 49 cm. The IR and the
IRMA models reproduce more precisely the short time variations
of displacements, whereas the MA model smooths the observed
data.

Various tests have been conducted to improve this model by the
integration of additional input data such as evapotranspiration
(calculated using the Penman-Monteith equation), the delay due
to snow accumulation and melting, the precipitation typologyFig. 10 Schematic framework of the forecasting procedure
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(liquid/solid) and the discharge of uphill and lateral springs. The
most accurate model is that considering two distinct impulse
responses (e.g. one for the rainfall, one for the snow) and inte-
grating the contribution of a source bringing a constant equivalent
of water fluxes of 10 mm.day−1.

The models are then tested for any day of the period of interest.
Before a given day D, an optimal calibration window size among a
period of 60 and 180 days is looked for. Results indicate that most
of the optimized windows are around 100 days. Then the model is
calibrated, and the displacements are computed on this period.
The next day of calibration is then shifted at D+1, and the proce-
dure is iterated. For the MA model, the parameters are optimized
within the range values detailed in Table 2.

The performance of the model is evaluated with the Nash and
RMSE (Root Mean Square Error) statistical criteria to measure
both the ability of the model to reproduce the finest evolutions
and the global tendency (Fig. 9 and Table 1). The IR model
provides variable but generally good accuracy, with Nash values
ranging from 0.07 to 0.96 and RMSE values from 5.7 10−4 to
1 . 10−2 m.day− 1 (F ig 9) . The mean value of RMSE is
4.3.10−3 m.day−1, and the mean value of Nash is 0.49 which indicate
a good quality model (Table 1).

The MA model and the IRMA model also provide good results
with, respectively, a mean Nash value of 0.20 and a mean RMSE
value of 5.3 10−3 m.day−1 and a mean Nash value of 0.28 and a

mean RMSE value of 4.9 10−3 m.day−1 (Table 1). The accuracy of
the models suggests the possibility of applying the three models as
a forecasting tool.

Application of the methodology: model prediction
The three models are then applied as potential forecasting tools
using the framework described in Fig. 10.

In order to test the ability of the methodology to be used in an
operational early warning system delivering daily warnings in near
real time, a prediction procedure has been developed and tested.
The method has been applied as if the new data were received each
morning and processed in real time on a daily basis.

Hence, for each day, the “new” received data are added to the
historical time series. The calibration is performed over time
windows of different durations (Fig. 10). The optimal calibration
is then used to predict the displacement for the three following
days, based on the meteorological data of these three next days,
assumed to be meteorological forecasts. The procedure is then
repeated for the next day, with a complete new calibration.

In order to test the 3-day prediction procedure, the daily pre-
dicted displacements are compared with the observed displace-
ments for the three predicted days. With this approach, the IR
model provides the best predicted displacements; the IRMA model
overestimates the displacement for the second part of the curve,
and the MA model slightly underestimates the displacements
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(Fig. 11). These results suggest that the models are adapted to
predict the movements (cumulative displacements and displace-
ment velocities) for the three following days (Fig. 12).

However, for other periods, some discrepancies between the
model and the observations exist (Fig. 13); for instance, the models
underestimate the displacement rates in December 2001 (green
arrow), resulting in a shift in the displacement. In December
2002 (pink arrow), the IR model is delayed, resulting in a delay
in the computed cumulative displacement.

Based on these results, it is then necessary to find rigorous
criteria and thresholds for predicting the occurrence of a cata-
strophic fluidization event. The inverse velocity criterion is
analysed as it has been already applied in other studies (Petley et
al. 2005, 2002; Rose and Hungr 2007). The analysis of the evolution
of the inverse velocity (Fig. 14) indicates that this parameter is not
suitable for predicting the occurrence of fluidization, as this pa-
rameter has been found to decrease, even if no fluidization phe-
nomenon occurs.

Another approach consists in analysing the evolution of some
parameters which are optimized each day according to the MA
model. In particular, it is interesting to focus on the evolution in

time of the consolidation time (Fig. 15) and the viscosity (Fig. 16).
It appears that the consolidation time strongly decreases during
the period preceding the occurrence of a fluidization event (from
01/11/2000 to 13/11/2000 and from 21/10/2006 to 31/10/2006) as well
as the viscosity largely increases at that time. However, this trend
can also be observed when no fluidization event has occurred.
Thus, these criteria are not suitable for predicting statistically a
fluidization event. During the period preceding the occurrence of a
fluidization event, the model is not able to reproduce the displace-
ment with a good accuracy. Indeed, the RMSE criterion computed
on the three predicted days largely increases, as can be observed
on Fig. 17, possibly indicating an important change in the mechan-
ical behaviour and kinematic regime of the landslide. Moreover,
the large increase of this criterion appears only before the occur-
rence of a flow (Fig. 18). This result suggests that the RMSE
variation could be a good indicator of the occurrence of a fluidi-
zation event several days before the occurrence of the event itself.

It is essential to propose rigorous thresholds for predicting the
occurrence of a catastrophic fluidization event. The two first
proposed thresholds are based on the normal law distribution of
the RMSE values, with the use of a threshold equal to the mean of

jan2001 jan2002 jan2003 jan2004 jan2005 jan2006 jan2007
0

2

4

6

8

10

12

14

date

ve
lo

ci
ty

 (
da

y/
m

m
)

 

 

inverse of the observed velocity

Fig. 14 Evolution of the
observed velocity over time

Oct2001 Dec2001 Feb2002 Apr2002 Jun2002 Aug2002 Oct2002 Dec2002
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Date
ve

lo
ci

ty
 (

m
/d

ay
)

 

 

Observed speed
IR Predicted speed
MA Predicted speed
IRMA predicted speed

Fig. 13 Predicted velocity
from September 2001
to January 2003

Original Paper

Landslides



the RMSE plus three standard deviation values of the RMSE and
the second one equal to the mean of the RMSE plus one standard
deviation values of the RMSE:

t 1a ¼ mean xð Þ þ 3σx ð12Þ

t 1b ¼ mean xð Þ þ σx ð13Þ

A third threshold is defined based on the curve detailed on
Fig. 19 where the RMSE values are sorted. The threshold is then
chosen at the curve limit between the low and the high values, at
the point of maximum curvature of the distribution.

These thresholds are proved not only to be efficient both
to predict the occurrence of the fluidization for the study case
but also not to launch false alarm. The threshold based on
the point of maximum curvature is not considered further in
the study in order to reduce the approximation which might
be present when determining where the maximum curvature
is.

Finally, the advance in alert before the occurrence of the flow is
analysed on the RMSE values for the two selected thresholds and
for the three models. They are compared to thresholds computed
on the basis of the observed displacement rates with the same
three criteria (Table 3).

The first conclusion is the dependency of the results on the
analysed fluidization events. Indeed, the delay provided by the IR
model with threshold t1 is 11 days for the event in 2000 and 3 days
for the event in 2006. As already suspected, the threshold t1b
provides better delays with an alert given between 10 and 19 days
before the occurrence of the event. Regarding the performance of
the models, the MA gives the worst results, whereas the coupled
model provides the best results when analysing the two fluidiza-
tion events.

With the two proposed thresholds, no false alarms would have
been raised during the study period, and also, no fluidization
event would have been missed. Therefore, in view of these results,
based on a limited period of time, the two proposed thresholds
remain potential good candidates for the early warning system.

Discussion and conclusions
The capability to predict the complex displacement pattern (accel-
eration, deceleration) of landslide is an important issue for early
warning. Most of the current alarm systems are based on simple
criteria, such as cumulative precipitation thresholds, which can
provide false alarms and make them therefore unreliable for
people.

A methodology has therefore been tested to combine meteoro-
logical observations with statistical and mechanical models to
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simulate the kinematic of landslides in their normal regime. The
three proposed models demonstrate their capability to reproduce
the landslide movements in regular situation, but not during
fluidization events. Hence, these expected changes in the model-

ling capacities of the models make some good criteria to predict
the acceleration of the landslides.

Furthermore, the use of models based on different approaches,
statistical and mechanical, ensures their complementarity. If one
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of the models would exhibit weaknesses in a specific context, the
other models are likely not to have the same deficiency. For
example, if at one site, piezometric levels are not available, the
IR and the direct precipitation-velocity MA models should be
applied, whereas the other IRMA model, as less constrained,
should be less effective.

The availability of data for early warning systems is a critical
point. For this tool, long (at least 60 days) time series of both
displacement and meteorological parameters are required. For
prediction purposes (e.g. early warning), the data should be pro-
vided on a regular basis, with reduced uncertainties.

Due to the particular conditions featuring the mountainous
environment and the dynamic of the object of study, most of the
data should be pre-processed. Snow thickness measures are often
lacking, and snow accumulation and additional water input due to
snow melting should often be assessed through empirical relation-
ships (e.g. solution of degree-day adopted in our tool).
Meteorological observations and predictions could also refer to a
station which is not located close to the monitored landslide.
Hence, hypothesis should be made to estimate the meteorological
conditions for the site, looking for homologue stations, where
climate features are likely to be similar. Even in this case, correc-
tions should be brought to take into account effects of elevation
and exposition on temperature and precipitations. Displacement
data are also likely to contain some noises that should be removed
before the computation of the landslide velocities required to
calibrate the models. In the presented case, the historical displace-
ment data have been previously smoothed, using averaging and
interpolation strategies. However, these techniques would not
work for data acquired in real time.

Another question raised by the approach is the selection of the
most pertinent thresholds. The use of statistical criteria (either the
ones based on moment values or the ones on distribution shapes),
even if objective and robust, could depend on the length of the dataset.

The proposed tool has proven to be valuable for the case study,
with the aforementioned assumptions, and for the specific studied
period, during which two fluidization events happened. In order to
extend the methodology and to make it a potential generic warn-
ing system, it would however be necessary to test it on other sites
to assess, for example, the potential influence of other geomor-
phological contexts or climatic patterns (such as the absence of
snow) on the validity of the methodology.

The methodology could be applied through an automatic tool,
which would collect on a regular basis meteorological and dis-
placement data on external dedicated servers. The time resolutions
of the models could then be adapted to the conditions of the
landslides. For example, a daily analysis would be performed on
a daily basis, but when thresholds would be passed, and warnings
sent, a finer resolution (up to hourly basis) could be adopted.

This type of approach, quite innovative, would help to
gather sufficient information from different sources of infor-
mation (slope monitoring, model simulations) in order to find
out if and when a slope is approaching collapse and to reduce
the uncertainties (e.g. heuristic experience of the expert) in
the assessment.
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