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The development of surfacefissures is an important indicator for understanding and forecasting slopemovements.
Landslide investigations therefore frequently include the elaboration and interpretation ofmaps representing their
spatial distribution, typically comprising intensive field work and instrumentation. It is only recently that aerial
photography with sub-decimetre spatial resolution is becoming more commonly available and opens a window
to analyse such features from a remote sensing perspective. While these data are in principle helpful to elaborate
maps from image interpretation techniques, there is still no image processing technique available to extract
efficiently these geomorphological features. This work proposes a largely automated technique for the mapping
of landslide surface fissures from very-high resolution aerial images. The processing chain includes the use of
filtering algorithms and post-processing of the filtered images using object-oriented analysis. The accuracy of
the resulting maps is assessed by comparisons with several expert maps in terms of affected area, fissure density
and fissure orientation. Under homogenous illumination conditions, true positive rates up to 65% and false positive
rates generally below 10% are achieved. The resulting fissure maps provide sufficient detail to infer mechanical
processes at the slope scale and to prioritize areas for more detailed ground investigations or monitoring.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Observations of features and structural patterns of earth surface
landforms can reveal information on the origin and mechanisms
controlling the geomorphological processes. Structural geology and
geomorphology have developed comprehensive concepts to delin-
eate geomorphological units and structure types from remote sensing
images, and infer about mechanical processes without necessarily
measuring displacement, deformation or the applied forces directly
(Melton, 1959; Davis and Reynolds, 1996; Passchier and Trouw,
2005; Pollard and Fletcher, 2005). Surface discontinuities observed
in rocks and sediments have proven to be valuable indicators of the
deformation history and stress pattern of the slope. For landslide
analysis, their observation and interpretation can contribute to a
better understanding of the controlling physical processes and help
in the assessment of the related hazards (McCalpin, 1984; Fleming
and Johnson, 1989; Parise, 2003). In hard-rock slopes, the analysis
of structural discontinuities (faults, bedding planes, joints, and frac-
tures) allows us to characterize potentially unstable areas (Hoek
and Bray, 1981; Matheson, 1983; Priest, 1993; Selby, 1993; Günther
et al., 2004; Jaboyedoff et al., 2004; Glenn et al., 2006). In soft-rock
slopes and sediments, the analysis of surface fissures may indicate
the development of future failures (Krauskopf et al., 1939; Shreve,
alet).

l rights reserved.
1966; Chowdhury and Zhang, 1991; Abramson et al., 2001; Khattak
et al., 2010) and is often considered as a geo-indicator of the activity
stage of a landslide. In sediments, the surface fissure characteristics
also influence water infiltration and drainage, which in turn affect
the ground-water system and the kinematic response of slopes to
hydrological events (Malet et al., 2003, 2005a; van Asch et al., 2009).

Maps of surface deformation features can be obtained by extensive
field surveys either through the direct visual observation of the topogra-
phy (Fleming et al., 1999; Meisina, 2006) or through the indirect mea-
sure of seismic wave propagation in tomography setups (Grandjean et
al., 2011; Bièvre et al., 2012). Relatively large fissures on landslides may
also be discernible in Very-High-Resolution (VHR) spaceborne images
(Glenn et al., 2006; Youssef et al., 2009), but typically, those structures
reachwidths in the decimetre-range and at present only airborne photo-
graphs provide sufficient detail for their detection in the centimetric
range. Recent studies (Eisenbeiss, 2009; Niethammer et al., 2011a)
have shown that VHR images acquired from unmanned aerial vehicles
(UAVs) are cost-efficient data sources for the monitoring of landslide
surfaces with sub-decimetric image resolution. Especially small UAVs
with payloads below 5 kg and operating altitudes below 2000 m are
expected to be employed much more frequently in coming years (Frost
and Sullivan Co., 2007) thoughmore specific regulations for their opera-
tional use are being discussed at national and international levels (Prats
et al., 2012; Watts et al., 2012).

Visual interpretation of VHR imagery is a classical method in geo-
morphology, but it remains subjective, and rather impractical for
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repetitive observations or the inspection of large areas. An increasing
number of studies therefore targeted the development of automated
techniques to extract relevant features from imagery (Graham et al.,
2010; Martha et al., 2010; Stumpf and Kerle, 2011). Although the
detection and extraction of linear features is a fundamental operation
in digital image processing (Quackenbush, 2004; Mendonca and
Campilho, 2006; Papari and Petkov, 2011), relatively few studies have
explored the application of automatic approaches for the mapping of
geomorphologically relevant linear features (Baruch and Filin, 2011;
Shruthi et al., 2011).

Considering the increasingly widespread availability of sub-
decimetre resolution images from UAVs and other airborne platforms,
this study targeted the development of a semi-automatic image analysis
technique to support geomorphologists in the detection, mapping and
characterization of landslide surface fissures from VHR aerial images.
In this context, the term “semi-automatic” expresses that the technique
requires user input to be adapted for different image types and environ-
mental settings. The developed method is based on a combination
of Gaussian directional filters, mathematical morphology and object-
oriented image analysis (OOA) and was tested on a set of multi-
temporal VHR images acquired at the Super-Sauze landslide (southeast
French Alps). The obtained results were compared tomanual mappings
carried out by experts combining image interpretation and field
surveys.

2. Types of surface fissure observed on landslides

Detailed observations of landslide surface fissures were provided by
Krauskopf et al. (1939) who adapted analogies from structural geology
for their interpretation and distinguished between strike–slip struc-
tures, normal faults, graben structures and compression structures. In
addition, Ter-Stephanian (1946) noticed the mechanical significance
of surfacefissures and elaborated a classification scheme relatingfissure
morphology and location within the landslide mass to corresponding
mechanical processes. This included a first-order differentiation be-
tween upper extension, side friction, central compression, and lower
creep-on cracks. Although some authors used similar classification
schemes (Bombard, 1968), the adopted terminology varies among
different authors and affected lithologies (Fleming and Johnson, 1989;
Cruden and Varnes, 1996; Fleming et al., 1999; Walter et al., 2009),
and the terms crack and fissure are often used synonymously to refer
to a variety of surface discontinuities.

Here, fissure is adopted as a generic term for open fractures on the
topographic surface of a natural slope. At first instance, transversal, lon-
gitudinal and diagonal fissures are distinguished according to their main
orientation axes relative to the dip of the slope. This terminology can be
used ad hoc to classify fissures solely based on geometric properties
observed in the field or in an image. A more refinedmechanical classifi-
cation such as provided in Ter-Stephanian (1946)will generally require
considerations of the fissure patterns, the involved material and the
local geometry of the slip surface. The term crack is used in this manu-
script when referring to genetic processes described within classical
fracture mechanics (Anderson, 2005). It should be noted that the term
crack is also often adopted to refer to shrinking–swelling induced
fractures (Malet et al., 2003) which are not the objective of this study.

Classical fracture mechanics postulates tensile opening, sliding and
tearing as the three basic modes for crack propagation (Fig. 1a). The
concept has been developed for brittle material but is also adopted to
explain fracturing of plastic materials at high deformation rates
(Schulson and Duval, 2009). Surface fissures may develop from a
combination of all three modes, whereas in practice, considering the
relatively low tensile fracture toughness of most geomaterials
(Backers, 2004; Ke et al., 2008; Schulson and Duval, 2009), tensile
fracturing can be expected to dominate the formation of fissures at
the free surfaces of a landslide. However, interpreting tension cracks
as a direct indicator for a purely tensile stress regime may often fall
too short. In fact, tensile fracturing may also result from relaxation of
tensile stresses that originate from deformation induced by shearing
and compression as well (Wang and Shrive, 1995). A mechanical inter-
pretation and classification of the fissures must therefore consider the
fissure pattern, material and landslide geometry.

Fig. 1b–d illustrates three typical fissure patterns that are fre-
quently used as geoindicators of specific deformation processes in
the above-cited studies. One commonly observed example for such
patterns is the formation of en-echelon fissure arrays (Fig. 1c), often
also termed Riedel shears (Riedel, 1929). They accommodate tensile
stress and shear stress typically resulting from shear in the bounding
zone of blocks moving with different displacement rates. Certain pat-
terns such as arrays of transversal fissures (Fig. 1b) are typically asso-
ciated with tension in the steeper upper slopes, whereas fissures
resulting from compression and lateral extension (Fig. 1d) are more
typically associated with gentler slopes in the transit and accumula-
tion zones of landsides (Sowers and Royster, 1978). For landslides
with a complex geometry, the position of those fissure patterns
may however deviate considerably from this simple scheme
(Niethammer et al., 2011a).

3. Study site and data

The Super-Sauzemudslide is an active slow-moving landslide located
in the Barcelonnette Basin in the Southern French Alps (Fig. 2) that
developed in weathered black marls in the 1960s, and features highly
variable displacement rates (from 0.01 to 0.40 m·day−1) controlled by
the local hydrological conditions (Malet et al., 2005a). The landslide
measures 950 m from the main scarp to the toe, and is up to 150 m
wide. The moving mass has a clay-rich matrix containing up to 30%
coarse gravel as well as larger boulders and blocks (Malet et al.,
2005a). The surface displays the signs of deformation in the form of
ridges, bulges, lobes and fissures but also markers of surface erosion
such as rills and small gullies. Unlike surrounding stable areas the land-
slide surface is largely bare and only at a few locations, especially at its
toe, cushion plants form small vegetation patches. Fissure widths of
0.01–0.40 m, lengths of more than 1.0 m and depths of up to 1.5 m
(Espinosa, 2009) can be observed in the field (Fig. 4b). During the last
15 years, the landslide has been investigated through numerous moni-
toring campaigns including in-situ geophysical measurements, terrestri-
al and airborne LiDAR (light detection and ranging) and the acquisition
of VHR optical imagery. In the VHR airborne optical images, the fissures
can be recognized as dark curvilinear structures (Fig. 2c–e) as soon as
their width approaches one pixel in size. Previous studies (Malet, 2003;
Niethammer et al., 2011a;Walter et al., 2012) already discussed relation-
ships between the observed fissure patterns (Fig. 2c–e) and strain
resulting from a spatially heterogeneous displacement field and interac-
tions between moving mass and the stable bedrock. However, a full
reconstruction of the complex bedrock geometry that may allow for a
more detailed characterisation of the underlying deformation mecha-
nisms has been conducted only recently (Travelletti and Malet, 2012).

3.1. Airborne acquisitions of VHR optical imagery at the Super-Sauze
landslide

Between April 2007 and October 2009, diverse imaging systems
and airborne platforms were used to acquire VHR images of the land-
slide at five different dates (Fig. 3). In July 2008, October 2008, and
October 2009, a low-cost UAV system equipped with compact camera
was operated at flight heights between 100 and 250 m yielding im-
ages of the surface with a ground resolution between 0.03 and
0.10 m. The individual images were corrected for barrel lens distor-
tion, rectified according to ground control points (GCPs) measured
with differential GPS (DGPS), and finally merged into one large
orthomosaic. Further details on the image acquisition and processing
were provided by Niethammer et al. (2010, 2011b) who quantified



Fig. 1. Generic types of surface fissures and their typical spatial occurrence within a landslide mass. (a) Modes of fracture propagation: mode I (opening), mode II (sliding) andmode
III (tearing). (b) Fissures developing predominately in mode I and resulting from tensile stress. (c) Fissures developing predominately in mode I and resulting from shear stress.
(d) Fissures developing predominantly in mode I resulting from compressive stress and lateral expansion. (e) Division of a landslide mass (Sowers and Royster, 1978).
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the residual positional error (x–y) for the October 2008 images with
0.5±0.57 m within the boundaries of the sliding area. The UAV
images for July 2008 and October 2009 are expected to provide better
positional accuracies because they were orthorectified using eleva-
tion models that were generated from a photogrammetric analysis
of the images.
Fig. 2. Oblique view of the Super-Sauze landslide combining a hillshade image derived from
(hashed black line), transport and accumulation zone (black outline), and area of interest for
ridges, (c) longitudinal fissures, (d) diagonal fissures at the boundary of the active part, an
During the two airborne LiDAR surveys in May 2007 and July 2009
(see Section 3.2), two orthomosaics of optical images with full cover-
age of the landslide were recorded using medium format cameras
(Fig. 3) mounted on, respectively an airplane and a helicopter. The
surveys used fully integrated systems for direct georeferencing and
orthorectification with LiDAR surface models (see Section 3.2),
an airborne LiDAR DTM (July 2009) and a UAV image (October 2008). (a) Main scarp
the multi-temporal analysis (white square). UAV image subsets show (b) compression

d (e) and transversal fissures.

image of Fig.�2


Fig. 3. Subsets of orthophotographs (see location in thewhite bounding box in Fig. 2a) acquired at five different dates with details of the acquisition systems and image ground resolutions.
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which in general provide sub-decimetre positional accuracy in the
x–y plane (Vallet, 2007).

For the study presented here, additionally 60 homologous tie
points on stable areas were manually selected in the available images
and showed a mean relative alignment error of 0.76±0.82 m among
the different acquisitions.

Further details on the adopted camera systems and the resolutions
of the images resulting from the five surveys are summarized in Fig. 3.
The figure also illustrates the considerable radiometric differences
among the five images originating from illumination changes, seasonal
variations and the distinct characteristics of the sensors. The scenes for
May 2007, October 2008 and October 2009were acquired under cloudy
conditions with diffuse sky radiation and consequently show a more
homogenous illumination of the surface. The scenes for July 2008 and
July 2009 in contrast were recorded under sunny sky yielding strong
contrast and many cast shadows. The latter are more prominent in the
image for July 2008 which was recorded in the morning hours, at a
relatively low sun angle. Although available methods for absolute and
relative radiometric correction can be employed for the radiometric
alignment of satellite images (Hong and Zhang, 2008; Vicente-Serrano
et al., 2008), to the best of our knowledge, no approach exists to accu-
rately align the radiometry of sub-decimetre images from different sen-
sors,with substantial changes in illumination, a complex topography and
changing surface characteristics. Initial test using histogram-matching,
linear-regression (Schott et al., 1988) and iteratively re-weighted regres-
sion (Canty and Nielsen, 2008) did not provide satisfactory results. Con-
sequently, no radiometric normalization was performed and the image
analysis technique was designed and tested with radiometric diverse
imagery.

In order to calibrate adjustable parameters of the detection algo-
rithm to the targeted fissures and the variable scene characteristics,
the processing was first tested on a subset of the terrain covering
~14,000 m2 in the central part of the landslide (Figs. 2a and 3). This
section was characterized by different fissure patterns and recorded
during all surveys (including July 2008 and October 2009 which did
not yield full coverage of the surface). Subsequently, the developed
workflow was applied on the full scenes for a comprehensive map-
ping and analysis of the fissure distribution. Corresponding results
for the full extent of the Super-Sauze landslide and their mechanical
significance are discussed in Section 5.2.

3.2. LiDAR DTM

Two airborne LiDAR surveys were conducted in May 2007 and July
2009, respectively. The first survey used a Riegl LMS-Q560 laser scan-
ner mounted on an airplane flying 600 m above the ground and
resulted in a mean point density of 0.9 pts m−2 after vegetation fil-
tering. The residual 3D positional error of the ground points was
quantified as 0.12 m. The second survey was conducted with a Riegl
Q240i laser scanner mounted on a helicopter and after vegetation
filtering resulted in a mean point cloud density of 3.2 pts m−2. The
residual 3D positional error of the ground points was 0.07 m. Contin-
uous surface rasters with a pixel size of 0.5 m were interpolated from
the respective point clouds using Delaunay triangulation. The
resulting surface was then adopted for the extraction of the principal
hydrological drainage lines.

3.3. Reference datasets: expert maps of surface fissures

Reference mappings of the fissure characteristics (type and distri-
bution) were elaborated by an expert geomorphologist familiar with
the study site. The fissures were first identified on-site during a field
survey carried out in October 2009 at the same time as the acquisition
of the UAV images. The position of the fissures was mapped using a
dGPS survey and terrestrial photographs. Then image interpretation
rules were defined to identify and digitize the fissures on the images

image of Fig.�3
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as polyline vectors using a 2D view and at a scale of 1:250. The image
interpretation rules were then applied to the four other images in
order to elaborate an expert fissure map for each date. The resulting
five maps were adopted as a reference to assess the performance of
the semi-automatic method.

4. Image processing methods

While first generic edge detection operators were already proposed
in the 1980s (Marr and Hildreth, 1980; Canny, 1986), the extraction of
linear features from imagery remains a challenging task in many disci-
plines such asmedical research (Mendonca and Campilho, 2006), earth
science (Shao et al., 2011; Shruthi et al., 2011) or signal processing
(Lampert and O'Keefe, 2011). For our focus, the specific challenges
posed for an automation of fissure detection can be summarized as
follows:

• The approach should be scalable to apply for variable fissure sizes
and image resolutions, and as insensitive as possible to variable ra-
diometric image characteristics;

• The technique should not respond to edges but enable the detection
of dark curvilinear structures that may be oriented at any direction.
Classical techniques such as Sobel operator and the Canny detectors
(González and Woods, 2008) have been designed specifically for
edge detection and are not directly applicable;

• The complex micro-topography, the presence of rock blocks and
gravels as well as small patches of vegetation yield highly textured
images. Consequently, the approach should enable us to smooth out
spurious signals from the noisy background while still retaining
small partially disconnected linear features of interest. Contextual
scene information should be taken into account to resolve ambigu-
ities of the local features.
Fig. 4. Images of surface fissures. (a) Subset (see extent in Fig. 3) of the UAV image from Octo
approximated with Gaussian curves. (b) Field photograph taken in October 2009.
Considering these challenges, a processing workflow including
three main stages was developed. Firstly, a set of scalable Gaussian fil-
ters is applied to detect fissure candidates and suppress responses at
edges. Secondly, a set of morphological filters is used to close small
gaps along the extracted candidates. Thirdly, an object-oriented pro-
cedure is followed to eliminate some of the false positives exploiting
higher-level scene information with contextual rules.
4.1. Stage 1: extraction of fissure candidates using a Gaussian matched
filtering algorithm

A particularly well-studied example for the detection of dark curvi-
linear structures is the extraction of dark blood vessels in photographs
of the human retina. Based on the observation that the cross-profiles of
the vessels resembles a Gaussian distribution, Chaudhuri et al. (1989)
proposed the use of a matched filter (MF) that is essentially a Gaussian
convolution kernel subtracted by its own mean value. As illustrated in
Fig. 4a, the cross-sections of surface fissures can be approximated with
a Gaussian distribution and an MF scaled to the size of the fissure will
give a peak response when crossing the fissure at an angle of approxi-
mately 90°. Because the MF still yields errors such as false detections at
step edges (Fig. 5a, c) numerous extensions (Hoover et al., 2000; Sofka
and Stewart, 2006) and alternative approaches (Mendonca and
Campilho, 2006; Soares et al., 2006) have been developed. Recently,
Zhang et al. (2010) proposed modification to the original MF filtering
approach integrating a first order derivative of a Gaussian function
(FDOG) to locally adapt the thresholds separating dark lines from
non-target features. Compared to other state-of-the-art algorithms
their approach provided competitive accuracies while being a compu-
tationally efficient and hence easier to apply on the large images
resulting from VHR remote sensing.
ber 2008 showing typical fissure patterns and (I–IV) grey-value profiles (green channel)

image of Fig.�4


Fig. 5. Illustration of the principles of the Gaussian filtering for (a–c and f–h) a simpli-
fied 1-D case, (d and i) a 3D visualization of 2D filters and (e and j) the filter responses
for the image subset in Fig. 4a. See text for details.
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For this study, a similar approach was implemented in ENVI-IDL
4.8 (ITT Visual Information Solutions). The algorithm and its parame-
terization are detailed below.

The MF is a two dimensional kernel defined in the x-direction by an
inverted Gaussian profile (Fig. 5b), and in the y-direction by replicates
of the same profile (Fig. 5d). It may be denoted as:

MF ¼ g x; y;σð Þ ¼ − 1ffiffiffiffiffiffi
2π

p
σ
e

x2

2σ2

� �
−m; for xj j ≤ 3σ ; yj j ≤ L=2 ð1Þ

where σ denotes the standard deviation of the Gaussian functions and
relates to the width of the targeted feature. To centre the kernel on
zero, it is subtracted by its own mean m. The extent of the kernel in
the x-direction is typically constrained to 3σ, whereas L defines the ex-
tent of the kernel in the y-direction and can be related to the length of
the fissures. Because the matched filter still yields false responses at
dark and bright step edges (Fig. 5c) Zhang et al. (2010) proposed to
use the response of the FDOG to locally adjust the thresholds which
are applied to classify the MF response into fissure and non-fissure
structures. In analogy to Eq. (1), the first order derivative filter may
be denoted as:

FDOG ¼ g′ x; y;σð Þ ¼ − 1ffiffiffiffiffiffi
2π

p
σ3

e
x2

2σ2

� �
; for xj j ≤ 3σ ; yj j ≤ L=2 ð2Þ

Fig. 5f illustrates that the FDOG responds with a single peak to
edges but with a zero crossing at the centre of the idealized fissure.
A simple mean filter can be applied to broaden the zero crossing
into a plateau covering the whole width of the fissure (Fig. 5f).
Subtracting the smoothed FDOG response from the MF response
will attenuate the signal at edges while at the position of the fissure
the full response is retained (Fig. 5h).

Since the orientation of the fissures is a priori unknown, multiple
rotated versions of the Gaussian filters are applied to the image and
for each pixel only the maximum response value is retained. This corre-
sponds to finding the angle θmax(x,y) whichmaximizes the filter response
at a given position in the image I(x,y) using:

θmax x;yð Þ ¼ argmax I x;yð Þ⊗MFθ
� �

; for 0<θi≤π ð3Þ

where ⊗ denotes the convolution operator and θ the orientation of the
MF.

The calculation of the maximum response image R can then be
obtained with:

R x;yð Þ ¼ I x;yð Þ⊗MFθ max x;yð Þ
h i

> 0 ð4Þ

where all negative response values are automatically set to zero and
only values greater than zero are retained. The FDOG filter is rotated
according to the determined θmax(x,y) and the corresponding response
image D can be derived by:

D x;yð Þ ¼ I x;yð Þ⊗FDOGθmax x;yð Þ⊗M
���

��� ð5Þ

where M denotes the above-mentioned mean filter used to broaden
the zero crossing to the width of the fissures.

While Zhang et al. (2010) used a very broad mean filter with a
fixed size, we suggest to use a kernel size that matches the width of
the Gaussian kernel (6σ) and is thereby related to the width of the
targeted features (Fig. 5a, f). In contrast to early studies where the
FDOG response was used to locally adapt the threshold (Zhang
et al., 2010) the final response image �R is obtained by subtracting
the FDOG from the GMF response using:

R x;yð Þ ¼ R x;yð Þ−Ct � D x;yð Þ ð6Þ

where Ct denotes a user defined trade off parameter to adjust the
sensitivity of the detection with typical range of values between 3
and 4. A threshold T is defined by:

T ¼ μ�R þ 2 σ�R ð7Þ

where μ�R is the mean of the response image �R andσ�R is the respective
standard deviation.

A binary fissure candidate map Fmap is obtained by applying the
threshold T on the response image �R using:

R x;yð Þ ≥T x;yð Þ : Fmap ¼ 1 and R x;yð ÞbT x;yð Þ : Fmap ¼ 0: ð8Þ

The thresholding after subtraction of the FDOG response was
found to provide a generally more robust attenuation of undesired

image of Fig.�5


Table 2
Summary of the thresholds adopted in the object-oriented post-processing routine. See
text for details.

Feature Thresholds

Shadow Redb100⁎, 40⁎⁎
Shadow ratio ≤0.33
Vegetation Ratio blue≤0.33+Otsu
Relative border to vegetation ≤0.15
Minimum angular difference >13°
Minimum length (clean up) ≥0.4 m
Minimum area (clean up) >0.1 m2

Minimum fissure density (clean up) >1%.10 m−2

⁎ For May 2007, July 2008 and October 2008.
⁎⁎ For July 2009 and October 2009.

Table 1
Parameter set of the Gaussian filters scaled according to the respective image resolution.

Image date May 2007 July 2008 October 2008 July 2009 October 2009

Pixel size [m] 0.10 0.10 0.08 0.05 0.05
σ [pixel] 0.60 0.60 0.75 1.20 1.20
L [pixel] 10 10 12 20 20
nθ 36 36 36 36 36
Ct 3.0 3.0 3.0 3.0 3.0
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edge responses than the technique previously applied by Zhang et al.
(2010).

In summary, the user needs to specify four simple parameters,
namely (1) the scale of the filter kernels in terms of σ, (2) the length
L of the kernel, (3) the constant Ct of the thresholding sensitivity and
(4) the number of orientations nθ at which the filters are calculated. In
this study, nθ was kept constant at 36 for all experiments, whereas, if
computational time becomes an issue, the angular resolution may be
reduced to 12 steps without major losses of accuracy. To determine σ
a tool was created, which allows drawing profiles on the image
and automatically estimates the fitting Gaussian function (Fig. 4).
Cross-profiles of the smallest fissures visible in the image with the
coarsest resolution (0.1 m pixel−1) were best fitted by Gaussian
curves with σ≈0.6. To ensure a homogenous scale of the detected
features among all images, the kernel can be scaled by changing σ
relative to the image resolution. If, for instance, the image resolution
is increased to 0.08 m pixel−1, a value of σ≈0.75 yields a kernel with
the same physical size (Table 1). The same applies to the filter length
L which was estimated at 1 m corresponding to the typical minimum
length of the fissures. Resampling of the images can thereby be
avoided. In our experience, σ establishes the lower bound for the
width of the targeted features, whereas the filters still remain sensi-
tive to features which are up to 5 times larger. For the choice of σ it
is also helpful to note that the discrete kernel cannot represent
FDOG functions with σ≤0.5.

To assess the sensitivity of the parameters and to determine a suitable
threshold parameter Ct, a sensitivity analysis was carried out on a subset
of the October 2008 image. Based on a visual assessment, values of L=
1 m and σ=0.75 were found suitable for the detection of the fine fissure
structures. The preliminary analysis also showed that increasing the pa-
rameters L and σ directs the detection towards more elongated and
broader features, whereas in general the sensitivity of those parameters
is rather low compared to the influence of the threshold Ct. Values of
Fig. 6. Strategy used to connect broken line segments. (a) Working principle of the hit- and
for the plausible pixel neighbourhoods.
Ct={0.0, 1.0, 2.0, 3.0, and 4.0} were tested and based on a visual assess-
ment of the outputs, a value of Ct=3 was established for an optimal
trade-off between detection rate and the amount of false positives. The
final parameter set is summarized in Table 1.

4.2. Stage 2: connection of broken lines using structuring elements

The highly textured surface of the landslide constitutes a noisy
background that affects the detection especially at section where
the fissures are very thin or partially occluded. While a human oper-
ator can easily interpolate broken lines through perceptual grouping
(Metzger, 1975), this needs special attention for a semi-automated
mapping technique.

To close small gaps between broken line segments of the detected
candidates, a hit-or-miss transform algorithm (Serra, 1982) was
used. The transform assigns a value of 1 to each pixel whose local
neighbourhood fulfils the criteria defined by hit-and-miss structures
(Fig. 6a), also known as structuring elements. They were defined to
address all plausible 3-by-3 neighbourhoods representing small gaps
in the detection starting from four prototype hit-structures shown in
Fig. 6b. The respective miss-structures (Fig. 6c) are typically derived
by simply inverting the prototype hit-structures, and both elements
were rotated (Fig. 6d) to test for a total number of 24 possible
neighbourhood arrangements. Exceptional cases were thereby the
structuring elements for closing directly diagonal gaps, where an
extended neighbourhood was used for the hit-and-miss structures
(Fig. 6b, c) to prevent connections of lines running parallel to each
other.
miss transform, (b) hit structures, (c) miss structures and (d) respective rotations used
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Fig. 7. Illustration of the automatic threshold detection for the intermediate mapping of vegetation. (a) Subset of the October 2008 image at the toe of the landslide. (b) Ratio blue.
(c) Initial thresholding at ratio blueb0.33 to obtain vegetation candidates (yellow). (d) Histogram of the vegetation candidates with the automatically selected threshold. (e) Final
map of the vegetation (green).
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The connectivity of the line segmentswas also particularly important
for the subsequent object-oriented post-processing, where objects con-
stitute from pixels groups connected in a Von Neumann neighbourhood
(four adjacent pixels at each side), and small isolated objects could be
disregarded as noise.

4.3. Stage 3: object-oriented analysis for false positive removal

Due to visually similar objects, such as linear erosion features (rills
and small gullies) and elongated shadows induced by the micro-
topography, the fissure candidates resulting from the described filtering
routine may still comprise numerous false positive detections. While a
human interpreter can differentiate most of the false positives assessing
the geospatial context of the scene, the efficient use of such information
with automated systems is a challenge for object-oriented image
Fig. 8. Illustration of the object-oriented post-processing routine. (a) Fissure candidates tha
filter scale. The fissure candidates aligned with the linear structures at angles below ±13°
analysis. To exploit the contextual scene information for an automatized
refinement of the extracted fissure candidate maps, an object-oriented
routine that integrates spatial reasoning into an explicit form was
elaborated and implemented using eCognition 8.64 (Trimble, 2011).
The routine included the following steps:

1) The ratio of shadow around the detections is evaluated and candi-
dates with a ratio of shadow pixels in their smallest enclosing cir-
cle above 33% are regarded as false detections induced by shadings
of the micro-topography. This ratio threshold was determined
empirically through visual inspection of the candidate fissures,
and selected to capture elongated false detections with one side
lying fully in shaded zones. The threshold for shadow can thereby
be adjusted according to the illumination conditions and the
dynamic range of the image (Table 2).
t overlapped with linear structures. (b) Linear structure detected at a ten times greater
were removed.
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Fig. 9. Example of comparison of the obtained fissure maps with the expert mapping for October 2010 (fissures in red). (a) Area with relatively high agreement of the mapped
fissure patterns. (b) Area with relatively high rate of false negatives and false positives. The scale of the representations corresponds approximately to the scale used for the expert
mapping (1:250).
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Fig. 10. Receiver operating characteristics (ROC) plots for the fissured area at different map resolutions. The sky conditions for the five different dates are indicated.
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2) Further false detections may result from vegetation which typically
shows a lower reflectance in the green and red channel compared
to the blue. The blue ratio in the sum of all channels is consequently
typically below one third for vegetated areas. The suitable value
varies slightly with the illumination conditions and the season,
and Otsu's method (Otsu, 1979) was employed to automatically
adapt to such changes. Through an iterative testing of all possible
values, Otsu's method determines threshold value that maximizes
Fig. 11. Correlation between fissure density estimates at 5 m raster resolution based on sem
bottom display the R2 coefficient at different raster resolutions.
variance between two classes in an image. Hence, constraining the
search space to all pixels with a ratio blue below 33%, the algorithm
was used to determine the thresholds that maximize the contrast
between vegetation and the background (Fig. 7). Fissure candidates
covered by the resulting vegetation class, or having a relative
border length larger than 0.15, were subsequently removed.

3) Another class of frequent false detections resulted from linear ob-
jects such as rills, gullies and nearly vertical steps at the landslide
i-automatic detections and expert mappings from the five images. The bar plots at the
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flanks, which may locally obtain similar characteristics as the
targeted fissures. To test for the presence of larger linear features
and evaluate their relationship with fissure candidates, a strategy
to suppress additional false positives was required. For the mapping
of the larger linear elements, two sources were adopted. First drain-
age lines were extracted from the LiDAR DTMs using hydrological
standard tools (Tarboton et al., 1991) and enlarged with a
surrounding buffer of 0.5 m. A second approach was to repeat the
Gaussian filtering with the parameter set indicated in Table 1, but
with a two times increased scale σ and a five times coarser image
resolution (resampled with bilinear interpolation). This is equiva-
lent to a search with a 10 times larger scale providing a sufficiently
large scale difference to assure that none of the detected linear fea-
tures would correspond to fissures. The linear objects extracted
with both approaches were virtually overlaid with the fissure can-
didates, and the difference of the orientations of their respective
centre lines was adopted as criteria to evaluate if the fissure
candidate was in fact part of a larger linear object or constitutes
an independent structure (Fig. 8). Image-based measurements of
the angular offset of the fissured indicated a minimum offset of
about ±13°. Considering that the lowest effective friction angle
values measured for the landslide material are α′=26° (Malet et
al., 2005b), the thresholds are consistent with the orientation of
α′/2 that the Coulomb criterion predicts for the orientation of
shear fissures at the landslide boundary (Tchalenko, 1970).

4) A last filtering step was implemented by removing all candidates
with length not longer than 0.4 m and an area smaller than
0.1 m2. Finally, all fissure candidates falling in areas with a fissure
class density lower than 1% in a surrounding neighbourhood of
10 m2 were considered as noise and also removed.

Table 2 displays that most adopted thresholds were kept the same
among all the images and only the classification rule for the shadow
areas was adapted in order to compensate radiometric differences
in the input images.
5. Results and discussion

5.1. Comparison with multi-temporal manual mappings

The primary output of the developed processing routine is a map
of the detected fissures represented by polygons. Applying a
Delaunay triangulation that extracts the skeleton of those polygons
(Trimble, 2011), a 2D line representation, which enables a more
immediate comparison with expert mappings, can be obtained.

Fig. 9 displays an example of comparison between an expert map
and the result of the semi-automatic detection. A first visual assess-
ment of the obtained maps suggested better agreement of the fissure
patterns in areas with high contrast and low texture (Fig. 9a), where-
as false positives and false negatives concentrated in sections with
low contrast and increased surface texture (Fig. 9b).

For a quantitative assessment of the mapping accuracy, the
obtained results were compared with the expert mappings in the cen-
tral part of the landslide (Fig. 9c) at all five dates. While several accura-
cy measures for geographic line datasets have been already proposed,
there is still no consensus about one generally applicable technique
and the metrics should be selected according to the problem at hand
(Ariza-López and Mozas-Calvache, 2012). Here, we focus on three cru-
cial aspects of the map accuracy that may have direct implications for
their further use, namely the size of the affected (e.g. fissured) area,
the length and density of the fissures, and their orientation.
Fig. 12. Rose diagram plots with mean orientation (red line) and error statistics for the me
visualization, the rose diagrams where plotted over a hillshade of the landslide surface and
5.1.1. Size of the fissured area
Tveite and Langaas (1999) suggested an accuracy measure for line

datasets based on repeated buffering and overlay operations of
detected and reference line datasets. A similar strategy was adopted
in this study by repeatedly calculating true positive and false positives
rates from two raster data representing the detections and the expert
mapping at increasingly coarser resolutions. The raster data were cal-
culated at 10 cm steps for resolutions between 0.1 and 1.0 m, and
each pixel was assigned as fissured or non-fissured area according to
the presence or absence of a fissure in the detections and the reference
map, respectively. The resulting receiver operating characteristics
(ROC) plots are presented (Fig. 10). The analysis showed a correspon-
dence with the expert maps at true positive rates typically above 40%
and up to 65%. The false positive rates were below 5% except for the
scenes recorded with full sunlight where false positive rates up to 9%
could be observed (Fig. 10).

5.1.2. Fissure length and density
Hydrological models that integrate the influence of surface fis-

sures on infiltration and preferential flow have demonstrated that
the fraction of fissures per unit area is an important parameter with
considerable influence on the modelled water storage (Malet et al.,
2005a; Krzeminska et al., 2011). Such models are typically generated
at slope scale with grid resolutions below 10 m. To assess the accura-
cy of the extracted maps with respect to this potential application, the
fissure density was calculated as the line length in circular sliding
windows with diameters between 2 and 10 m, and compared
among automated detection and expert mappings.

The regression plots in Fig. 11 illustrate the correlation of the fissure
density estimates with a 5 m circular sliding window yielding coeffi-
cient of determination (R2) typically above 0.5. The regression analysis
further indicated generally higher densities resulting from the
semi-automatic detection originating from false positive detections
but also from a stronger generalization of the fissure line drawings
within the expert mapping. Exceptions from this general trend are
the results obtained from the image of July 2008 which was recorded
at a low sun incidence angle leading to a relatively low R5m

2 =0.36.
The bar plots in Fig. 11 display generally higher R2 values at increasing
resolutions of the density raster. This is a well-known effect of spatial
aggregation on correlation statistics (Gotway and Young, 2002) but
also reflects the contrast between stronger discrepancies of local details
and a better correspondence of the global fissure pattern pictured in
the respective maps. The highest correlation was observed among the
mappings for May 2007 with R10m

2 =0.88 indicating that the lower res-
olution of the corresponding input image was not an important factor
for the accuracy of the detection.

5.1.3. Fissure orientation
As outlined in the Introduction section, different fissure patterns

may signal respective mechanical processes, and statistics of the princi-
pal fracture orientation often allow us to estimate the directions of the
principal stresses (Pollard and Fletcher, 2005). The fissure orientations
were quantified as a third factor to assess the accuracy of the extracted
maps using rose diagrams frequently employed for the analysis and in-
terpretation of two dimensional orientation data (Jammalamadaka and
SenGupta, 2001). Rose diagrams with a bin width of 10° were comput-
ed on a 10 m regular grid for the semi-automatic detections and the
expert mappings at all five dates. Considering the length and direction
of each bin expressed as a respective vector the preferred fissure orien-
tation within a grid cell can be calculated by summing the vectors over
all bins. Taking into account all cells containing fissures in both the
an fissure orientation per 10 m grid cell for the test area at the five different dates. For
the scatterplot angles were centred at 90°.
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Fig. 13. Pseudo 3D view showing the landslide dynamics inferred from the fissure patterns detected in the aerial images of (a) May 2007 and (b) October 2008. (c, d, and e) Close up
views for October 2008 showing inferred landslide dynamics and stress vectors. The results are overlaid on a hillshade model of the topography of the stable bedrock proposed by
Travelletti and Malet (2012).
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expert map and the semi-automatic detection, the mean absolute error
(MAE) of themean orientations provides a quantitative measure for the
orientation accuracy.

The rose diagrams plots and error statistics in Fig. 12 depict MAE
values between 9.7° and 22.5° for the five dates. The detections on
the three scenes recorded under cloudy sky resulted inMAE not larger
than 10.7°, whereas the error rate clearly exceeded 20° with the
scenes of July 2008 and 2009 recorded with full sunlight at the sur-
face. The lower orientation accuracies are largely consistent with
the relatively low accuracies in terms of area (see Section 5.1.1) and
density (see Section 5.1.2) resulting from the detection at the latter
two dates.

5.2. Fissure patterns as possible geoindicators of deformation processes

For a comprehensive interpretation of the detected fissure pat-
terns at the scale of the entire slope, the scenes of May 2007, October
2008 and July 2009 offering a full coverage of the landslide, have been
analysed. However, considering the relatively low detection accuracy
on the sunlit images of July 2009, the interpretation was focused es-
sentially on the scenes of 2007 and 2008 spanning also over a period
with displacement rates significantly above the average annual rates
(Travelletti, 2011).

Comparing the detection results of May 2007 (Fig. 13a) and October
2008 (Fig. 13b), a significant increase in the abundance of fissures
could be noted for the entire landslide. This can be attributed to a
phase of strongly increased displacement rates (up to 3.5 m day−1)
in early June 2008 (Travelletti, 2011) preceding the UAV survey in
October 2008. However, in October 2008, the displacement rates al-
ready consolidated again at average rates between 0.01 and
0.03 m day−1, most of the fissures induced in June were preserved
and evolved at the surface until October. This view is supported by
the results obtained for the test area with the five scenes (Figs. 10
and 11) picturing rather a transient evolution than a complete reorga-
nization of the fissure patterns. Despite partially strong disagreement
in the absolute measured fissure density, both expert maps and
semi-automatic mapping showed an increase in fissure density after
May 2007, with higher values in October 2008 (Fig. 11) than directly
after the peak displacement in spring. Pluviometric records for the
area in 2008 show the relatively dry summer season with a cumulative
rainfall of 110 mm for the month of July, August and September,
suggesting that the increased fissure density in October is partially
caused by an increased brittleness of the upper soil layer that dried
out during summer.

Besides the general increase in the amount of fissures, it is intrigu-
ing to observe that at several local plots, similar fissure patterns can be
observed at approximately the same positions through time (Figs. 12
and 13a,b), despite maximal displacements of up to 55 m between
October 2008 and October 2009 (Niethammer et al., 2011a). This indi-
cates the recurrent continuous in-situ formation where the fissures
provide a close representation of the local strain field, similar as
observed for the evolution of glacier crevasses (Harper et al., 1998).

Previous studies (Malet, 2003; Niethammer et al., 2011a; Walter et
al., 2012) already observed close relationships between the occurrence
of fissures and the geometry of the stable bedrock at the Super-Sauze
landslide. They also noted a general contrast between higher water
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content and rather ductile behaviour in the lower subsurface (b1 m)
and typically lower water content of the topsoil yielding more brittle
behaviour at the surface. The surface fissures can therefore be under-
stood as the response to stresses induced in the topsoil through cou-
pling with ductile strain in the deeper subsurface. A similar model
was already described by Fleming and Johnson (1989) and adopted as
a basis to qualitatively estimate the patterns of flow and stresses from
a joint-interpretation (Fig. 13) of the detected fissure patterns and a
geometrical model of the stable bedrock (Travelletti and Malet, 2012).

Considering the bedrock geometry and a formation of the open fis-
sures normal to the direction of the least compressive stress (Pollard
and Fletcher, 2005), three different flow field patterns leading to the
fissure formation at the Super-Sauze landslide can be suggested.
First, lateral shear at external and internal landslide boundaries
aligned with the general flow field leads to the formation of diagonal
shear fissure arrays (Fig. 13e). Second, longitudinal compressive and
tensile strain related to abrupt changes in the slope of the sliding sur-
face induces tensile stresses at the surface that results in transversal
fissure arrays (Fig. 13c). Third, divergence of the flow field over topo-
graphic ridges and at the outlets of confining topographic channels
induces lateral extension and tensile stresses resulting in longitudinal
fissure arrays (Fig. 13d). At several locations, those processes overlap
and lead to the formation of mixed structures such as a radial fissure
patterns displayed in Figs. 4 and 13c, resulting from lateral shear and
longitudinal strain, and from a divergent stress field, respectively.

5.3. Accuracy and related uses

Deformation patterns at the surface of landslides are important indi-
cators for the mechanical processes, whereas the elaboration of detailed
maps of such features remains a challenging and time-consuming task.
While Sowers and Royster (1978) still argued that aerial photographs
do not reach sufficient resolution for such mappings, modern digital
sensors and new aerial platforms such as UAVs today provide the neces-
sary level of detail. Furthermore, this study demonstrated the possible
use of a semi-automatic image processing chain for the extraction of
surface fissure maps.

The accuracy of the method was assessed by comparisons with ex-
pert maps and demonstrated heterogeneous areal accuracies with true
positive rates of up to 65% and false positive rates generally below
10%. In addition, the orientation accuracy showed a variable quality of
the resulting maps with mean deviations between 9.7° and 22.5°. The
fissure densities derived from both maps have significant correlations
(R2=0.36–0.78), whereas the semi-automatic detections yield typically
higher estimates. Interestingly, this difference is more pronounced with
the images of 2009 (Fig. 10) reflecting the contrast between increased
semi-automatic detection rates at higher resolutions and the fixed
scale of the expert mapping. Contrariwise, the best agreement among
detection and expert maps was measured for the scene of May 2007
showing that the lower resolution does not necessarily yield lower accu-
racies. Generally, lower accuracies were observed for the scenes
recorded with full sunlight at the surface in July 2008 and 2009, and
the worst results were obtained for July 2008 when images were
recorded at a relatively low sun incidence angle. Since the direct sun-
light induces shading that affects the local contrast and global image
normalization methods cannot alleviate this problem, image acquisition
with diffuse skylight appears to be the generally better option.

In the initial stage of the processing chain, a low-level linear feature
detector is used. Similar techniques yield competitive results in medical
image analysis (Zhang et al., 2010), whereas the accuracies achieved
with aerial images in this study are still significantly lower. This must
be attributed to the generally higher complexity of outdoor scenes
and at the moment still requires additional steps and parameters to
take the contextual scene information into account. The use of an
OOA heuristic-based post-processing technique proved useful for the
removal of false positives and helped to objectify the image analysis
by transferring expert knowledge in an explicit form. The analysis still
relies on a number of fixed thresholds which may hinder an easy trans-
fer of the entire processing chain to a different geographic area. This
concerns especially parameters that require knowledge of the local
processes (e.g. minimum fissure length and effective friction angle),
while thresholds that can be determined directly from the image (e.g.
shadows and vegetation) may be adjusted more effortlessly.

The development of surface fissures precedes and accompanies
especially slow- and very slow-moving landslides (Cruden and
Varnes, 1996) making the developed technique particularly applica-
ble to such types of landslides and to potentially unstable slopes.
However, the spatial resolution of the acquired images must at least
match, or should ideally exceed, the width of the targeted fissures,
and the vegetation must be sufficiently sparse to permit direct view
on the bare ground. The results of this study demonstrate that if
those requirements are met, the obtained fissure maps can already
provide sufficient accuracy to infer the landslide dynamics and me-
chanical processes at the slope scale (see Section 5.2). Density maps
from both semi-automatic and expert mappings show a strong spatial
and temporal variability of the fissure abundance pointing toward
important local and temporal contrasts in the infiltration capacity
which may need considerations in the design of hydro-mechanical
models. An analysis of the evolution and mechanics of individual fis-
sures will however require higher temporal resolution and terrestrial
cameras have recently been installed at the surface of the landslide to
record imagery for further research in this direction. It would also be
desirable to test the developed technique for the investigation of
other landslides with different characteristics in order to validate a
more general applicability of the approach and the mechanical inter-
pretation of the observed fissure dynamics.

The OOA heuristics already considers multi-scale information to
some degree (see Section 4.3), whereas for further methodological im-
provements an explicit integration of an automatic scale selection tech-
nique at the low-level filtering stage appears as a promising approach to
further reduce heuristics and tuneable parameters (Stumpf et al., 2012).
The first and second stages of the proposed method are generic for the
detection of dark linear features, and could in principle also be applied
to detect other geomorphological and geological structures with similar
characteristics. The proposed technique might be of interest for
the mapping of gullies (Shruthi et al., 2011), geological lineaments
(Mallast et al., 2011), ice-glacier crevasses (Vaughan, 1993) or tectoni-
cally induced fractures (Allmendinger and González, 2010), sufficiently
larger to be depicted in sub-metre satellite images.

Considering the intrinsic disagreement in expert mappings of lin-
ear features, especially in the inter- and extrapolation of lines (Sander
et al., 1997), further studies should also include an assessment of the
uncertainties of reference maps since their quality can strongly bias
the evaluation of different alternative approaches (Lampert et al.,
submitted for publication).

6. Conclusions

This study developed an image processing chain to extract surface
fissures from heterogeneous sets of VHR aerial images and tested the
approach with a challenging multi-temporal set of images recorded at
the Super-Sauze landslide for five different dates. The first two stages
of the developedworkflow combine families of Gaussianmatched filters
and morphological filters, and are followed by an object-oriented analy-
sis to reduce the amount of false positive detection using contextual in-
formation and auxiliary topographic information. The detection results
can be represented in raster maps or optional by centre skeleton lines.

Under homogenous illumination conditions a comparison of the re-
sults with expert mapping demonstrated detection rates of up to 65%
and orientation errors below 10°. Contrary, the technique is relatively
sensitive to shading effects at full sunlight and prone to errors especially
at low sun incidence angle. A joint-interpretation of obtained fissure
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maps and of a 3D geometrical model of the stable bedrock demonstrat-
ed their complementary use for a better understanding of the geomor-
phological and geomechanical processes, such that the detected fissure
pattern may be used for first approximation for mechanical processes
in the recent deformation history of a slope. Possible directions for fur-
ther research are the reduction of tuneable parameters and a more im-
mediate exploitation of multi-scale information, as well as an adaption
of the technique to other linear features with geomorphological and
geological relevance.
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