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Abstract. Forecasting the possibility of flow-type failures
within a slow-moving landslide mass is rarely taken into ac-
count in quantitative hazard assessments. Therefore, this
paper focuses on the potential transition of sliding blocks
(slumps) into flow-like processes due to the generation of ex-
cess pore water pressure in undrained conditions. The gener-
ation of excess pore water pressure may be the consequence
of deformation of the landslide body during motion. Two
model concepts are proposed and discussed. The first con-
cept is the so calledstrain conceptmodel where emphasis is
laid on strain changes due to differential movement within
the moving mass. This may create zones of compression
and dilation and consequently excess pore water pressures.
The second concept is the so calledtopographical concept
model which focuses on changes in the stress field of the
landslide caused by geometric changes in topography of the
moving body. Both models were tested on two slumps which
developed in secondary scarps of the Super-Sauze mudslide
in the Barcelonnette Basin (South French Alps). The slump
which developed in 1999 showed complete fluidization; all
the material was removed from the source area and trans-
formed into a mudflow. The second slump, dated from 2006,
did not show fluidization; it has a relative short displacement
and all the material remained in the source area. It appeared
that thestrain conceptmodel predicted flow-type failure for
both slumps, after relative short displacements, while theto-
pographical conceptmodel predicted only flow-type failure
for the 1999 slump and not for the 2006 slump. Thestrain
conceptmodel seems too conservative in forecasting the flu-
idization potential of slumping blocks.
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(jeanphilippe.malet@eost.u-strasbg.fr)

1 Introduction

Although increasing attention is focused on vulnerability
analysis, risk assessment and risk management in landslide
research, there are still important issues related to hazard as-
sessment. Indeed, an essential part of any hazard assessment
is a quantitative estimate of the pre-failure and failure stages
defining the susceptibility of the slope or of the sliding mate-
rial to a dramatic acceleration or even to a flow-type failure
with important run-out distances and velocities. Some slope
movements are slow and ductile, other slope movements are
brittle, meaning that, after a certain prelude of slow deforma-
tion or as the result of sudden loading, they accelerate and po-
tentially fluidize (e.g. gradual deformation vs. rapid run-out).
The essence of analysing landslide motion should therefore
revolve around the accurate reproduction of the deceleration
and acceleration of landslide bodies and, in particular a re-
liable forecast of the potential transformation towards catas-
trophic, extremely rapid surges.

The preparatory work towards failure is related to slope
evolution in terms of related changes in stress field (Bruns-
den, 1999), of hydro-chemical and mechanical deteriora-
tion (e.g. damage), and of the development of crack systems
(Boukharov et al., 1995; Kilburn and Petley, 2003; Ami-
trano, 2003). In the last stage of the pre-failure process,
displacements can be monitored and detected but research
has still to be carried out to interpret the displacement curves
and the underlying propagation processes in order to forecast
acceleration periods (Petley et al., 2002; Helmstetter et al.,
2004). This issue is particularly important for intermittently
and gradually moving landslides which can partly evolve into
rapid gravitational flows. An important aspect of hazard as-
sessment is to better understand the controlling factors and
triggering processes of flow-type failure in fine-grained soils
because they determine the amount of initial material which
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has a major impact on the run-out distance in the track and
spreading on the depositional (fan) areas.

This requires a thorough understanding of the factors con-
trolling landslide motion. The parameterization of hydrolog-
ical and geomechanical factors by field and laboratory tests
is not always sufficient to describe the movement patterns of
these landslides (van Asch et al., 2006). The variations in the
hydro-mechanical properties over time and space and factors
operating at the field scale like geometrical effects (Nieuwen-
huis, 1991), deformation effects (Giusti et al., 1996; Picarelli
et al., 2005) and hydro-mechanical feed back mechanisms
(Keefer and Johnson, 1983; van Genuchten, 1989; Picarelli
et al., 1995; Angeli et al., 1996) have to be considered.

The focus of this paper is the analysis of the conditions of
flow-type failures of sliding material in soils. There are sev-
eral mechanisms which may generate fluidization in loosely
packed or dense soils (Ishihara, 1993), such as:

– the contraction of coarse-grained, loosely-packed satu-
rated soils during shearing (Harp et al., 1990; Anderson
and Riemer, 1995; Iverson et al., 1997; Dai et al., 1999;
Eckersley, 2000; Chu et al., 2003; Wang and Sassa,
2003);

– undrained loading of fine-grained, more densely packed
soils, caused by a changing stress field during initial
failure and the development of excess pore water pres-
sures because of alternate zones of compression and di-
latation controlled by changes in slope gradient along
the slip surface (Baum and Fleming, 1991; Picarelli et
al., 1995; Giusti et al., 1996; Klubertanz et al., 2000;
Comegna and Picarelli, 2005; van Asch et al., 2006);

– the progressive decrease in inter-granular stresses
caused by the rotation of the seepage force vector of
the groundwater flow in a direction opposite to gravity
(Iverson et al., 1997);

– the reduction of the soil porosity (e.g. void ratio) caused
by shearing breaks of the soil particles near the slip sur-
face (Sassa, 1998; Iverson et al., 2000).

In the literature, less attention was given to the role of
landslide geometry and kinematics in the possible fluidiza-
tion of the sliding material (van Asch et al., 2006). The aim
of this paper is to analyse two concepts of flow-type fail-
ure controlled by geometry and kinematic deformation of a
landslide body. Simple numerical models are tested on two
slump-type failures that occurred on the Super-Sauze mud-
slide in the Barcelonnette Basin (Southeast France). The first
slump exhibits a flow-type pattern while the second slump
did not show any sign of fluidization. The Super-Sauze mud-
slide is characterized by its capability to suddenly change
behaviour, and transform into muddy debris flows. Due to
their sediment volume, and their high mobility, debris-flows
induced by such landslide types are very dangerous. For haz-
ard assessment, it is therefore important to understand why

Fig. 1. Two main causes which may generate flow-type failures of
fine-grained landslides:(a) Deformation of the slices due to dif-
ferential displacementsS: εxx = (Xi−X′

i
)/Xi . Description of

the forces is detailed in the text.(b) Geometric changes of the to-
pography and consequent changes in the mobilized Coulomb shear
strength forcesT and normal forcesN ′ calculated according to the
Bishop equilibrium model.

and how some of these mudslides transform into debris-flows
while most of them stabilize and to analyze their hydrologi-
cal and geomechanical behaviour, which determine the run-
out characteristics (Malet et al., 2005).

2 Two concepts of flow-type failure caused by sliding
displacements

2.1 General description of the concepts

Two concepts have been developed to describe the conditions
for flow-type failures caused by sliding displacement. The
first concept is focussing on the strain process during move-
ment, which means a change in volume of the material and
hence a change in stress generating excess pore water pres-
sure. It is called thestrain concept model(Fig. 1a). The
second concept is focused on the change of the stress field
in each slice, caused by the topographical concept without
considering strain or volume change of the moving material
generating excess pore water pressure by undrained loading.
It is called thetopographical concept model(Fig. 1b).

2.2 Calculation of the displacement and velocity

In both concepts, the Bishop equation of limiting equilibrium
(Bishop, 1955) is used to analyse the role of different por-
tions of a landslide body, by dividing the area above the slip
surface into slices of a constant width. The landslide body is
therefore divided in our case in i slices of which Fig. 1 shows
three slices:i−1, i andi+1. The forces which are consid-
ered in these slices are given a suffix referring to the number
of the slice. For example,Pi−1 refers to slicei−1. In Fig. 1,
not all the forces and geometric information are depicted in
the same slice for reason of clarity. They are spread over the
three slices and give together complete information of what
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is needed for the analysis of one slice. They are used to cal-
culate the balance of forces per slice in order to calculate
the displacement of individual slices and the mass propaga-
tion down slope. The Bishop equation is used to resolve the
forces per slice and to integrate these forces over the total
number of slices to calculate the overall safety factor at the
start of the movement. Pore water pressure conditions at the
start are adjusted in order that instability occurs in the rigid
block for an overall safety factor which is chosen arbitrarily
at a value lower than the unity. Due to the unstable con-
ditions, which are initially created, displacement can start.
After failure it is assumed that a thin viscous slip surface of
thickness m and viscosityµ develops. The imposed insta-
bility creates excess shear stresses that are converted through
viscosity into displacement. During the movement there is
equilibrium between the driving force (D), the pressure force
(P ), the resisting force (T ) and the viscous resistance com-
ponent (η), for each slicei. It is assumed that the inertial term
due to acceleration can be neglected (Fig. 1). Therefore, the
mass balance can be written using Eq. (1):

Dt
i + P t

i − T t
i − v

η

m
li = 0 (1)

where the subscripti refers to slice numberi and the super-
script t to time stept . In the equations, the subscripti−1,
i, i+1 referring to slice numbers and the super scriptst−1,
t , t+1 referring to the time steps will be used only in case
more than one slice number or time step are considered in
the equation. In case subscripts and superscripts are omitted,
we are referring to slicei and time stept . In Eq. (1),li is the
length of the slip surface of slicei (Fig. 1a),m is the thick-
ness of the viscous shear zone andη is the viscosity of the
shear zone. Sincem is not known most of the time the ratio
ν/m is taken as a lumped parameter in the calibration.

The force in (Eq. 1) is defined by the tangential component
of the weight for a given slice (Eq. 2):

D = W sinα (2)

whereα is the angle of the slip surface of the slice.
The pressure termP in Eq. (1) at the start of movement is

derived from the horizontal inter-slice net force, which can
be solved for each slice according to Bishop’s limit equilib-
rium equation. The resistance termT in Eq. (1) is given by
Eqs. (3–4) according to Bishop (1955).

T = cl + (N − U) tanφ (3)

N =

[
W −

1
F

sinα (cl − U tanφ)
]
/mα

mα = cosα
(
1 + tanα

tanφ
F

) (4)

wherec andφ are respectively cohesion and friction angle
of the material,U is the pore water pressure (Fig. 1) andF

is the overall safety factor which is set arbitrarily at a value
lower than the unity.

The velocity v of a given slice i can be calculated by
rewriting Eq. (1) into Eq. (5):

v =
m

η

(
D + P − T

l

)
(5)

The displacementS during a time step1t for a given slicei
is given by Eq. (6):

S = v1 t (6)

The new volume in the next time step in slicei after move-
ment during time step1t is given by Eq. (7) in which volume
change by strain is ignored:

V t+1
i = St

i−1h
t
i−1 − St

i h
t
i (7)

wherehi is the height of slicei at the down slope side of
slicei (Fig. 1).

Knowing the new volumeV t+1
i of each slide, the new

heightht+1
i of each slice can be calculated by assuming that

h0=0, which is at the upper boundary of the landslide.
Equations (5–7) are fundamental to calculate the propaga-

tion of the mass of the individual slices down slope at each
time step, until the slices stop when the criteriaT >D+P in
Eq. (5) is true, and hence the velocity becomes negative.

2.3 Equations used in the strain concept modelt

In thestrain concept model, generation of excess pore water
pressure due to volume change of the mass during movement
is assumed. The most important dominant strain component
is the normal strain in the horizontal axisx (εxx) (−), which
can be calculated for slicei at time stept by Eq. (8):

εxx= −
(Si+1 cosαi+1−Si cosαi) + (Si cosαi−Si−1 cosαi−1)

li cosαi

(8)

Equation (8) follows the definition that compressive strain
is positive (εxx>0) and is related to a positive stress, while a
dilative strain is negative (εxx<0) and is related to a negative
stress.

By ignoring shear strain during movement and changes
in total stressσzz in the z-axis, van Asch et al. (2006) pro-
posed the simplified Eq. (9) relating the minor principal
stress change1σx to the minor principal strainεx assuming
thatεxx≈εx :

1σx = εxE (9)

whereE is the Young’s modulus of a nearly undrained mate-
rial.

In case of quasi-undrained loading conditions, a saturated
material and no shear strain (van Asch et al., 2006), the varia-
tion in pore water pressure1uini at the beginning of the time
step can be described by Skempton’s law (Smith and Smith,
1998) which in the case of1σx=0 reduces to Eq. (10):

1uini = (1 + A) 1σx = (1 + A) εxE (10)

whereA (−) is Skempton’s pore pressure coefficient.
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During a time step, dissipation of pore water pressure can
occur. An average fractional loss (Fr) of the excess pore wa-
ter pressure during a time step can be obtained using Terza-
ghi’s theory of consolidation for a half closed layer, assuming
an impermeable slip surface, vertical drainage upwards and
one-dimensional consolidation (Whitlow, 1995) by Eq. (11):

Fr = 1 −
16
π3

[
(π−2) e−

(
π2/4

)
T v

+
1
27 (3π−2) e−

(
9π2/4

)
T v

+
1

125 (5π−2) e−
(
25π2/4

)
T v

+ . . .
] (11)

whereTv is the dimensionless time factor of the consolida-
tion and pore water dissipation process.Fr must have a
value between 0 and 1; a value of 1 indicates a complete
dissipation of excess pore water pressure.Tv is defined by
Eq. (11):

T v =
Cvt

d2
(12)

wheret is time;d is the length of the drainage path which for
a half-closed layer equals to the thickness of the water layer,
Cv is the coefficient of consolidation which is linearly related
to the hydraulic conductivity of the material. The final value
of excess pore water pressure1Ufinal at the end of the time
step after consolidation is calculated with Eq. (12):

1Ufinal
i =

(
1uini

i − Fr1uini
i

)
li (13)

and is used to calculate the new value of pore water pressure
U in the next time step Eq. (13):

U t+1
i = U t

i + 1U
final,t
i (14)

The pore water pressureU can be expressed as a pore pres-
sure ratioru for slicei and at timet by Eq. (14):

ru =
U

W
(15)

The variation in the value of the total lateral stress term1Pi

during displacement is given by Eqs. (9) and (16):

1P = 1σx cosαh (16)

and is used in Eq. (17) to calculate the pressure termPi in
the next time step:

P t+1
i = P t

i + 1P t
i (17)

2.4 Equations used in the topographical concept model

The topographical concept modelis an adaptation of the
strain concept model in which excess pore water pressure
increases more slowly with displacement. Thetopograph-
ical concept modelis developed where no deformation of
the landslide body caused by differential movement is ob-
served, and considers only changes in the stress field caused
by changes in the topographical geometry of the landslide

body (Fig. 1b). Using Bishop’s equation, the driving forceD

and the maximum mobilized shear strengthT are calculated
by Eqs. (2–3). Equation (5) is used to calculate the veloc-
ity and route the slump mass in time assuming a Coulomb-
viscous material, and Eq. (7) is used to calculate the geomet-
rical changes of the mass in terms of new volumeV and new
weightW for each slice.

The change in geometry in this concept results in a change
for each slice of the mobilized shear strength1T and the nor-
mal effective force1N ′ between two time steps as indicated
by Eqs. (3–4). This change in geometry can be expressed in
terms of stresses by Eq. (18):

1σ ′
zz = 1N ′/l

1σzx = 1T/l
(18)

Equation (19) converts1σzz and1σzx (working as respec-
tively normal stress and shear stress at the slip plane) in
changes of principal stresses1σx and1σz (Whitlow, 1995).

1σz = 1σzx sin(45+ φ/2) + 1σzz sin(45− φ/2)

1σx = 1σzx cos(45+ φ/2) − 1σzz cos(45− φ/2)
(19)

Equation (20) gives the change in pore water pressure as a
function of the principal stressesσz andσx for saturated soil
according to Skempton’s law (Whitlow, 1995):

1u = 1σx + A(1σz − 1σx) (20)

whereA is a material constant.
Dissipation of pore water pressure in each time step is

again calculated according to Terzaghi’s theory of consoli-
dation, as discussed in Sect. 2.3.

3 Test of the flow-type failure concepts on field data

3.1 Geomorphological and geotechnical characteristics
of the slumps

Two flow-type failures, which developed in secondary scarps
on the upper part of the Super-Sauze mudslide in 1999 and
2006, enabled us to test the performance of the models. The
clay-rich Super-Sauze mudslide is characterized by a com-
plex style of activity associating continuous slow movement
(0.002 to 0.03 m day−1) of the body caused by internal creep
in relation to seasonal changes in pore water pressures, and
acceleration in relation to local lateral compression of the
material during motion, undrained loading and the develop-
ment of excess pore water pressures. These accelerations
have triggered muddy debris flows, as was for instance ob-
served in 1999, 2000, 2006 and 2008. Malet (2003) and
Malet et al. (2005) have stressed that these debris flows, trig-
gered in an impermeable stiff clay material, occurred through
a combination of heavy and sustained rainfalls, thawing soils
and snowmelt. Figure 2 indicates the source area of these
muddy debris flows, and the location of the cross-sections of
Fig. 3 for the failures of 1999 and 2006.
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Fig. 2. Geomorphologic features of the Super-Sauze mudslide in
the Barcelonnette area (France) in July 2008. Evidences of muddy
debris flows deposits are clearly recognizable in the middle part
of the mudslide in dark grey color, and correspond to debris flow
events that occurred in May 2008. The red lines indicate the loca-
tion of the cross-sections of Fig. 3.

The first failure occurred on 5 May 1999 and completely
fluidized into a muddy debris flow (Figs. 3a and 4a) with a
run-out distance of about 120 m. The mean gradient of the
slip surface of the slump is estimated at ca. 46 degrees. The
volume of the slump has been estimated at 2500 m3. The sec-
ond failure occurred on 25 October 2006 (Fig. 3b). The mean
gradient of the slip surface is estimated at ca. 28 degrees. The
surface displacement and the variation in pore water pressure
at the toe of the slump have been monitored by an extensome-
ter and a Casagrande-type piezometer (Fig. 4b). Figures 3b
and 4b show that the slumped material remained for a large
part in the source area and practical no flow-type behaviour
was observed after failure.

Figure 5 gives more details about the failure process of
2006. The main displacement took place in the period 25 Oc-
tober 2006–12 November 2006, which is around 18 days
(Fig. 5). The displacement measured in point A during that
period was about 5 m (Fig. 5). The groundwater level dur-
ing this failure period varied between –1.25 m and –0.75 m
below the topographical surface (Fig. 5). For the modeling
exercise, the groundwater was kept at a level of –0.75 m to
create a worst case scenario creating the maximum pore wa-
ter pressure induced by rain during the failure process.

3.2 Application of the concepts to the 1999 failure

The strain and thetopographical concept modelswere ap-
plied on the dataset available for the two failures in order to
test their performance to forecast fluidization. Table 1 indi-
cates the value of hydrological and geomechanical parame-
ters used in the modeling exercise.

Figure 6 shows the development of pore water pressure
during the 1999 failure calculated with thestrain concept
model. Pore water pressure for each slice is expressed in

Fig. 3. Schematic cross-section of the flow-type failure of 5 May
1999 (a) where all the soil material disappeared from the source
area and was transformed into a mudflow, and of 25 October 2006
(b) where a pre-failure and a post-failure topography has been re-
constructed from a dGPS survey. Note the difference in the hori-
zontal scale between Fig. 3a and b.

this figure and subsequent figures in terms of a pore pressure
ratio as indicated in Eq. (15). Whenru=1, the effective stress
between the grains is zero and the material is in a state of
fluidization

Figure 6 shows the successive fluidization of parts of the
slump from the toe upwards in relation to the mean displace-
ment of the slump. Once a displacement of 0.07 m is reached,
two slices between 17.5 and 20.0 m measured from the main
scarp, have reached a pore water pressure value of 1 and are
fluidized (Fig. 6). The figure shows that three slices between
10 and 15 m fluidized after a displacement of respectively
0.09 m, 0.14 m and 0.48 m. After a further displacement to
1.3 m, the overall safety factor increase to a value ofFs=1.1
and the landslide is assumed to stop (Table 2). Incidentally,
the upper part of the slump exhibits a decrease in pore wa-
ter pressure due to dilatation. Consequently, the pore water
pressure has been arbitrarily set at a minimum of zero as the
generation of very negative suction is hypothetical due to the
development of cracks in this dilative section.

The strain concept modelis not able to explain the total
fluidization of the slump, as observed in the field (van Asch
et al., 2006). The simulations indicate that about half of the
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Table 1. Geotechnical and hydrological characteristics of Terres Noires mudslide materials used for modeling the failures observed at
Super-Sauze in 1999 and 2006.

Parameter [unit] Value Source

Cohesion,c [kPa] 14 Laboratory1

Friction angle,φ [◦] 32 Laboratory1

Saturated hydraulic conductivity,Ksat [m s−1] 1.4 10−6 Laboratory1

Young’s elastic modulus [kPa] 3.2 104 Literature
Consolidation coefficient,Cv [m2 s−1] 6.36 10−7 Literature/Laboratory1

Skempton’s pore water pressure coefficient,A [−] 0.5 Literature
Dynamic viscosity,η [kPa s] 1999 failure: 1.21 10+3, 2006 failure: 7.41 10+6 Calibration

1 Values obtained from Malet (2003) and Maquaire et al. (2003).

Table 2. Comparison between observed and modeled displacements and fluidization potential for the 1999 and 2006 failures of the Super
Sauze mudslide.

Slump Model concept Displacement before the onset of fluidization [m] Total volume fluidized [%] Total displacement [m]

Observed Modeled Observed Modeled Observed Modeled

1999 Strain No data 0.07 m 100% 52% 120 m 1.3 m
Topographical No data 1.16 m 100% 44% 120 m 3.1 m

2006 Strain No fluid. 0.43 m 0% 48% 5.2 m 3.2 m
Topographical No fluid. No fluid. 0% 0% 5.2 m 5.1 m

Fig. 4. Geomorphologic features of the 1999 failure (a, side view on
the depositional area) and 2006 failure (b, face view on the source
and depositional areas).

Fig. 5. Groundwater level and displacement dataset monitored at
the toe of the 2006 failure (Point A, Figs. 3b and 4b) during the
failure period 25 October 2006–12 November 2006.

Nat. Hazards Earth Syst. Sci., 9, 1703–1711, 2009 www.nat-hazards-earth-syst-sci.net/9/1703/2009/
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Fig. 6. Development of pore water pressure for the individual slices
(indicated by the point symbols) of the 1999 failure in relation to
the mean displacement of the slump. A pore pressure ratio ofru=1
indicates fluidization of the slice.

slumping mass fluidized, while observation showed a nearly
100% fluidization (Malet et al., 2005). The stabilization of
the remaining part of the slump is certainly not correctly
simulated because of the calculated decrease in pore water
pressure towards zero in the upper part of the dilating slump
which adds strength to the soil and hence stability.

The application of thetopographical concept modelon the
1999 slump gives more or less the same result with respect to
the amount of fluidized volume, but the predicted displace-
ments are larger (1.16 m) before fluidization can start (Ta-
ble 2).

3.3 Application of the concepts to the 2006 failure

Application of the topographical concept modelto the
2006 failure is detailed on Fig. 7. Figure 7a shows the recon-
struction of the maximum level of the phreatic surface based
on groundwater levels observations at 42.5 m distance from
the crown in piezometer BV22 (Figs. 3b and 4b) and pre-
vious observations of maximum groundwater levels at 15 m
distance from the crown (Malet et al., 2005). Between these
two points, the position of the phreatic surface has been cali-
brated to obtain a safety factor at the start of the simulation of
Fs=0.98. In that case, the slope is unstable enough to reach
a displacement of 5 m before stoppage, which is in accor-
dance to the observed displacements monitored on the site
with an extensometer (Fig. 5). A comparison of the observed
and simulated post-failure topography (Fig. 7a) shows some
irregularities in the measured profile with minor scarps and
counter scarps. This may be ascribed to a more irregular slip
surface than the simple one used in the simulation. The sim-
ulated profile indicates also a thicker material accumulation
at the toe.

The dynamic viscosity parameter has been calibrated on
the run-out duration of a minimum of 18 days (Table 1;
Fig. 5). Figure 7b shows the distribution of pore water
pressure after displacement of respectively 3.06 m, 4.03 m,
4.67 m and 5.05 m calculated with thetopographical con-

Fig. 7. Numerical analysis of the 2006 failure with the topograph-
ical concept model.(a) Simulated groundwater levels and post-
failure topography.(b) development of pore water pressures for the
individual slices (indicated by the point symbols) of the 2006 failure
in relation to the mean displacement of the slump. A pore pressure
ratio ofru=1 indicates fluidization of the slice. GWL is the position
of the ground water level within the slump.

cept model. The slump stopped after 5.1 m and no fluidiza-
tion could be simulated. However pore water pressures rise
pretty high at the toe, which may explain some weakening
and larger run-out distances than modeled (Fig. 3).

The application of thetopographical model conceptindi-
cates a slight onset to fluidization in the lower part of the
slump after a displacement of 0.43 m. However according
to the strain concept model, 48% of the material has been
fluidized before the landslide stops (after a displacement of
3.2 m, see Table 2). It seems that thestrain concept model
gives a too conservative prediction of the fluidization poten-
tial of these slumps.

3.4 Sensitivity analyses

Given the natural variation of the input parameter values like
friction angle, cohesion, consolidation coefficient and elas-
ticity modulus (Table 1), one can ask whether the variation
of input parameters might affect the fluidization potential of
the failures investigated with the two concepts. The mod-
els indicate that an increase of 50% of the strength values
(cohesion, friction angle) will stabilize the landslide and no
movement took place. A decrease of the strength parameters
of 50% shows larger displacements before stabilization but
in all cases the same amounts of fluidization was predicted
as given in Table 2.
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Table 3. Effect of the consolidation coefficient (Cv) and elasticity modulus (E) on the fluidization potential for the 1999 and 2006 failures
at the Super Sauze mudslide.

Slump Model concept % fluidization by % change inCv % fluidization by % change inE Total volume
+50% 0% −50% +50% 0% −50% Observed

1999 Strain 52% 52% 52% 52% 52% 52%
100%

Topograpical 44% 44% 44%

2006 Strain 48% 48% 48% 48% 48% 23%
0%

Topographical 0% 0% 0%

A 50% increase of the consolidation coefficient (Cv) (Ta-
ble 3) shows the same fluidization potential for the differ-
ent scenarios (Table 2) but for larger displacements. A 50%
lowerCv value (less dissipation capacity) shows however no
higher fluidization figures. An increase in the elasticity mod-
ulus of 50% shows for thestrain concept model(not appli-
cable for thetopographical concept model) the same amount
of fluidization in all cases but after much shorter displace-
ments. A decrease in the elasticity modulus of 50% shows af-
ter larger displacements for the 1999 failure no change in the
total amount of fluidization. However for the 2006 failure,
smaller fluidization amounts are calculated (Table 3) than in-
dicated in Table 2.

4 Discussion and conclusion

The forecast of dangerous flow-like failures within slow-
moving landslides (coarse-grained or fine-grained) is an im-
portant aspect of landslide hazard assessment. This type of
failures has been observed several times at the Super-Sauze
mudslide. In this type of mudslide, characterized by dense
and very low permeable clay-silt matrix, not all failures are
able to fluidize. The slump-type failure observed in 2006 is
an example of a non flow-type failure, which has developed
more slowly on a flatter slip surface.

Two concepts of flow-type failure are proposed. The first
concept model is calledstrain modeland focuses on dif-
ferential displacement fields in a moving body creating, re-
spectively, compaction and dilatation zones and generating,
respectively, excess positive and negative pore water pres-
sures. The second concept is calledtopographical modeland
describes changes in the stress field of the landslide body
caused by geometric changes of the topographical surface
during displacement. The test of the models indicates that the
strain modelis the most conservative in the sense that it fore-
casts flow-type failure for relative short displacements. The
strain modelforecasts fluidized material for both slumps,
while thetopographical modelshowed only fluidization for
the 1999 failure and not for the 2006 failure.

A sensitivity analysis on the the consolidation coefficient
(Cv) and elasticity modulus (E) shows no great influence in
the outcome of the results as can be concluded by compar-
ing Tables 2 and 3. This is caused by the fact that in our

model the geometry of the slip surface and the topographical
change are the dominant factors which determine the total
amount of fluidized material. A change inCv or E will be
compensated in most cases by a change of the displacement
before fluidization takes place. However it is important to
consider also the rate of failure because that has a great effect
on the amount of dissipation (Cv) during the moving period
and hence on the fluidization potential.

The total volume of fluidized material is not predicted by
the models. An assumption is that the decrease of pore wa-
ter pressure in the dilative zones is not correctly simulated
by the model. These calculated pore water pressure values
may be too low causing the remaining material to stop too
early and therefore the model underestimates the volume of
fluidized material. In the case of the 1999 failure, decrease
in pore water pressure may not have occurred in the field due
to the formation of tension cracks. Other processes may have
plaid also a role in generating flow-type failures, like the in-
fill of melt water in tensile fissures in the dilatation zone in
the upper part of this slump. This may have caused the total
mobilization and fluidization of the sliding material as was
observed.

The question arises whether in case of partly saturated ma-
terial (lower initial groundwater tables) fluidization is possi-
ble. In that case, fluidization of the saturated material is still
possible but pore water dissipation is also faster due to the
relative lower water table. Partly saturated slumps may flow
away with on top more rigid unsaturated material. In our
case for both events the groundwater table was nearly at the
topographical surface.

One can ask whether lateral spreading has an effect on the
fluidization process and the potential for run-out of the flu-
idized material. In our concept, fluidization induced by in-
ternal deformation or topographical loading, has occurred al-
ready before spreading can take place. The spreading means
a thinning of the mass, which may increase the pore pres-
sure dissipation rate and may therefore influence the run-out
process.
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