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Abstract

The generation of excess pore pressure and possible liquefaction can be explained by different mechanisms. In literature, less
attention is given to the effects of landslide geometry and kinematic deformation on the generation of excess pore pressure and
possible liquefaction of sliding blocks. The objective of this paper is to discuss these factors by proposing a simple analytical model
of landslide liquefaction using classic soil mechanics theory. The model describes the initial state of failure and solves forces for
each slice with the Bishop's limit equilibrium method. Immediately after failure the difference in movement for each slice is
calculated assuming a viscous shear band and using the Coulomb-viscous model. The differential movements conduct to
differential strains which are transferred to excess pore pressures. In slides characterized by curved slip surfaces, the lower parts
showed compaction and increase in pore pressures during displacement, while the upper parts showed dilatation and a decrease in
pore pressures. The potential liquefaction is then evaluated for each slice in relation to the displacement.

The model is applied to a slump-type failure that occurred on the Super-Sauze mudslide (Southeast France) in compact clay-rich
material. It was observed that the slump completely liquefied into a flow. However, the model simulations were not able to
completely liquefy all the slices of the slump in case a decrease in pore pressures through dilatation was assumed in the upper part
of the slump. The decrease in pore pressures caused a rapid stabilisation of the remaining sliding body. In case a neutral pore
pressure was assumed in the upper part with dilatation, movement and deformation of the remaining slices could continue leading
to a nearly complete liquefaction of the slump.

Model simulations for many geometries of curved slip surfaces reveal that the liquefied volume increases with steeper slopes
and more curved slip surfaces. It is discussed also how planar slides, which in theory show small differential movement of the
individual slices and hence no large compaction, can completely liquefy through deformation at the toe.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In order to explain and specify how slow-moving
landslide transforms into debris flow, scientists and
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engineers have elaborated comprehensive theories using
well-established results from soil mechanics. In this view,
the transformation from a landslide into a debris flow is
depicted in three stages as underlined by Ancey (2001):
(a) failure localized along a surface within a soil, gene-
rally described by the Mohr–Coulomb failure criterion,
(b) partial or complete liquefaction of the material as a
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result of high pore-fluid pressure, (c) initiation and
acceleration of the liquefied material. Although great
effort has been devoted to the study of pore pressure
generation and dissipation within a rigid landslide block,
the understanding of fluidization of landslides due to
differential movement and, hence, local compression in
the moving body is as yet limited.

In this paper, liquefaction is defined as the process
destroying the solid framework of a water-saturated
sediment and creating a mixture with the behaviour of a
liquid. From a mechanical view point, it represents the
conditions where excess pore-fluid pressure in a soil
mass is equal to the initial effective overburden.

There are several processes, which may generate
liquefaction in coarse-grained or fine-grained sediments
(Wang and Sassa, 2003). For coarse-grained, loosely
packed low-density soils (typically sands or volcanic
ashes), the most well known liquefaction mechanism is
the collapse of the soil structure due to the rapid gene-
ration of large plastic strains by applying a given stress or
load (Casagrande, 1971; Yoshimini et al., 1989; Harp
et al., 1990, Sasitharan et al., 1993; Anderson and Riemer,
1995). Several flume experiments have confirmed this
mechanism of contraction of the soil structure for sa-
turated materials in poorly drained conditions. For in-
stance, the experiments of Iverson et al. (1997) in a 95-m-
long channel, performed on coarse-grained loose soils
consisting of poorly sorted sands and fine gravels, showed
a dramatic increase in pore water pressure until liquefac-
tion at all depths throughout the sliding block. Laboratory
experiments carried out by Fuchu et al. (1999), Eckersley
(1990) and Chu et al. (2003) on loose soils in essentially
drained conditions showed the same mechanisms.

Mode of failure and initial bulk density seem to be
first-order factors controlling liquefaction failure accord-
ing toWang and Sassa (2003). They carried out a number
of laboratory flume tests on fine silica sand textures
mixed with silts at different densities. The authors show-
ed the influence of grain size on the optimal density for
which there is contraction of the materials and a maxi-
mum pore-pressure build-up during and after failure. In
addition, they clearly showed that pore pressures within
saturated loose sandy textures increased with increasing
velocities of the sliding block. Contracting behaviours
related to changes in stresses have been observed also at
the field scale for saturated materials (Olson et al., 2000).
Contraction may also occur in case of unsaturated ma-
terials. Olivares et al. (2003) did several triaxial tests and
laboratory flume experiments on loosely packed volcanic
ashes, which failed by increase in saturation caused by
rainfall infiltration and, consequently, reduction in suc-
tion strength. During wetting, the pyroclastic material
showed failure at rather low suction stresses but not
complete saturation. However, drastic volume decrease
occurs during failure, leading to saturation.

Apart from liquefaction induced by a contracting
behaviour of the soil masses, the possibility of dilating
behaviour prior to failure might also occur for dilative
loose sands that lie below the critical-state line such as
observed by Been et al. (1987), Fleming et al. (1989)
and Harp et al. (1990).

Another mechanism causing liquefaction is related to
the direction of the seepage forces of the groundwater
flow. For instance, in infinite slope stability analyses, it
is commonly assumed that the groundwater flow, and
hence, the seepage force vector, is parallel to the topo-
graphical surface. Common theory in soil mechanics
will show, however, that when the seepage force turns
more and more in a direction opposite to gravity, ef-
fective stress progressively decreases, may become null
and causes liquefaction of the sliding block (Nieuwen-
huis, 1989; Iverson et al., 1997).

Another theory is related to the complex moving
patterns of landslides. These landslides may have a net
excess force down-slope generating acceleration of the
moving block and, hence, an increase in translational
kinetic energy. A part of this energy may be conversed
to kinetic vibration energy of agitated soil particles.
According to Iverson et al. (1997), this energy can have
a positive feedback on the liquefaction process in the
landslide block. In flume experiments, it became clear
that complete liquefaction occurred during runout of the
material through agitation of the particles caused by the
vibration energy and the development of intergranular
pore pressures.

Finally, Sassa (1998) proposed another theory of
landslide liquefaction. He hypothesized that shearing
may break the soil particles near the slip surfaces causing
a reduction of void ratio and possibly liquefaction.

Among these theories, less attention was given in the
literature to the effects of landslide geometry and kine-
matic deformation in possible liquefaction of the sliding
block. The hypothesis, on the basis of field evidence and
literature review, is that excess pore pressures develop
because compression zones and extension zones may
arise in a moving body due to changes in slope gradient
along the slip surface or by thrusts of newly failing
slumping blocks in the upstream source area of the
landslide. For instance, Okura et al. (2002) showed in a
9-m-long flume associating a steeper slope and a flatter
slope, how the collapse of the soil on the steeper upslope
part induced compression, liquefaction and a new slide
in the lower less steep part. Savage and Smith (1986),
Baum and Fleming (1991), Picarelli et al. (1995) and
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Giusti et al. (1996) showed that internal deformation of
slow-moving landslides results in positive or negative
volumetric strain and hence the generation of negative
or positive excess pore pressure under initially un-
drained conditions.

The objective of this paper is therefore to analyse the
effect of geometry and kinematic deformation within a
landslide body on the development of excess pore pres-
sures and possible liquefaction. A simple analytical
model of landslide liquefaction (2LM, Landslide Lique-
faction Model) is proposed on the basis of classic soil
mechanics theory. The model is applied to a slump-type
failure that occurred on the Super-Sauze mudslide in
Southeast France. Sensitivity of the model to changes in
parameter values and landslide geometries are discussed.

2. The Landslide Liquefaction Model (2LM)

2.1. Model theory

The 2LM model is based on the theory of limiting
equilibrium of soils and on constitutive laws. Fig. 1
depicts the forces on a typical slice, explains the scheme
of the model and indicates the annotations used.

The stability of the rigid block is calculated with the
method of slices, assuming a trial circular failure surface
with the moving block divided into as many vertical
slices so that the slip surface is approximately linear for
each slice. The force balance is calculated with the
Bishop's Simplified Method (Eq. (1)) which satisfies
moment equilibrium and eliminates the effect of the
inter-slice shear forces by assuming that the vertical
component of the inter-slice forces is zero (Nash, 1987):

F ¼

Xi¼n

i¼1

c Vli þ Wi−Uið Þtanu V½ � 1
maiP

Wisinai

mai ¼ cosai 1þ tanai
tanu V
F

� �
ð1Þ

As the Bishop's equation is not explicit (F is on both
sides of the equal sign), the equation is solved iteratively.
The simulation starts by adjusting the pore-fluid pressure
conditions in such a way that instability occurs in the
rigid block at an overall safety factor chosen arbitrarily at
a value lower than the unity. Pore-fluid pressure is intro-
duced as a pore-pressure ratio value which is assumed to
be equal for each slice in order to facilitate the adjustment
to a certain safety factor value. The unstable conditions
which are initially imposed create excess shear stresses
that are then converted into displacements. During the
movement, the driving force (Di), the pressure force (Pi)
and the resisting force (Ri) are evaluated for each slice. It
is assumed that the inertial term due to acceleration in the
equation of motion can be neglected. Equilibrium
between the remaining forces is reached in the following
way (Fig. 1, Eq. (2)):

Di þ Pi−Ri ¼ 0YRi ¼ Di þ Pi ð2Þ
The driving force Di is defined by the parallel

component of the weight for each slice (Eq. (3)):

Di ¼ Wisinai ð3Þ
The pressure term Pi at the start of the movement is

approximated by calculating the horizontal inter-slice
net force ΔE for each slice according to Bishop's Sim-
plified Method. After failure, it is assumed that a thin
viscous slip surface of thickness m and viscosity μ
develops. The velocity vi of the sliding block (Eq. (4)) is
then calculated from the resisting term Ri with the gene-
ralized Bingham (Coulomb viscous) model (Johnson,
1970) where Ri is defined by a yield strength dependent
on the normal stress and on a viscous component:

Ri ¼ Si þ g
vi
m
liYvi ¼ m

g
Ri−Si
li

� �
Si ¼ cli þ ðWicosa−UiÞtanu

ð4Þ

The displacement ΔTi during a time step Δt for a
given slice is then given by Eq. (5):

DTi ¼ viDt ð5Þ
As we are not interested for our purpose in the

absolute value of the velocity but only in the relative
displacement ΔTi between the slices, it is assumed that
the largest dominant strain component (εxx) in the ho-
rizontal direction during the differential movement of
the slices can be calculated by Eq. (6):

exx ¼ −ðDTiþ1cosaiþ1−DTcosaiÞ þ ðDTcosai−DTi−1cosai−1Þ
bi

ð6Þ
Eq. (6) is in accordance with the definition that

compressive strains are positive (εxxN0) and are related
to positive compressive stresses, while dilative strains
are negative (εxxb0) and are related to negative stresses.
In a direction which makes an angle θ with the axis of
the largest principal strain, a relation can be found
between the principal strains εx, the shear strain εxy and
the normal strain εxx (Eq. (7)):

ex ¼ exx þ exy
1−cos2h ð7Þ



Fig. 1. Schematic force polygon for the Bishop's SimplifiedMethod of limiting equilibrium and representation of the Landslide LiquefactionModel (2LM).
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Since the amount of shear strain is ignored because it
is difficult to separate it from rotation in slump failures
(εxy=0 in Eq. (7)), hypothesis of equality between the
principal strains and the normal strain is assumed (Eq.
(8)):

excexx ð8Þ
The changes in principal strain εx are then translated

to changes in principal total stress (Δσx,) with the same
sign according to the following constitutive laws (Eqs.
(9a) and (9b)):

Drx ¼ ðex þ meyÞE
ð1−m2Þ ð9aÞ

Dry ¼ ðey þ mexÞE
ð1−m2Þ ¼ 0 ð9bÞ

where E is the Young's modulus (kPa) and ν(-) is the
Poisson's ratio. For nearly undrained conditions, ν must
be nearly 0.5. Totally undrained conditions cannot be
assumed because in that case volumetric modulus of
compressibility becomes infinite. In Eq. (9b), the changes
in total stress in the y-direction (Δσy) are ignored and the
combination of Eqs. (9a) and (9b) delivers (Eq. (10)):

Drx ¼ exE ð10Þ
where E is the Young's modulus of a nearly undrained
material. In case a saturated material, quasi-undrained
loading conditions and no shear strain are assumed, the
variation in pore-fluid pressure Δu can be described by
Skempton's law (Smith and Smith, 1998) which in our
case (Δσy=0) reduces to (Eq. (11)):

Du ¼ ð1þ AÞDrx ¼ ð1þ AÞexE ð11Þ
where A is Skempton's pore-pressure coefficient. The
pore pressure ratio ru(-) for the slice i at time t is then
given by Eq. (12):

rtui ¼
ut−1i þ Duti

hig
ð12Þ

where γ is the bulk unit weight (kN m−3) of the saturated
material. The variation in the value of the total lateral
stress ΔPi during displacement is given by Eqs. (10) and
(13):

DPi ¼ Drxxhi ð13Þ
and is used to calculate Pi in the next time step. Ac-
cording to Hungr (1995), the pressure term Pi has ulti-
mate values related respectively to the active and passive
Rankine states. For a cohesive material with an inclined
topographic surface, the Rankine states (pp, pa) are esti-
mated in terms of effective stress by Eq. (14) (Mazindrani
and Ganjali, 1997):

pp; pa ¼ cosb
cos2u

f 2gzcos2bþ 2ccosusinu
� �

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½4cos2bðcos2b−cos2uÞg2z2 þ 4c2cos2uþ 8cgzcos2bsinucosu�

p
g

−gzcosb

ð14Þ

The positive sign in Eq. (14) defines the passive
Rankine state and the negative sign defines the active
Rankine state. During motion, the active or passive
Rankine states occur according to Eq. (15) (Hungr,
1995; Koch, 1998):

active þð Þ; passive −ð Þ state act if Av
Axz0

pass if Av
Axb0

(
ð15Þ

Eq. (15) indicates that if the velocities are increasing
in a down-slope direction, dilatation occurs and the mass



Fig. 2. Decision structure of the landslide liquefaction model 2LM.
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transfers into an active Rankine state, while if velocities
are decreasing in a down-slope direction, compaction
occurs and the mass transfers into a passive Rankine
state. The active and passive stresses of Eq. (14) can be
integrated over depth according to Mazindrani and
Ganjali (1997) which deliver the ultimate active and
passive forces (Eq. (16)):

Pult
i;þ− ¼ 1

2
hipp;a ð16Þ

2.2. Model decision structure

Fig. 2 gives an overview of the decision structure of
the model. First, the initial global safety factor of the
sliding block is calculated according to (Eq. (1)). In the
model, the safety factor is manipulated by changing the
Fig. 3. Schematic sketch of a superficial slump-type failure observed on May
consists here of two materials :C1b is a silty-clay material and IND a silty-s
pore-fluid pressure conditions or the strength parameters
to start the simulations with a safety factor arbitrarily set
on a value of 0.98.

Then the displacements of the slices (ΔTi) are cal-
culated according to Eqs. (4) and (5). Due to the impos-
ed differential displacements, the horizontal strains are
calculated according to Eq. (6), to an updated value of
the pore pressure ratio ru (Eqs. (11) and (12)), to an
updated value of the resisting force Ri (Eq. (4)) and to an
updated value of the pressure term Pi (Eqs. (10) and
(13)). A couple of decisions are taken at each step (Fig. 2)
assuming that liquefaction of the slice occurs when the
pore pressure ratio surpasses the value of 1:

(1) In case both global safety factor and pore pressure
ratio are below unity (Fb1, rub1), the displace-
ment ΔTi is increased by a small increment of Δt
5, 1999 in the upper part of the Super-Sauze mudslide. The mudslide
and material.



Fig. 4. Analysis of the Super-Sauze superficial slump with the 2LMmodel. (a) Development of pore-fluid pressure for the individual slices in relation
to the mean displacement of the slump. A pore pressure ratio of ru=1 indicates liquefaction of the slice. (b) Changes in total lateral stress of the slices
during displacement. (c) Schematic geometry of the Super-Sauze slump used in the 2LM model.
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according to Eq. (5) and the strain-stress field is
re-calculated.

(2) Due to the continuing incremental displacements,
the global safety factor can surpass unity (FN1),
and the moving block may become stable. In that
case, the simulations stop at an arbitrarily chosen
safety factor of F=1.1.

(3) When the overall safety factor is below the unity
(Fb1), while in one slice the pore pressure ratio
surpasses the unity (ruN1), the liquefied slice is



Table 1
The Super-Sauze superficial slump: amount of displacement before
stabilisation and corresponding amount of liquefaction for different
values of Cs sand E with ν=0.495

E
(MPa)

Cs

(m2/kN)
Displacement
(m)

Slice
liquefied
(number)

Percentage of total
volume liquefied (%)

1.2 3.3.×10−5

stiff clay
0.54 4–8 52.6

0.36 0.5×10−5

normal
clay

1.60 4–8 52.6

Table 2
Amount of displacement and liquefaction before stabilization for
landslide with different slip surface curvatures and slope angles

Slope
gradient
(°)

Radius
of slip
circle
(m)

Displacement
before
stopping (m)

Slice
liquefied
(number)

Percentage
of total
volume
liquefied
(%)

c′
(kPa)

φ′
(°)

16 97.5 3.5 6–12 62.2 4.6 20
12 97.5 2.1 7–12 55.2 2.5 20
16 160 1.7 7–12 56.8 3.5 20
12 160 2.4 8–12 46.2 2.3 20
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deleted and a new global safety factor (without the
liquefied slice) is calculated. If the updated overall
safety factor remains below unity, the procedure is
restarted by adding a new incremental displace-
ment step ΔTi.

3. Field evaluation of 2LM: the case of the Super-
Sauze mudslide

The Super-Sauze mudslide affects the north-facing
slope of the Ubaye valley (Southeast French Alps), where
the combination of steep slopes (up to 35°), down-slope
stratigraphic dip of sensitive clay-shales (blackmarls) and
the lack of vegetation make this basin one of the most
landslide-, flow- and debris-flow-prone areas of Southeast
France (Maquaire et al., 2003). The clay-rich Super-Sauze
mudslide is characterized by a complex style of activity
because of its capability to suddenly change behaviour.
On the slow-moving mudslide (0.01–0.40 m day−1),
superficial slumps can develop in secondary scarp, which
may transform completely into muddy debris flows char-
acterized by high velocities and runout distances. A dozen
of events were observed in May 1999 on the site. Malet
et al. (2003, 2005) have stressed that these muddy debris-
flows, triggered in an impermeable stiff clay material,
occur through a combination of heavy and sustained
rainfalls, thawing soils and snowmelt.

The slump-type failure depicted in Fig. 3 completely
liquefied into a muddy debris flow. Avolume of material
of 135 m3 m−1 (corresponding to a total volume of
2500 m3) failed suddenly from the secondary scarp of
the mudslide and flowed rapidly on the hillslope. It is
important to notice that in this period only small volume
events were released (b5000 m3) from the large mud-
slide (750,000 m3). Nevertheless, morphological evi-
dences and numerical simulations prove that the release
of larger volumes is a realistic hazard scenario for spe-
cific climatic and hydro-geological conditions (Van
Asch et al., 2004; Malet et al., 2005).
The Landslide Liquefaction Model (2LM) has been
applied to analyse the liquefaction failure of the Super-
Sauze superficial slump. Fig. 4a shows the development
of pore-fluid pressure during movement assuming
strength parameters of c=30 kPa and ϕ=32°. Smith
and Smith (1998) mentioned a compression coefficient
for saturated stiff clays of 3.3×10−5 m2 kN−1. These
values were used to calculate the Young's modulus
assuming a Poisson's ratio of 0.495 corresponding to a
slightly compressive material. This delivers a Young's
modulus value of E=1.2 MPa, which lies in the range of
normally consolidated clays. Fig. 4b indicates the
successive liquefaction of the slices in the lower part of
the moving block in relation to the mean displacement of
the slices. Once a displacement of 0.07 m is reached, the
two lowest slices (number 8 and 7) exhibit a pore-fluid
pressure value of 1 and are liquefied. The slices numbers
6, 5 and 4 liquefied after a displacement of, respectively,
0.09 m, 0.14 m and 0.48 m. After a further displacement,
the global safety factor reached a value of 1.1 and the
simulation is stopped. The upslope slices exhibit a decrease
in pore-fluid pressure due to dilation. The minimum pore-
fluid pressure is arbitrarily set at zero. It is doubtful that
very negative suction may be generated due to the devel-
opment of fissures in this dilative section, and a temporary
increase in stability in the upper part of the slope is
expected due to this decrease in pore-fluid pressure. Fig. 4b
indicates the changes in total lateral stress due to the
differential displacement of the individual slices with an
increase in the lower part and a decrease in the upper part.

The results are also summarised in Table 1 showing that
about 50% of thematerial will liquefy after a displacement
of 0.54m. Table 1 also indicates that for a normal claywith
a lower compression coefficient Cs (Smith and Smith,
1998) and a lower Young's modulus (E=0.36 MPa) a
larger displacement of 1.6 m is necessary to arrive at the
same volume of liquefied material before stabilisation.

The 2LM simulations indicated, therefore, that about
half of the Super-Sauze superficial slump may liquefy,



Fig. 5. Development of pore-fluid pressure for the individual slices in relation to the mean displacement of a landslide with a steep slope (16°) and a
curved slip surface (radius of slip surface 97.5 m (see also Table 2).
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while observations showed a nearly 100% of liquefaction
(Malet et al., 2005). It is hypothesized that the stabilisation
of the remaining part of the slump is probably not correctly
simulated. This may be caused by the calculated decrease
in pore pressure towards zero in the upper part of the
dilating slump which adds too much strength and, hence,
too much stability. Decrease in pore pressure may rapidly
vanish or may not be generated in the dilatation zone due
to the formation of fissures. That means that the upper part
under more neutral pore-fluid pressure conditions still
couldmove further downwards, deform and partly liquefy.
A simulation was carried out for the Super-Sauze su-
perficial slump (Fig. 4c) in which it was assumed neutral
pore-fluid pressures in the dilating zone. In that case, the
upper part remains unstable and could move downwards
leading to the liquefaction of slice number 3 (after a
displacement of 2.82 m) and of slice number 2 (after a
displacement of 5.18m) (Fig. 4b,c).With this assumption,
nearly 93% of the superficial slump has liquefied.

4. The role of landslide geometry on landslide
liquefaction

Since this paper discusses the role of landslide geo-
metry in the development of excess pore-fluid pressure,
four hypothetical landslide geometries were analysed.



Table 3
Liquefaction of slices in relation to the displacements for a shallow
translational slump with a bending slip surface at the toe

Displacement before liquefying (m) Slice liquefied (number)

0.08 11–12
1.65 9–10
3.04 8
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Two geometries consisted of a slump-type landslide on a
16°-slope with two circular slip surfaces with a radius
of, respectively, 97.5 m and 160 m. Two geometries
were designed for a landslide on a 12° slope with two
slip circles, which have the same radius as on the 16°
slope (Table 2). The landslide materials are assumed to
be fully saturated; the friction angle ϕ-value is set at 20°
while the cohesion c was adapted in such a way that the
global safety factor at the start of movement was 0.98
(Table 2). Simulations were carried out for E=1.2 MPa
and ν=0.495. The movement stops at a safety factor of
1.1.

Fig. 5 shows the development of pore-fluid pressure
in relation to movement for the steeper slope (16°) with
the more curved slip circle (radius 97.5 m). As shown
already in Fig. 4, 2LM indicates that a landslide along a
curved slip surface creates dilatation (negative strain)
and hence lowering of the pore-fluid pressures from the
initial neutral pressure (ru=0.56) in the upper part; in the
lower part, displacements lead to compression and to an
increase in pore-fluid pressures until liquefaction. In that
case, the negative suction is given a minimum (ru=−1)
because it is assumed that there is a limitation on the
generation of suction due to the development of fissures
in the dilatation zone. Fig. 5 indicates that slice numbers
6–12 are liquefied before the landslide stops at the
arbitrarily overall safety factor of 1.1.

Table 2 suggests that with the same topographical
slope angle, more curved slip surfaces generate more
liquefaction. The same holds for a constant curvature
but steeper topographical slopes. As a consequence, one
can state that strongly curved slip surfaces on steeper
slopes generate increasing liquefied volumes. One can
expect from the above simulations on curved slip sur-
Fig. 6. Profile of a straight slip surfac
faces that shallow landslides, which have straight slip
surfaces more or less parallel to the topographical sur-
faces, will show limited compression or dilatation and,
therefore, will exhibit no liquefaction. However, there
are many examples where these superficial shallow
landslides transform into flows. One of the reasons
might be that deformation occurs at the toe of the land-
slide where the slip surfaces show a curve towards the
topographical surfaces.

Therefore, a straight slope with a straight slip surface
characterized by a curvature at the toe and, thus,
flattening of the slip surface angle (Fig. 6) was analyzed.
The slope was divided into 12 slices, labelled from the
top downwards. Both slip surface and topographical
surface have an angle of 18.4°. At slice number 8, the
slip surface angle starts to flatten until an angle 10.2° at
the ultimate toe. The landslide material is saturated;
strength parameters of c=5.5 kPa and ϕ=20° allow the
slope to be unstable. Table 3 indicates that the slices
numbers 8–12 located at the bending slip surface will
liquefy after a displacement of 3.04 m. The slope re-
mains unstable and the slices located upslope are also
able to liquefy when they arrive at the bending part and
have the possibility to move further. For example, slice
no. 8 has to travel 2.58 m to arrive at the bending part of
the slip surface and to be compressed.
e with a bending part at the toe.
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5. Discussion and conclusions

Landslide liquefaction is not only generated by the
volumetric collapse of loosely packed, coarse-grained ma-
terial. Liquefaction may also occur as well in dense fine-
grainedmaterial as, for example, the remouldedmaterial of
the clay–shale outcrops of Southeast France, through de-
formation and compression of the moving block.

According to the theoretical concept described in this
paper, differences in displacements result in negative
strains (dilation) in the upper parts of the landslides, while
in the lower parts, positive strains are generated and,
hence, compression which under undrained conditions
may result into liquefaction. According to this concept,
only a part of the moving block is able to liquefy.

The amount of liquefaction on a curved slip surface
depends on the position of the point along the slope
where downslope slices exhibit smaller displacements
than upslope slices, creating compression. This amount
of compression depends also on the curvature of the slip
surface creating large differences in displacements
between the slices. The 2LM simulations suggest that
liquefaction increases with steeper slopes and more
curved slip surfaces.

The 2LM model also shows possibilities for
liquefaction of shallow planar soil slumps. Liquefaction
of these landslides starts at the toe where the overall
straight slip surface, due to kinematic constraints, has to
show some bending in order to jump out of the more
stable regolith or soil mantle downslope. Liquefaction at
the toe increases the instability of the upper part of the
landslide with the straight slip surface. This upper part
further slides down and become compressed at the toe
zone with the flattening (curved) slip surface resulting in
further liquefaction.

The 2LM simulations indicate that about half of the
Super-Sauze superficial slump liquefied, while obser-
vation showed a nearly 100% liquefaction. Nearly total
liquefaction could be simulated by assuming that a
decrease in pore-fluid pressure in the dilative zone does
not occur due to the formation of tension cracks. How-
ever, in the case of Super-Sauze, possible infill of melt
water in tensile fissures in the dilatation zone in the
upper part of the slump may have caused the total
mobilization and liquefaction of the sliding material.

The 2LM model is very conservative in the way that
no dissipation is allowed during deformation and
failure. At this stage of development, dissipation is not
considered in the model because one has to know the
time period of movement and deformation to analyse the
effect of pore-fluid dissipation. Besides the process of
dissipation, pore-fluid pressure may be maintained or
even increased during movement due to vibration ener-
gy of the grains. The model describes, however, the
relative role of landslide geometry and kinematic de-
formation on the generation of excess pore pressure. It
explains why fine-grained rotational and translational
slides may show more or less flow-like features at the
toe through complete or partial liquefaction. Laboratory
flume tests in progress should allow verifying the here-
explained theory.
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