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ABSTRACT 
 
Surface fissures are important indicators for slope instability 
and their patterns reveal information about the distribution 
of strain and mechanical processes. The increasing 
availability of sub-decimeter resolution aerial images may 
enable the detection and mapping of such features with 
imagery. This study combines Gaussian matched filters and 
first order derivates in a multi-scale framework to address 
the semi-automatic detection of surface cracks with variable 
sizes. The accuracy of the detector was assessed with two 
expert mappings and compared to a corresponding single 
scale approach. 
 

Index Terms—surface cracks, landslide, unmanned 
aerial vehicles, matched filters 
 

1. INTRODUCTION 
 
Surface discontinuities observed in rocks and sediments 
have proven to be valuable indicators of the deformation 
history and stress pattern of slopes. For landslide analysis, 
their observation and interpretation can contribute to a better 
understanding of the controlling physical processes and help 
in the assessment of the related hazards [1, 2]. Surface 
fissures may indicate the development of future failures [3-5] 
and are often considered as a geo-indicator of the landslide 
activity stage. In sediments, the surface fissure 
characteristics also influence water infiltration and drainage, 
which in turn affect the ground-water system and the 
kinematic response of slopes to hydrological events [6].  

Recent studies [7] have shown that VHR images 
acquired from Unmanned Aerial Vehicles (UAVs) are cost-
efficient data sources for the monitoring of landslide 
surfaces at spatial resolutions that allow the recognition of 
surface features at sub-decimeter scale. Although the 
detection and extraction of linear features is a fundamental 

operation in digital image processing [8, 9], relatively few 
studies have explored the application of automatic 
approaches for the mapping of such features [10-13]. 
Therefore, this study targeted the development of a largely 
automated image analysis technique to detect landslide 
surface fissures from VHR aerial images. The developed 
method is based on scalable Gaussian directional filters that 
can be used at a single scale or with combined responses 
over multiple scales. The approach was tested on a VHR 
image acquired at the Super-Sauze landslide in the 
Southeast French Alps, and the obtained results were 
compared to manual mappings carried out by experts. 
 

 
Fig. 1 Test subset of the UAV image with fissures of different sizes 
marked exemplarily (red arrows). 
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2. DATA AND METHOD 
 
The study site is the slow-moving Super-Sauze landslide 
located in the Southern French Alps. In October 2010, 
Niethammer et al. conducted an aerial survey using a UAV 
system at flight heights between 100 and 250 m, resulting in 
imagery with a spatial resolution of 0.08 m. The image 
acquisition and processing is detailed in [7]. For this study 
35  35 m subset of the image was adopted, and the results 
of the automatic detection were compared with fissure maps 
elaborated by two experts. 

The fissures appear as dark curvy-linear features that are 
1–10 pixels wide and feature cross-profiles that resemble an 
inverted Gaussian function. Following earlier works that 
exploited such properties for the detection of retinal blood 
vessels [14, 15], a detection routine using a Gaussian 
matched filter (GMF) in combination with the first derivate 
of a Gaussian (FDOG) was implemented.  

The GMF is a two dimensional kernel with a zero mean 
defined in the x-direction by an inverted Gaussian profile 
(Fig. 2 b), and in the y-direction by replicates of the same 
profile (Fig. 2 d). The size of the kernel and corresponding 
weights is controlled be the standard deviation  of a 
constituting Gaussian function defined for |x| 3 , |y| L/2. 
The parameters  and L thereby adjust the filter to match the 
width and length of the targeted features, respectively.  

As illustrated in Fig. 2 c, the GMF yields spurious 
responses at step edges. This issue can be addressed using 
an FDOG kernel with the same parameters  and L (Fig. 2 g, 
i). As illustrated in Fig. 2 f, the FDOG filter responses have 
zero crossings at the location of the fissures. When 
smoothed with a mean filter of the same size as the kernel, 
the zero crossing yields a plateau with low values for the 
extent of the fissures. Subtracting the absolute values of the 
smoothed FDOG response from the GMF response yields 
the final filter output in which responses are suppressed at 
step edges (Fig. 2 h, j). For a stronger suppression of edge 
response, multiples of the FDOG response may be 
subtracted and the final output can be transferred into a 
binary response by selecting a threshold according to the 
desired detection sensitivity. Since in practice the 
orientation of the fissures is a priori unknown, multiple 
rotated versions of the Gaussian filters are applied to the 
image and for each pixel only the maximum response value 
is retained. This corresponds to finding the angle  
that maximizes the filter response at a given position in the 
image  using Eq. 1: 
 

       (1) 
    
where  is the convolution operator and  the orientation 
of the GMF, for . The variability of the 
fissure width also suggests a search among multiple scales, 
and it has been demonstrated that the family of Gaussian 
filters provides an adequate framework for scale-space 
analysis [16]. According to scale-space theory the Gaussian 

filter will yield a maximum response as it approaches the 
scale of a target feature present in the image. Applying the 
filter among a number of predefined scales and retaining for 
each pixel only the maximum response, this property can be 
used for automatic scale selection, as recently demonstrated 
for line detection applications [17]. This is similar to finding 
the orientation of the fissure and is expressed in Eq. 2: 

. (2) 
 

In summary, for each pixel the algorithm finds the GMF 
peak response orientation and scale, calculates the smoothed 
response of a corresponding FDOG at the same orientation 
and scale, and subtracts the FDOG from the GMF. All 
detections were performed on the green band of the image. 

 
Fig. 2 Illustration of the principles of the Gaussian filtering for a 
simplified 1-D case (a-c, f-h), a 3D visualization of 2D filters (d, i) 
and the filter responses on sample image patches (e, j). 
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3. RESULTS AND DISCUSSION 
 
Receiver operating characteristic (ROC) analysis is a 
frequently adopted technique to assess the performance of 
feature detection algorithms since it is not affected by class-
imbalance and allows for a threshold independent 
comparison between different algorithms [18]. A ROC 
analysis was carried out to assess the performance of the 
multi-scale fissure detection with respect to two expert maps 
and compare the results with the single-scale method. 
Considering a typical length of the targeted fissures of 
approximately 1 m, the length of the filter was kept constant 
at L=12 pixels for all experiments. 

The ROC plots in Fig. 3 d and h illustrate that in most 
cases the multi-scale algorithm outperforms the single-scale 
detector, whereas with more conservative thresholds and 
ground truth (Fig. 3 c) the single-scale detector with the 
smallest =0.6 still yielded lower false positive rates. This 
must be attributed to general prevalence of finer fissures and 
the overall broader responses resulting from peak responses 
at larger scales in the multi-scale detections. Considering 
however the less conservative reference image provided by 
the second operator (Fig. 3 g) the multi-scale detector 
outperforms also the single-scale detection at =0.6. 

In addition to competitive detection accuracies, the 
proposed algorithm liberates the user from an exhaustive 
search over all possible scales, and appears especially useful 
in situations in which the targeted features exhibit great size 
variability.  

A comparison of the manual mappings carried out by 
two human operators (Fig. 3 c, g) also reveals the 
uncertainty of the reference data, which is typical among the 
ground truth maps based on expert judgments. The inter-
observer agreement between two human operators still 
exceeds the accuracy of the automated detection, indicating 
that, for the specific task, the detector still lacks behind the 
general performance of human image interpreters, and 
further enhancements should be possible. However, in order 
to avoid a focus on individual image interpretations and an 
eventual reproduction of inherent errors, further efforts 
should take into account the ground truth uncertainties and 
agreement among a broader set of image interpreters. For 
this purpose, reference mappings from multiple human 
annotators have already been collected, and this is currently 
being used for further methodological developments and a 
comprehensive assessment of state-of-the-art crack 
detection methods in this specific domain. 

 
 

 
 

 
 

Fig. 3 ROC analysis of single and multi-scale detections (d, h) with two reference datasets (c, g). The best detection results are displayed 
at a true positive rate of 0.5 (a, b, e, f). 
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