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ABSTRACT 

 
Active learning (AL) is a powerful framework to reduce 
labeling costs in supervised classification. However, spatial 
constraints on the sampling design have not yet received 
much attention and still pose problems for the application of 
AL on remote sensing data. In this study such issues are 
addressed in the context of landslide inventory mapping and 
it is shown that region-based query functions that focus the 
labeling efforts on compact spatial batches may provide 
several advantages over point-wise queries. 
 

Index Terms—active learning, spatial sampling 
landslide inventory mapping, object-oriented image analysis  
 

1. INTRODUCTION 
 
Landslide inventory mapping is indispensable for landslide 
hazard and risk assessment, the quantification of erosion 
rates, and seismic hazard assessment. Very-High Resolution 
(VHR) remote sensing imagery to perform such tasks is now 
commonly available, whereas robust operational techniques 
to accelerate the mapping process are still lacking. A 
number of recent studies addressed this problem, developing 
object-oriented rule-based classifiers [1-3] that function 
without training data but often require adjustments of 
multiple thresholds when applied to new image data or 
geographic areas. Recently proposed supervised approaches 
fall into pixel-based studies using parametric classifiers [4] 
and approaches using object-oriented features and non-
parametric learning algorithms [5]. While only object-
oriented approaches can fully exploit the rich textural and 
spatial information content of VHR resolution images, both 
techniques still require an extensive amount of training data. 

The acquisition of training data is typically associated 
with significant costs and an optimal training set should 
therefore be as small as possible, while still providing the 
representative characteristics for the target classes. In the 

domain of machine learning, AL has evolved as a key 
concept to reduce the labeling costs [6] and recently has 
seen successful applications in remote sensing [7]. The 
general underlying idea of AL is to initialize a machine 
learning model with a small training set, and to subsequently 
exploit the model state and the data structure to iteratively 
select the most valuable sample that should be labelled by 
the user and added in the training set. With relatively few 
queries and labelled samples, an AL strategy should ideally 
yield at least the same accuracy than an equivalent classifier 
trained with many randomly selected samples. 

The iterative retraining of the classifier is typically a 
computational bottleneck of AL and it has been 
demonstrated that batch-mode query functions that consider 
the uncertainty and diversity of the samples [8, 9] are able to 
reduce the number of iterations significantly. Recent studies 
proposed AL strategies for semantic image segmentation by 
iteratively exploring hierarchical data representations [10, 
11], and highlighted the value of integrating additional 
spatio-contextual features.  

Most proposed approaches commonly query samples 
according to their position in the feature space and, 
assuming that the labeling costs of the queries are mutually 
independent, do not explicitly consider their position in 
geographic space. This typically yields a spatially dispersed 
distribution of samples and may incur the risk to revisit 
(during image interpretation or field work) the 
approximately same spatial location several times. Human 
scene interpretation generally involves the assessment of 
high-level contextual features [12], and this is in particular 
true for the identification of landslides in remote sensing 
images [13]. However, point-wise queries do not exploit the 
full interpreter knowledge of the spatial context around a 
particular point, suggesting region-based queries as a 
strategy that is more aligned with human perception. Fig. 1 
summarizes the time expenditure of an image interpreter in 
a small experiment labeling (i) 20 queries  selected by a 
region-based AL routine with a marker (Fig. 1a), and (ii) 20 
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queries  selected by a point-wise AL routine individually 
(Fig. 1b). This experiment shows that the maker-based 
labeling of regions is about 15 times slower than the 
labeling of individual segments. On the other hand, maker-
based labeling provides ~1900 labeled segments per 
iteration versus 1 for the segment-based labeling. 

 
Fig. 1 Comparison of time expenditure for (a) marker-based (red 
marking on a 32400 m2 region) and (b) point-wise (center of the 
red circle) labeling. Statistics were derived from different localities 
over 20 AL iterations, respectively. 

The authors of [14] considered spatial distances among 
points to enhance margin-based sampling for point-wise 
queries, yielding an algorithm that encourages a dispersed 
spatial distribution of the training points. Liu et al. [15] 
formulated an AL heuristic as a traveling salesman problem 
in order to minimize, in each iteration, the travel distances to 
the most uncertain points. 

To reduce the labeling costs in supervised landslide 
mapping, this study targets the development of a region-
based AL approach that enables to limit the user’s attention 
to a few interesting subsets of the study area, rather than 
querying individual points. It extends upon previous work 
on object-oriented landslide mapping from VHR remote 
sensing images [1, 5] and adopts the Random Forest (RF) 
framework [16], which already showed promising results as 
a base classifier for AL heuristics [17]. 

 
2. DATA AND METHODS 

 
2.1. Test site and data 
 
The study area is located in the Brazilian Serrana mountains, 
north of Nova Friburgo in the Rio de Janeiro state. On 11-12 
January 2011 the area was affected by heavy rainfalls which 
triggered thousands of landslides and killed more than 1500 
people [18]. Geoeye-1 images of the region were recorded 
on the 20 January 2011 and before the event on 26 May 
2010. The bi-temporal dataset was used together with a 

global digital elevation model at 30 m resolution [19]. A 
reference landslide inventory was obtained through visual 
interpretation of both images. For all experiments, a subset 
area of 9 km2 was selected. 
 
2.2. Image segmentation and feature extraction 
 
Image segmentation was performed on the post-landslide 
image with equal weights of the panchromatic and 
multispectral bands using the eCognition’s multi-resolution 
segmentation [20] with a scale factor of 20. Regarding the 
targeted landslides this corresponds to a strong over-
segmentation, which, compared to a coarser segmentation, 
reduces the impact of mixed segments on the accuracy of 
the final classified map [5]. For each of the resulting objects 
(~400.000), 106 features (e.g. intensity values, band ratios, 
texture, shape, neighborhood relationships, topographic 
location) were calculated and the class (landslide, non-
landslide) was assigned considering the overlap (majority 
vote) with the reference inventory. 
 
2.3. AL approaches 
 
The adopted AL approach follows the query-by-committee 
(QBC) strategy where the next sample is chosen according 
to maximum disagreement of the ensemble [21]. A RF with 
500 fully grown trees was adopted as a base classifier and 
the vote entropy (Eq. 1) was used as a measure of the 
classification uncertainty. 

 (1) 
 

where p0 and p1  are the fractions of the trees that classify a 
sample as non-landslide and landslide, respectively. Based 
on this notion of uncertainty, three approaches differing 
mainly in their query function were tested.  
The most basic approach is to start from only two samples 
(one per class) and choose in each iteration the segment with 
the highest entropy ( ) for labeling: this query per 
segment strategy is referred as QBCPS. 

Batch-mode AL can reduce computationally expensive 
classifier retraining [8, 9], and region-based batch queries 
enable the user to focus on one region and label hundreds of 
objects with a marker in relatively short time (Fig. 1). 
Therefore, a second approach is to query each time the 
region with the highest standard deviation of the entropy 
( , thereby encouraging the presence of 
uncertain and diverse samples within the batch; this 
approach is referred as QBCPR. 
As a more explicit method to enforce uncertainty and 
diversity of the spatial batch, a third approach is to choose 
out of the m (m > 1) regions with the highest entropy the one 
with the highest diversity. To quantify diversity for each 
unlabeled point within the m pre-selected regions, the 
Euclidean distance (in feature space) to the nearest training 
point is computed. In each iteration the distance 
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computation considers only features with a RF variable 
importance greater than 1%. The variable importance is the 
mean decrease in accuracy if the variable is randomly 
permuted [22]. The final sampling region is chosen out of m 
candidates according to the maximum standard deviation of 
the Euclidian distances ( , to favor both 
diversity within the batch and distinctiveness from the 
already known training set. We refer to this heuristic further 
as QBCPR+D and set m=3 for the experimental evaluation. 

All approaches were implemented in R [23] and the 
diameter of the search window was kept at 180 m for both 
region-based approaches. Labels were queried from the 
reference landslide inventory. 

 
3. RESULTS AND DISCUSSION 

 
The three approaches were compared in terms of accuracy 
gains (F-measure) per iterations and algorithm runtime 
averaged over 10 randomly seeded runs. The runs were 
initialized with segments (or segment center-points for the 
region-based queries) sampled randomly with stratification 
to ensure the presence of at least one landslide example in 
the initial set. 

Fig. 2 (a, b) indicate that all AL techniques clearly 
outperform random sampling. It also demonstrates that for 
the same accuracy level the region-based strategies require 
significantly less iterations as the point-wise approach, and 
especially the QBCPR+D heuristic reduces the necessary 
number of iterations by a factor of 11-25 (depending on the 
accuracy level) compared to the point-wise QBCPS. 

Taking into account the estimated differences in labeling 
time (Fig. 1) QBCPR+D provides slightly better accuracies 
in the same labeling time after 7 iterations (~500 s). A 
comparison of the results for the first 500 s remains rather 
inconclusive due to the high standard deviations (Fig. 2 c). 
Although the required labeling time is a clear indicator for 
the efficiency of AL algorithms it is important also to 
consider how the annotation time is distributed over 
individual queries to the user. For the current experiments 
labels were queried from a reference inventory and hence 
annotator accuracy as well as the annotator behavior could 
not be addressed. However, it seems evident that markings 
on 10 image patches place significantly less stress upon the 
user than 200 point wise yes-no decisions. Regarding 
algorithm runtime time the region-based approaches do not 
show significant differences but clearly outperform the per-
segment query strategy (Fig. 2 d). This must be attributed to 
the strongly reduced number of iterations as a general 
feature of batch-mode AL. 

Class-imbalance is an inherent issue in landslide 
mapping and may induce a bias toward the non-landslide 
class in the final map. Stratified bootstrap sampling can be 
used to adjust the class-ratio for the construction of each tree 
in the ensemble toward a ratio  (non-landslide/landslides), 
where user’s and producer’s accuracies balance. 

 
Fig. 2 (a,b) Comparison of the AL heuristics and random sampling 
in terms of accuracy gains (  and  over 10 runs) per query 
iterations (c) labeling time estimated according to the time 
expenditure per iteration as indicated in Fig. 1 and (d) the 
algorithm runtime without labeling time.  

 is generally unknown but may be approximated on 
subsets of the training data. Each classification tree is built 
on a bootstrap sample that omits ~37% of the original 
training data. Those out-of-bag (OOB) samples can be used 
to assess the generalization error [16] and were adopted here 
to estimate . For this purpose an iterative scheme that 
records the changes in user’s and producer’s according to 
the OOB samples, while systematically altering , was 
implemented. A value of =1.4 yielded a balance of both 
accuracy was observed and was used in the training of the 
final RF. 

 
Fig. 3 (a) Queried regions after 20 AL iterations. (b) Results with 
QBCPR+D after 20 iterations. Objects are represented by their 
center points. 
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Fig. 3 indicates that the estimated  yielded a balance of 
user’s and producer’s accuracy on the unlabeled test set with 
a F-measure of 0.75. Taking into account the segments that 
were labeled for training during 20 iterations the final map 
provided an accuracy of 0.81.  

In summary, the proposed AL techniques allow to 
significantly reduce the amount of required training data. 
Region-based approaches justify an increased labeling time 
per iteration as they can reduce the number of required 
iterations by a factor of 11-25. They thereby reduce the 
overall labeling costs as well as the algorithm runtime, and 
provide significantly better map results when compared to 
point-wise queries. A heuristic that explicitly encourages 
diversity of the queried spatial batches (QBCPR+D) provided 
the best results in the tested setting, but a more systematic 
assessment of parameters such as window size and variable 
importance are recommended. Further research should also 
address tests on different datasets and the integration of 
stratified bootstrapping into the AL routine. 
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