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[1] We analyze the volume distribution of natural rockfalls on different geological
settings (i.e., calcareous cliffs in the French Alps, Grenoble area, and granite Yosemite
cliffs, California Sierra) and different volume ranges (i.e., regional and worldwide
catalogs). Contrary to previous studies that included several types of landslides, we restrict
our analysis to rockfall sources which originated on subvertical cliffs. For the three data
sets, we find that the rockfall volumes follow a power law distribution with a similar
exponent value, within error bars. This power law distribution was also proposed for
rockfall volumes that occurred along road cuts. All these results argue for a recurrent
power law distribution of rockfall volumes on subvertical cliffs, for a large range of
rockfall sizes (102–1010 m3), regardless of the geological settings and of the preexisting
geometry of fracture patterns that are drastically different on the three studied areas. The
power law distribution for rockfall volumes could emerge from two types of processes.
First, the observed power law distribution of rockfall volumes is similar to the one
reported for both fragmentation experiments and fragmentation models. This argues for
the geometry of rock mass fragment sizes to possibly control the rockfall volumes. This
way neither cascade nor avalanche processes would influence the rockfall volume
distribution. Second, without any requirement of scale-invariant quenched heterogeneity
patterns, the rock mass dynamics can arise from avalanche processes driven by
fluctuations of the rock mass properties, e.g., cohesion or friction angle. This model may
also explain the power law distribution reported for landslides involving unconsolidated
materials. We find that the exponent values of rockfall volume on subvertical cliffs,
0.5 ± 0.2, is significantly smaller than the 1.2 ± 0.3 value reported for mixed landslide
types. This change of exponents can be driven by the material strength, which controls the
in situ topographic slope values, as simulated in numerical models of landslides
[Densmore et al., 1998; Champel et al., 2002]. INDEX TERMS: 5104 Physical Properties of

Rocks: Fracture and flow; 1815 Hydrology: Erosion and sedimentation; 8122 Tectonophysics: Dynamics,
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1. Introduction

[2] Rockfalls, rockslides, and rock avalanches are defined
as rapid movements of rocks driven by global gravity
forces, having their origin on steep rock slopes, including
subvertical cliffs. These phenomena are a subset of the more
general landslide phenomena, which can include falls,
slumps, and slides in all kind of ground material from stiff

rock mass to unconsolidated or poorly cemented materials
[Varnes, 1978; Keefer, 1999]. The word rockfall is usually
used to describe small phenomena, ranging in size from
block falls of a few dm3 up to 104 m3 events. Rockslides
sometimes involve more than 105 m3, and rock avalanches
can reach several million cubic meters [Varnes, 1978;
Keefer, 1984, 1999]. In this study we will use the rockfall
label without any volume distinction, nor distinction in the
failure mechanism.
[3] As for floods, earthquakes or volcanic eruptions,

evaluating rockfall dynamics means analyzing the location,
size, and time patterns of rockfall events. Here we focus on
the distribution of rockfall volumes. For some natural
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phenomena, including floods and earthquakes, statistical
analysis are used to derive the recurrence rate of an event
of a given size. The flood sizes are proposed to follow an
exponential distribution [e.g., Guillot and Duband, 1967;
U.S. Water Resources Council, 1982], whereas the earth-
quake sizes are best fitted by a power law distribution
[Gutenberg and Richter, 1949]. On the first hand, the size
distribution can be used for hazard assessment, if we
hypothesize the distribution to be stationary over time. On
the other hand, the type of distribution can provide routes to
further investigate the underlying physical processes.
[4] Power law distributions have been suggested to char-

acterize rockfall distributions triggered along road cuts
[Noever, 1993; Hungr et al., 1999], or natural cliffs [Gard-
ner, 1970; Wieczorek et al., 1995]. In this study we analyze
the volume distributions of rockfalls from natural cliffs, in
different geological settings, different volume ranges and
different timescales. Contrary to earthquakes, rainfalls, or
floods, few if any natural slopes or cliffs are continuously
monitored in order to provide the exact time of occurrence,
location, and size of rockfall events. Because of the lack of
instrumental monitoring of rockfalls, the available invento-
ries are weak compared to some other natural phenomena,
with several possible biases induced by non homogeneous
sampling in time, space and size domains. We test how
reports of rockfall activity can be used to investigate rock-
fall volume distribution, the way other scientists used
historical catalogs to further constrain contemporary, short
time, instrumental catalogs [e.g., Wesnousky et al., 1983,
1984].
[5] We compare volume distributions of natural rockfalls

that occurred on Grenoble cliffs, French Alps [Service de
Restauration des Terrains de Montagnes de l’Isére (RTM),
1996], Yosemite cliffs, Sierra Nevada, California [Wiec-
zorek et al., 1992] and a worldwide inventory of large
rockslides [Couture, 1998]. The first two case studies
investigate the same temporal scale, about one century,
and the same spatial scale, roughly 100 km of cliff length.
The main difference between these two case studies is the
involved rock masses, layered calcareous cliffs and massive
granite rock cliffs, for Grenoble and Yosemite catalogs
respectively. For each area, we validate statistically the
power law distribution function as an estimate for the
observed rockfall volume distribution. Exponent values
are similar, within error bars, for the three data sets. This
suggests that the distribution law for rockfall volume does
not depend on either the geological setting or the scale of
observation. These results are similar to analysis of rockfalls
that occurred along road cuts [Noever, 1993; Hungr et al.,
1999]. We show how this distribution law can be used for
rockfall hazard assessment, by analyzing the validity
domains and limits of this approach. We investigate the
possible mechanical models that can reproduce this power
law distribution of rockfall volumes.

2. Data

2.1. The Grenoble Rockfall Inventory, French Alps

[6] The first data set reports rockfall volume that occurred
on subvertical cliffs surrounding the urban area of Grenoble
city, French Alps [RTM, 1996]. In order to characterize the
geological setting of the cliff, we need to identify the forces

acting on this system. Such forces are the long-term tectonic
forces due to plate tectonic dynamics. Intermediate-term and
short-term forces that act on the cliffs are climatic forcing
(i.e., glacial unloading, fluvial incision, temperature, rain,
snow, and winds) and earthquake waves, as sorting by
increasing time frequency of applied forces. To cast the
cliff geological settings, the rate of base level fall (which
can be due to any combination of differential rock uplift rate
between cliff and valley and fluvial or glacial incision), is
the more relevant parameter to characterize the hillslope.
Because this parameter is not estimated for the cliff we
studied, we use a local differential displacement or a local
deformation rate as a proxy to characterize the cliff defor-
mation rate.
[7] These Grenoble cliffs are part of the Chartreuse and

Vercors subalpine massifs, made of sedimentary rocks from
upper Jurassic and lower Cretaceous age (limestone and
marls). Initial bedding is folded and faulted due to alpine
horizontal compressive stresses, resulting mostly in sub-
vertical fractures across gently inward dipping stratification
(Figure 1). The cliffs dimensions are 50 m to 400 m in
height, 120 km in length, as cumulative values on two
successive rocky walls (Figure 1). The cliffs elevation
ranges from 800 m to 2000 m. For such an altitude, in the
French Alps, the climatic conditions correspond to wet
springs and falls seasons and frozen conditions in winter-
time. The Chartreuse-Vercors massif is suggested to have a
weak local deformation rate, i.e., less than a few mm/yr
either for horizontal or for vertical displacements [Martinod
et al., 1996]. These values are differential displacement we
used as a proxy of cliff deformation rates. They come from
GPS surveys on Chartreuse Vercors sites. The benchmarks
are located 10-20 km apart from each others all above the
cliff edges that extend over 70 km in length in the Grenoble
area [Martinod et al., 1996]. Historical and instrumental
seismicity rates are low, with a few M = 4 earthquakes
reported in the area during the last 5 centuries [Fréchet,
1978; Grasso et al., 1992]. There is no report on rockfalls
possibly triggered by earthquakes. One possible change in
loading conditions is the last glacial unloading (Würm,
dated 104 years before present). Unloading the cliff faces
from the ice pressure induces a viscoelastic rebound of the
cliffs. The phenomenon is mechanically not well quantified
on the cliffs because of the difficulty to evaluate the long-
term rheology of the cliff.
[8] Rockfall activity that occurred in the Grenoble calca-

reous Alps from 1248 to 1995 was reported by the Restau-
ration des Terrains de Montagnes office (RTM), a forestry
office in charge of natural risks in the French Alps, since
1870 [RTM, 1996]. As the RTM office was created in 1870,
the 1870–1890 period is the threshold between archive
reports for rockfall events and the specific survey of
mountain slopes. For each event the available data from
the Grenoble catalog are (1) the location of the rockfall, (2)
the date of occurrence, and (3) the volume and the induced
damages. Most of this information has been reported by
forest guards as described in section 1, with a sampling rate
of once every a few weeks. For some roughly estimated
volumes, we provide new volume estimates on the basis of
in situ observation and reanalysis of reports. Reported
volumes range from 3 � 10�2 m3, i.e., typical of a slight
damage on a single house, to 5 � 108 m3. The largest event
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of this data set is the 1248 Mount Granier rock avalanche,
40 km north of Grenoble, with a volume of 5 � 108 m3

[Goguel and Pachoud, 1972].
[9] For this data set, threshold values are estimated by

RTM forest guards. They report they never missed a 500 m3

event size, because of its impact on either infrastructures or
on forest structures involving forests, meadows, trails,
roads, housing (RTM, personal communication, 2000).
Such large events induce changes in the cliff pattern (scars,
change in color, geometry) as well. Alternatively, forest
guards report they missed a large number of small events,
which are to small to induce a significant and visible
damage. Up to events close to 10 m3, they report they can
miss events. We thus assume the Grenoble inventory to be
complete for volumes greater than 500 m3. Because of the
nonuniform temporal sampling (Figure 2), one large event
in 1248 and just a few ones reported in the 17th–19th
centuries period, we select events within the 1935–1995
time window only. This period is a trade-off between a
minimum number of available events and a period for which
the sampling can be considered as uniform. On such a basis,
the Grenoble catalog we used involves 87 events.

2.2. The Yosemite Valley Rockfall Inventory,
California

[10] The second data set gathers rockfalls that occurred in
the Yosemite Valley, Sierra Nevada, California [Wieczorek
et al., 1992]. It concerns cliffs of massive granite from
Cretaceous age. The total area covers almost 100 km of cliff
length. Cliffs have a maximum height of 1000 m, with a
mean value of 300 m, and an elevation ranging from 1000
to 2300 m (Figure 3). The climatic setting is roughly a dry
and warm spring and summer and cold wet falls and winter.
Rockfalls result partly from exfoliation and sheeting pro-

cesses that are induced by the release of pressure of
previously buried rocks (Figure 3). The resulting sheets
tend to be mainly parallel to the topography [Huber, 1987].
[11] This area is part of the Sierra Nevada ‘‘block’’ which

is moving with respect to the stable North American plate.
Local differential displacement rates deduced from a GPS
survey of less than a millimeter per year if any, is related to
San Andreas tectonics plus shear strain associated with
Owens Valley and associated faults [Dixon et al., 2000].
The U.S. Sierra uplift rate is less than a millimeter per year,
the uplift rate being not resolved by a 5 years GPS survey
[Dixon et al., 2000]. Only about 5% of the rockfalls are
reported as triggered by earthquakes [Wieczorek et al.,
1992]. Last glacial unloading corresponds to the end of
the Tioga epoch, 15000 years BP at relatively low elevation
[Huber, 1987].
[12] The historical Yosemite rockfall inventory reports

395 events in the 1850–1992 period [Wieczorek et al.,
1992]. Most of them are reported by either National Park
Rangers or USGS geologists. As for the Grenoble inventory,
there are large uncertainties on reported volumes, and a
nonuniform sampling of small volume rockfalls over time.
The sampling rate is globally shorter than one month,
observed data being collected in the Superintendent
Monthly report. This sampling rate has been much shorter
in the last ten years (G. F. Wieczorek, personal communi-
cation, 2000). The threshold for the inventory completeness
for the small events is not estimated.
[13] There are two classes of volume estimates in the

Yosemite inventory. For one class of rockfalls, roughly one
quarter of the inventory, the reports allow a quantitative
estimate of volumes. For the second class, only qualitative
estimates are given. Following the same criterion as for the
Grenoble catalog, we select events with quantitative volume

Figure 1. East face of the Chartreuse massif, Grenoble, France. (a) Subvertical calcareous cliffs are
separated into two levels; the intermediate, less steep, slope is associated with marly levels. The
maximum height of each level is 350–400 m, and the total length of cliffs is 120 km. Note the suburban
area of Grenoble at the bottom of the cliffs. The photograph, by J. M. Vengeon, is roughly 5% of the total
area covered by the Grenoble rockfall inventory [RTM, 1996]. (b) Geometry of the fracture pattern, as
detailed from top of the cliff in Figure 1a. It is roughly characterized by subhorizontal bedding and
subvertical orthogonal joints; the small vertical joints are not visible at the scale of Figure 1b.
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estimates in the 1915–1992 period (Figure 4). We obtain
101 events, with volumes ranging from 1 to 6 � 105 m3.
Because qualitative volume estimates exist in the inventory
for volumes as large as a few thousands cubic meters, this
volume catalog is not complete up to large volumes. We
will consider this volume inventory as a subset of the
genuine volumes of the Yosemite rockfall population, for
the 1915–1992 period.

2.3. A Worldwide Rockfall Inventory

[14] The last data set we use is a worldwide collection of
large rockslides and rock avalanches, as old as the last
glacial epoch [Couture, 1998]. Contrary to the two previous
data sets of rockfalls that occurred within homogeneous
geological setting, e.g., calcareous and granite cliffs, respec-
tively, Couture [1998] gives an overview of the phenom-
enology of rock avalanches on Earth and other planets.
Therefore the geological setting of these events is obviously
heterogeneous, and the sampling method just comes out
from a bibliographic study.
[15] From the Couture inventory, we selected 142 Earth

events. Estimated volumes are provided by historical
reports, based on observations of cliff scars and deposits
or on geomorphological patterns for the oldest events. The

collection is not supposed to be exhaustive [Couture, 1998].
The sampling is neither uniform in time, recent events being
more often reported than older ones, nor in space domain.
Also, the sampling is not uniform in size, the largest events
being preferentially reported in historical reports. Like the
Yosemite inventory, this data set is one subset of the
complete worldwide catalog.

2.4. Measurement Techniques for Rockfall Inventories

[16] Concerning the study of earthquakes, rainfalls or
floods, instrumental monitoring provides direct or indirect
estimates of events occurrence in size, time, and space
domains. Few instrumental measurements exist for the
study of the rockfall activity, especially concerning natural
cliffs. One study uses a continuous seismic monitoring to
detect rockfall events and to size up rockfall volumes on a
single, well-defined cliff [Rousseau, 1999]. Rousseau
[1999] uses a seismic model to derive the volume of a
rockfall event from the amplitude of the recorded seismic
signals. Generally, data about rockfalls are mainly reported
by forest guards or road surveyors without the help of any
quantifying tool.
[17] Because of this lack of instrumental monitoring, the

rockfall volume inventories we used suffer several possible
biases. First, the sampling in time domain is driven by the
visit rate of the field survey observer, this survey being
usually part of a forestry or road survey (not specific to
rockfall observation). For some events, the field evidences
can disappear within the laps time of two visits. For other
events, the visit rate can induce a cumulative effect on
rockfall volumes estimates, i.e., all the rockfalls which
occurred at the same place are estimated as one single event
at the sampling rate resolution.
[18] Second, in size domain, rockfall events are reported

mainly when they induce damages to natural or anthropic
entities. Impacts on forest trees, trails, roads, and housing
are the main criteria to report the occurrence of a rockfall
event. Therefore the rockfalls which did not induce damages
are seldom reported. This induces a censoring effect for the
so-called small events. Small volumes are also under
sampled because of the screening effect due to man-made
protective structures, such as rock fences or forests. As a
consequence, noninstrumental inventories are obviously
incomplete for the small events.
[19] Another possible bias emerges from the inaccuracy

of volume estimates, which are based on the observation of
the volume of deposits, sometimes coupled with the obser-
vation of the visible scar on the slope. Error bars for
volumes are thus large and difficult to quantify. For large
rockfall volumes, i.e., volumes greater than a few hundreds
of cubic meters, the volume estimate comes from the area
covered with new rock material and its thickness values
along the slope. For smaller rockfalls the sum of the
volumes of the largest blocks is usually used as a volume
estimate. When visible, the surface of the cliff scar that is
induced by the rockfall is further used, its thickness being
more difficult to assess.

3. Statistical Analysis of Volume Distribution

[20] For the three data sets, we test which distribution
function best describes the rockfall volume data. For each

Figure 2. Occurrence rate for rockfalls for Grenoble area,
RTM (1996) inventory. (a) Volumes and time of occurrence
in the 1200–1995 period. (b) Occurrence rate in the 1935–
1995 period for volume larger than 50 m3. Because of the
nonuniform temporal and volume samplings, the studied
catalog is restricted to the 1935–1995 period, involving 87
events with volumes ranging from 10�2 to 106 m3.
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catalog, the selected events correspond to the time window
for which the catalog is supposed to be homogeneous in the
time domain. Because of the censoring effect, there is an
under sampling of small volume events. For the largest
observed volumes, with a size comparable to the cliff
height, the distribution may be truncated because of finite
size effects. Accordingly, we select only rockfall events
above a given volume. This minimum volume is a priori
unknown and will be estimated from the adjustment of
distribution laws to the data. First we search which distri-
bution functions may describe our data. Second, using the
c2 criterion, we test if the rockfall volume distribution is
consistent with the hypothesized distribution functions.

3.1. Grenoble Inventory

[21] The observed cumulative distribution for the Greno-
ble cliffs is evaluated for the 87 rockfall events in the 1935–
1995 period (Figure 5). The distribution is almost linear in a
log-log plot for volumes larger than 40 m3. For volumes
smaller than 40 m3, we observe a downward departure from
the linear behavior that is typical of a censoring effect.
Accordingly, we test how the observed cumulative volume
distribution may be adjusted by a power law distribution for
the 55 events of volume above 40 m3, i.e.,

N Vð Þ � V�b; ð1Þ

with V the rockfall volume, N(V) the number of events
greater than V and b a constant parameter. To estimate the
exponent value, b value, we used the maximum likelihood
and linear regression methods because there are the two
methods classically suggested in the literature [e.g.,
Pickering et al., 1995]. Maximum likelihood and linear
regression estimates are not independent estimates.

[22] Following Aki [1965], the maximum likelihood esti-
mate for b is

b ¼ 1

ln 10ð Þ hlog Vð Þi � log V0ð Þð Þ ; ð2Þ

in the case of a pure power law distribution, with a standard
deviation determined by

s ¼ bffiffiffiffiffiffi
N0

p ; ð3Þ

where V0 is the minimum volume used in the power law fit,
hlog(V)i is the average of log(V) for events larger than V0

and N0 the number of events with volume larger than V0. A
more complex equation is necessary when the distribution is
bounded to a given Vmax value. This is not the case of the
data we fit, i.e., we have no a priori bound on the maximum
volume size.
[23] For the Grenoble inventory, these two techniques

provide similar values, b � 0.40 (Table 1). The standard
deviation of b given by equation (3) is 0.06, as estimated
from the maximum likelihood method. These values are not
sensitive to either a V0 value increase above 40 m3 or a
change in the analyzed time period. Second, we use the c2

test to validate the hypothesis that the observed volume
distribution follows a power law distribution for volumes
larger than 40 m3. The c2 test compares an observed
histogram to a histogram obtained by sampling the hypothe-
sized distribution function [e.g., Press et al., 1992; Taylor,
1997]. The c2 value measures a distance between these two
histograms, as defined by

c2 ¼
Xk
i¼1

ni � ni*
� �2

ni*
; ð4Þ

Figure 3. Cliffs surrounding the Yosemite Valley, California Sierra. (a) Subvertical granitic cliffs,
maximum height 800–1000 m, total length 100 km; photograph by G. Wieczorek. (b) Detailed view of
the Fairview dome. The fracture pattern is roughly characterized by a sheeting process giving joints
parallel to the topography, and spaced subvertical joints; photograph by J. R. Grasso.
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where ni is the observed number of events in the ith bin, and
n*i is the expected number for the hypothesized distribution
function. Equation (4) follows a so-called c2 probability
law, that allows evaluating the probability to overpass the
c2 value when the tested hypothesis is true. We use the
reduced cr

2 value [Press et al., 1992; Taylor, 1997], obtained
by dividing the c2 value by the number of degrees of
freedom of the system, nf defined by

nf ¼ number of binsð Þ � c; ð5Þ

where c is the number of constraints applied for the c2 test.
For our application, c = 2, with one constraint for the
parameter of the law in the case of the power law, and one
for the binning of the data in equiprobable classes [Press et
al., 1992; Taylor, 1997]. A reduced c2 
 1 rejects the
tested distribution as a possible description of the data.
[24] Because the c2 test requires Gaussian-distributed

numbers of objects per bin, we have a trade-off between
the appropriate number of bins and the number of objects
within each class. Using 11 bins, corresponding to 5 events
per bin, we obtain a reducedc2 value of 0.58. The power law
distribution is thus accepted by the test with a 95% con-

fidence value. We have tested different values of bin num-
bers between 5 and 18. The reduced c2 value is always close
to 1, so that the power law distribution is always accepted at
the 95% confidence level. With the same type of analysis, we
reject other distribution functions, such as the exponential,
Weillbull and Gumbel distributions, to fit the Grenoble
rockfall volume distribution in the same volume range.

3.2. Yosemite Inventory

[25] The rockfall volume distribution from the Yosemite
inventory is built with 101 events that occurred in the

Figure 5. Cumulative volume distributions for rockfalls.
For each plot, the straight line is a fit by a power law for
volumes larger than V0, estimated by linear regression. The
exponent values and the cr

2 values are given in Table 1; see
text for details. (a) Grenoble area; (b) Yosemite Valley; (c)
worldwide inventory.

Figure 4. Occurrence rate for rockfalls from the Yosemite
Valley data set [Wieczorek et al., 1992]. (a) Volume and
occurrence for the 1850–1992 period. (b) Occurrence rate
in the 1850–1992 period for volume larger than 50 m3.
Because of the nonuniform temporal sampling shown on the
1850–1992 period, the time window selected for the study
is 1850–1995, involving 101 events with volumes ranging
from 1 to 106 m3.
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1915–1992 period (Figure 5). As for the Grenoble data
set, we recover (1) a roughly linear pattern on a log-log
plot for volumes larger 50 m3 and (2) a downward
departure from the linear pattern for small volumes. For
the 56 events of volume above 50 m3, we obtain b = 0.45
from the maximum likelihood with a standard deviation of
0.06. Using the linear regression method we recover a
similar b value (Table 1). The b value is not sensitive to
changes in either the time period or the minimum volume
above 50 m3.
[26] Using 11 bins, corresponding to 5 events per bin, we

obtain a reduced c2 value of 0.72. Therefore the hypothesis
that the rockfall volumes follow a power law is accepted at
the 90% confidence level.

3.3. Worldwide Inventory

[27] The 142 events of the worldwide inventory range in
size from 104 to 1010 m3. The cumulative volume distribu-
tion shown in Figure 5 mimics the two previously analyzed
data sets. For the 54 events with a volume greater than 3 �
107 m3, the observed distribution is well fitted by a power
law distribution with b = 0.51, in agreement with the other
data sets (Table 1). Using 10 bins, corresponding to 5 events
per bin, we obtain a reduced c2 value of 1.07. Therefore the
hypothesis that the rockfall volumes follow a power law
distribution above 107 m3 is accepted at the 90% confidence
level. Similar results are obtained when testing different bin
numbers between 5 and 10.

4. Discussion

4.1. Synthesis of Observed Rockfall Volume
Distributions

[28] The three originally analyzed data sets display power
law distributions of rockfall volumes, with similar power

law exponents, i.e., in the range 0.4–0.6 ± 0.06. The
Yosemite and Grenoble cliffs are both steep cliffs made of
strong rock, with the same cliff length. The geometries of
the discontinuity patterns are different for the two cliffs.
Subvertical fractures across gently dipping stratification
characterize the Grenoble sedimentary cliffs, while exfolia-
tion and sheeting of granitic domes are reported for Yosem-
ite cliffs. This suggests that the geometry of the fracturing
pattern does not influence the exponent of the power law
distribution of rockfall volumes.
[29] When taking together the three catalogs studied here

and the other results for rockfalls on subvertical cliffs,
including natural rock slopes and road cuts (Table 2), it
suggests that rockfall volume distributions follow a power
law distribution, with an average exponent of 0.5 ± 0.2 on a
10�3 m3 to 1010 m3 volume range. For the data sets listed on
Table 2, even the largest events fit the power law distribu-
tion, without any cutoff. No finite size effect is thus
observable. However, a possible finite size effect would
come from the finite geometry of the rock slopes or cliffs. In
particular, the height of cliff is a saturation length for the
maximum available rockfall volumes on any given site.
[30] Except for the seismically instrumented cliff on the

Reunion island [Rousseau, 1999], all the reported rockfall
volumes come from field evaluation (Table 2). As events are
reported mainly when they induce damage to man-built or
natural structures, the sampling is not uniform in the size
domain. This sampling bias results in an underestimation of
the number of small events. This bias is the best candidate
to account for the recurrently observed deficit of small
events relatively to the power law distribution for large
volumes (Figure 5). There is no evidence that this bias may
induce spurious power law behavior. However, it may lead
to underestimate the exponent of the power law (e.g., see
Stark and Hovius [2001] for tests on landslides).

Table 1. Characteristics of Rockfall Volume Distributions for the Three Studied Data Setsa

Site Time Window Nevents Vobs, m
3 V0, m

3 Nfit blr bml c2
r

Grenoble, France 1935–1995 87 10�2–106 40 55 0.40 0.41 ± 0.06 0.58
Yosemite, USA 1915–1992 101 1–106 50 56 0.46 0.45 ± 0.06 0.72
Worldwide 10,000 years 142 103–2 � 1010 3.1 � 107 54 0.58 0.51 ± 0.07 1.07

ablr is the linear regression estimate of b value; bml, the maximum likelihood estimate of b value; Vobs, the range of observed volume values; V0, the value
of minimum volume used for power law fit; cr

2, the reduced c2 value.

Table 2. Characteristics of Rockfall Volume Distributions on Subvertical Cliffs

Site Geological Setting Duration N Vobs, m
3 V0, m

3 ba Ref b

Grenoble, French Alps calcareous cliffs 1935–1995 87 10�2�106 40 0.41 6(1)
Yosemite, California granitic cliffs 1915–1992 101 1–106 50 0.45 6(2)
Worldwide undifferentiated cliffs 10,000 years 142 103 � 2 � 1010 3 � 107 0.51 6(3)
Reunion Island, Indian Ocean basaltic cliffs May–Aug. 1998 370 �9 � 106 103–105c1 0.5c–1c 1, 5
Himalaya, India road cuts . . . 200 10�6�106 10 0.19 4
Himalaya, India road cuts . . . 200 10�2�107 10 0.23 4
Alberta, Canada calcareous and quartzitic cliffs two summers 409 10�6–10 10�2 0.72 2
British Columbia, Canada massive felsic rock, road cutsc1 30 years 389 10�2–107 10�2 0.43 3d1

British Columbia, Canada massive felsic rock, road cuts 13 years 123 10�2–107 1 0.40 3d2

British Columbia, Canada jointed metamorphic, rock, road cutsd3 . . . 64 10�2–107 1 0.70 3d3

British Columbia, Canada jointed metamorphic, rock, road cutsd4 22 years 122 10�2–107 1 0.65 3d4

aExponent for cumulative volume distribution.
bReferences are 1, K. Aki (personal communication, 2002); 2, Gardner [1970]; 3, Hungr et al. [1999]; 4, Noever [1993]; 5, Rousseau [1999]; 6, this

study, data from (1) RTM [1996]; (2) Wieczorek et al. [1992]; and (3) Couture [1998].
cExponent deduced from amplitude of seismic signals using different models, see text for details: c1, accordingly, the absolute volumes are dependent of

the exponent values for each of the seismic model.
dStudies on different locations in the same area: d1, Highway 99, bands A and B; d2, BCR; d3, Highway 1; d4, CP.
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[31] As noted above, one study uses a continuous seismic
monitoring to detect rockfall events and to size up rockfall
volumes on a single, well-defined cliff [Rousseau, 1999].
This sampling method and the measurement technique
provide a catalog that is not affected by the same biases
as the data previously described. The volume distribution
derived from Rousseau’s catalog also follows a power law
distribution (Table 2). First, this result supports the hypoth-
esis that the power law derived from volumes estimated by
field evaluations is not a measurement artifact. Second, it
shows that a single cliff displays a power law volume
distribution. It argues against the power law distribution
to result from a geometrical effect, i.e., the power law does
not result from an integration process over cliffs of different
heights. Using the seismic monitoring technique, the expo-
nent value of the power law is the largest reported value in
the available catalogs for rockfalls on subvertical cliffs
(Table 2). It may be due to the assumption made to derive
the rockfall volume from the seismic amplitude. Seismo-
logical volume estimates are supposed to scale with the
amplitude of seismic signals [Rousseau, 1999], but this
relation may be incorrect. Assuming that seismic amplitude
scales with the square root of the rockfall volume, as also
proposed by K. Aki (personal communication, 2002), the
exponent of rockfall volume distribution would be 0.5
instead of 1, in agreement with other studies reported on
Table 2. Comparisons of both seismological signals and
rockfall volumes are necessary to validate the relation
between volumes and amplitudes of seismic signals.
[32] The power law distribution has also been reported for

mixed landslides (Table 3 and references therein). From our
study, which focus on the rockfall volumes that occurred on
subvertical cliffs of stiff rock mass, we derive a b value that
is significantly smaller than the average exponent value,
1.2 ± 0.3, estimated from studies that mixed different types
of landslides (Table 3). The exponents are volume expo-
nents or surface exponents that were converted to volume
using the rule of Hovius et al. [1997] when exponent value
for volume are not available (Table 3). We use this con-
version rule on the same type of catalogs (Table 3) than the
Hovius et al. study. This study hypothesizes that landslide
length is proportional to thickness and width. Accordingly
in absence of other tools and for the robustness of compar-

ison between catalogs, we choose to use the rule of Hovius
et al. [1997] (detailed in Table 3). For all the cases listed in
Table 3, reported landslides occur either on less steep
topography or involve softer unconsolidated material than
rockfalls reported in Table 2.

4.2. Implication for Rockfall Hazard

[33] From the examples analyzed in the previous sections,
the hypothesis that the volume distributions of natural
rockfalls follow a power law distribution is accepted at a
90% confidence level. This distribution law provides the
probability of occurrence of a given volume in a given time
period on a given area and has been used for hazard
assessment by Hungr et al. [1999] for rockfalls on man-
made slopes. Using the Grenoble data set as a test example,
we can derive the occurrence rate of a given volume range
by using the power law,

N Vð Þ ¼ N0

T

V

V0

� ��b

; ð6Þ

N(V) being the number of events per unit time with a
volume larger than V for a catalog of duration T. N0 is the
number of events with a volume larger than V0. For the
Grenoble inventory, V0 = 40 m3, N0 = 55, the catalog
duration we analyzed is T = 60 years.
[34] The return period of a rockfall of volume larger than

or equal to V is given by

t Vð Þ ¼ 1

N Vð Þ : ð7Þ

Using equations (6) and (7), we obtain a 10 years return
period for a 104 m3 event, or an average of four 105 m3

events within a century. The largest historical event reported
in the last thousand years in the Grenoble area is the 1248
Mount Granier rock avalanche of 5 � 108 m3. From the
power law distribution based on the 1935–1995 data, we
derive a return period of 870 years for a Mount Granier size
event. Therefore the largest observed event on a thousand-
year period agrees with the return period for this volume.
For this region the saturation volume for which the scaling

Table 3. Characteristics of Volume Distributions for Mixed Landslide Typesa

Site Geological Setting N V, m3 b Ref b

Southern Alps, 35� mean slope 4984 106�3 � 107 0.8 4
New Zealand, Japan, 650 3 � 104�3 � 107 0.66 4
Akaishi Mountains, Japan nonvertical slope 3243 104–106 0.64 4, 8
Akaishi Mountains, Japan nonvertical slope 3243 104–106 1.25c 5, 7, 8
Challana Valley, Bolivian Andes nonvertical slope 1130 1.07c 5, 7, 1
Challana Valley, Bolivian Andes nonvertical slope 1130 1.25c 5, 1
Northridge, California, earthquake triggered unconsidated earth and debris materials 11,000 0.86c 5, 3
Northridge, California, earthquake triggered unconsidated earth and debris materials 11,000 1.07c 7, 3
Eden Canyon 10-35� slope uncons. 709 1.4c 5, 6
USA materials

aAll the exponent values are for the cumulative volume distributions.
bReferences are 1, Blodgett et al. [1996]; 2, Fuyii [1969]; 3, Harp and Jibson [1995]; 4, Hovius et al. [1997]; 5,Malamud and Turcotte [1999]; 6, Nielsen

et al. [1975]; 7, Pelletier et al. [1997]; 8, Sugai et al [1994].
cThe last five rows correspond to catalogs of landslides on medium slope that provide only surface estimate measured by aerial photography.

Accordingly, the range of volume used for these studies is not given in the fourth column. For these catalogs, volume exponents are derived from surface
size distributions according to the Hovius et al. [1997] conversion rule, assuming that landslide length is proportional to thickness and width. It implies
area� volume2/3. Then starting with N(V) � V-b, N(V) being the number of events with a volume larger than V, implies N(A) � A�2b/3 for cumulative areas.
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law could change is roughly (hmax)
3, hmax being the

maximum cliff height, with (hmax)
3 � 109 m3 for Grenoble

cliffs. This value is a first-order estimate which includes the
two levels of the Grenoble cliffs (Figure 1). Accordingly,
the distribution must not be extrapolated to volumes larger
than 109 m3. Regarding the space domain, the presently
limited number of data does not allow us to investigate
spatial variations of rockfall occurrence rate. We can just
provide the probability of occurrence for the whole studied
area [Vengeon et al., 2001].

4.3. Possible Models for Power Law Distributions of
Rockfall Volumes

[35] There has not been yet any model which simulates
specifically rockfall dynamics. One class of numerical
models examines erosion; it can also apply to rockfall or
landslide simulations [Hergarten and Neugebauer, 1998;
Densmore et al., 1998]. The second class of models
includes generic models that can apply to a large range of
phenomena that exhibit scale-invariant behavior, i.e., frag-
mentation and sand piles models.
4.3.1. Erosion-Type Model
[36] Densmore et al. [1998] proposed a numerical model

that uses a slope stability criterion to simulate mechanics of
hillslope failures. They obtain a power law distribution of
volumes of mass movements. The exponent value of the
simulated cumulative distribution varies as a function of the
mechanical properties of the rock mass (cohesion and
friction angle), from 1.2 for soft rock to 0.8 for hard rock.
The authors suggest in their numerical simulation that a
higher strength leads to steeper critical hill slope heights.
Because in this model [Densmore et al., 1998; Champel et
al., 2002] a higher strength corresponds to a steeper to-
pography, simulations with stiff rock parameters may be
related to rockfall circumstances on a subvertical cliff.
Alternatively, we propose that other landslide types, which
occurred on gentler slopes could be related to simulations
with low strength materials that induce a larger exponent
value for the power law distribution of volumes.
[37] For mixed landslide types, the observed b values (the

exponents of the cumulative volume distributions), are in
the range 0.7–1.3, with an average value b = 1.2 ± 0.3
(Table 3). These values are significantly larger than those
reported for rockfalls on subvertical cliffs. For rockfall
settings (Table 2), i.e., stiff rock on subvertical cliffs
characterized by a friction angle close to 35–45� [Hoek
and Brown, 1980], the corresponding b values range from
0.2 to 1, with an average value of 0.5 ± 0.2. Therefore the
models of [Densmore et al., 1998; Champel et al., 2002]
qualitatively predict the observed changes in exponents
between mixed landslide types that occurred on gentle slope
topography (Table 3) and rockfalls on subvertical cliffs
(Table 2). According to this model, the change in exponent
values is driven by changes in the mechanical properties
(e.g., internal friction angle or cohesion) of the involved
rock mass. Stiff rocks, with a higher friction angle, generate
steeper topographic slopes and lower exponent values than
softer rocks.
4.3.2. Fragmentation Model
[38] From a generic point of view, the power law dis-

tribution observed for rockfall volumes (Table 2) is also
similar to the fragment size distribution reported during

fragmentation experiments [e.g., Turcotte, 1986, and refer-
ences therein]. A power law distribution is admitted to
characterize the distribution of fragments for a variety of
rocks in laboratory experiments [e.g., Turcotte, 1986, and
references therein]. Observed exponent values for cumula-
tive volume distributions of fragments range from 0.5 to
1.2, with 0.8 as an average value. A generic model of
fragmentation generates a power distribution of fragments,
with a b exponent of the cumulative volume distribution
defined by,

b ¼ log 8pð Þ
log 8ð Þ ; ð8Þ

where p is the probability of a given cell of size l to break in
8 fragments of size l/2. This breaking rule is scale invariant;
that is, each subcell whatever its size has the same
probability p to break in 8 smaller cells [Turcotte, 1986].
Tuning of p values allows recovering observed exponent
values for rock fragmentation with b < 1 for p ranging from
0 to 1. In this way, the power law distribution of rockfall
volumes, with an exponent value ranging from 0.2 to 1
(Table 2), can be reproduced by this generic fragmentation
model. Note that the observed exponents for rockfalls,
0.5 ± 0.2, are in the same range as those reported for
fragmentation.
[39] It argues for the rockfall sizes to be possibly driven

by the fragmentation process of the cliff, i.e., the preexisting
discontinuity pattern. Accordingly, the rock mass fragment
size should control the rockfall volume size, while neither
cascade nor avalanche process should influence the rockfall
volume distribution. This model can reproduce the observed
distribution of rockfall volumes if the largest fragments are
larger than the largest observed rockfall. Although the
preexisting discontinuity pattern that controls the fragment
size distribution is not extensively known for the studied
cliffs, we observe that the number of rock blocks cut by
discontinuities decreases rapidly when their size increases.
It argues for possible large fragment sizes on our studied
cliffs.
4.3.3. Sandpile-Type Model
[40] Another alternative to generate power law distribu-

tions is the conceptual sandpile model of Bak et al. [1987].
For rockfall dynamics, the scale-invariant rockfall distribu-
tion could arise solely from the dynamic of mechanical
processes without requiring any preexisting scale-invariant
heterogeneity. Cellular automaton models simulate ava-
lanches on a sandpile. Three-dimensional numerical simu-
lations yield an exponent value of 0.37 [Bak et al., 1987;
Bak and Tang, 1989], close to those we report for natural
rockfalls. However this 3-D model generates avalanches
which take place in the bulk of a volume. Accordingly, the
mapping on the whole rock avalanches is difficult because
most rockfalls occur on the surface of cliff. The model that
is usually interpreted in terms of sand pile is the 2-D version
of the model which yields a power law distribution with an
exponent close to zero [Bak et al., 1987; Bak and Tang,
1989]. This later exponent value is further away from the
observed rockfall size distribution. However, a variety of
cellular automaton models can account for a change in
exponent value when modifying the interaction rules or the
loading rules of the generic sand pile model from Bak et al.
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[1987] [e.g., Olami et al., 1992; Amaral and Lauritsen,
1997]. Therefore these models could explain the b value
observed for the distribution of rockfall volumes. Without
any other observational constrains on rockfall dynamics, we
cannot decide which of the interactions rules or loading
conditions of these different models are the more prone to
capture the genuine rockfall dynamics.
[41] Contrary to the fragmentation model, the sandpile

model simulates a power law distribution of volumes that
emerges solely from the dynamics without any input of
quenched heterogeneity [e.g., Bak et al., 1987]. This model
can be applied to any dynamic system characterized by a
threshold dynamic, a stationary state, a slow exogenous
driving when compared to the energy released, and a power
law distribution of energy released. Within this context, the
driven forces for a rockfall dynamical system are both the
slow tectonic uplift rate, the fluvial down cutting and
the constant gravity force. They have characteristic time-
scales, which are well separated from the time life of one
single rockfall event. On such a basis, the dynamics of
rockfall process share the same properties as the one pro-
posed for earthquakes, i.e., a slow driving relatively to the
relaxation process and a power distribution of relaxed energy
[Bak and Tang, 1989; Sornette and Sornette, 1989; Main,
1996; Grasso and Sornette, 1998; Vespignani and Zapperi,
1998]. As suggested for landslides of unconsolidated mate-
rial on moderate slope by Hergarten and Neugebauer
[1998], it argues for rockfall dynamics to be another example
of out of equilibrium, scale-free phenomena that could be
generic to earth crust deformation processes.
[42] As a tentative mapping of each class of models on

rockfall dynamics from subvertical cliffs and other landslide
types respectively, we summarize the advantages and draw-
backs of each model (Table 4). Possible applications of these
models to reproduce landslide or rockfall cannot be sorted by
using the exponent values of distribution. They come out
from the specific hypothesis relevant to each model, i.e.,
erosion model, a sandpile cellular automaton, fragmentation.
Erosion models that introduce realistic mechanical proper-
ties of the cliff in the generic sandpile model appear to
capture the basic patterns of the landslide and rockfall
distributions [e.g., Densmore et al., 1998; Hergarten and
Neugebauer, 1998]. If a fragmentation model is generically
acceptable for rockfalls on subvertical cliffs, including
simulated exponent values, it is rejected as a model for the
soft unconsolidated material involved in other landslide
types. Similarly, the soil erosion model of Hergarten and

Neugebauer [1998] is well suited to simulate landslides of
layered soft material, but the exponent value and the layered
model assumption itself reject the possibility for this model
to reproduce rockfall dynamics of subvertical cliffs. The
erosion model of Densmore et al. [1998] is able to reproduce
a change in exponent values that is observed when switching
from events which originate on subvertical cliffs of stiff rock
to event occurring on gentle slopes of softer materials
[Densmore et al., 1998; Champel et al., 2002].

5. Conclusion

[43] We have analyzed three rockfall data sets on sub-
vertical cliffs and we have shown that the rockfall volume
distribution follows a power law distribution for volumes
ranging from 102 to 1010 m3, with the exponents b in the
range [0.4–0.6] for the three catalogs. This exponent is also
in agreement with previous studies of rockfalls along road
cuts. We suggest two classes of models than can reproduce
the power law distribution of rockfall volumes.
[44] First, the conceptual sandpile model of [Bak et al.,

1987; Bak and Tang, 1989] can reproduce the avalanche-
like behavior of the rockfall activity. Accordingly the power
law distribution of rockfall volumes is the avalanche like
response to a slow loading rate, as driven by tectonic
deformation and fluvial incision rates, when compared to
the timescales of rock avalanches. This argues for the
rockfall dynamics to be another class of out of equilibrium,
scale-free phenomena as suggested for a large variety of
earth crust deformation processes. In this context, the power
law distribution of rockfall volumes would arise solely from
the dynamic of the system and would not be affected by the
preexisting heterogeneity pattern.
[45] Second, the observed power law distribution of

rockfall volumes is similar to the one reported for both
fragmentation experiments and fragmentation models. This
argues for the in situ rock mass fragment sizes to possibly
control the rockfall volumes. In this context, the rockfall
volume distribution should be similar to the fragment size
distribution, and neither cascade nor avalanche processes
would influence the rockfall volume distribution.
[46] When comparing our observations of rockfalls on

subvertical cliffs with different types of landslides, the
exponent of the volume distribution is smaller for rockfalls
than for landslides involving unconsolidated material occur-
ring on less steep slopes. It argues for the rock mass
properties, which constrain the topography slope in numer-

Table 4. Possible Conceptual Models for Rockfall and Landslide Distribution

Generic Type Ref a Loading Breaking Rules b Valueb Application

Landslide model of
rock erosion

2 tectonic uplift, gravity,
fluvial cut

slope stability as
function of friction
and cohesion

0.8 rockfall

Landslide model of
rock erosion

2 tectonic uplift, gravity,
fluvial cut

slope stability as
function of friction
and cohesion

1.2 landslide

Landslide model of
layered soil

3 tectonic uplift gravity,
fluvial cut

slope gradient as
function of layer
thickness

0.70 landslide

Sandpile
cellular-automata

1 additional sand grains critical slope angle �0, (2-D) �0.4, (3-D) landslide and
rockfall

Fragmentation 4 no loading fragmentation as a probability law ( p) <1, adjusted as f (p) rockfall
aReferences are 1, Bak et al. [1987]; 2, Densmore et al. [1998]; 3, Hergarten and Neugebauer [1998]; 4, Turcotte [1986].
bAll the exponent values are exponents of cumulative volume distributions.
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ical simulation [Densmore et al., 1998; Champel et al.,
2002], to drive the change in exponent values for different
landslide types and geomechanical settings.
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ventaire des mouvements rocheux, Secteur de l’Y grenoblois, Grenoble,
France, 1996.

Sornette, A., and D. Sornette, Self-organized criticality and earthquakes,
Europhys. Lett., 9, 197–202, 1989.

Stark, C. P., and N. Hovius, The characterization of landslides size distribu-
tions, Geophys. Res. Lett., 28, 1091–1094, 2001.

Sugai, T., H. Ohmori, and M. Hirano, Rock control on magnitude-fre-
quency distribution of landslides, Trans. Jpn. Geomorph. Union, 15,
233–351, 1994.

Taylor, J. R., An Introduction to Error Analysis, 2nd ed., 327 pp., Univ. Sci.
Books, Sausalito, Calif., 1997.

Turcotte, D., Fractals and fragmentation, J. Geophys. Res., 91, 1921–1926,
1986.

U.S. Water Resources Council, Guidelines for determining flood flow fre-
quency, Bull. 17B, 182 pp., Hydrol. Subcomm., Off. of Water Data Co-
ord., U.S. Geol. Surv., Reston, Va., 1982.

Varnes, D. J., Slope movements: Types and processes. In: Landslide ana-
lysis and control, Spec. Rep. 176, pp. 11–33, Transp. Res. Board, Natl.
Acad. of Sci., Washington, D. C., 1978.

Vengeon, J. M., D. Hantz, and C. Dussauge, Predictabilité des éboulements
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