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Functioning and precipitation-displacement modelling
of rainfall-induced deep-seated landslides
subject to creep deformation

Abstract We propose an approach to study the hydro-mechanical
behaviour and evolution of rainfall-induced deep-seated land-
slides subjected to creep deformation by combining signal pro-
cessing and modelling. The method is applied to the Séchilienne
landslide in the French Alps, where precipitation and displace-
ment have been monitored for 20 years. Wavelet analysis is first
applied on precipitation and recharge as inputs and then on
displacement time-series decomposed into trend and detrended
signals as outputs. Results show that the detrended displacement
is better linked to the recharge signal than to the total precipitation
signal. The infra-annual detrended displacement is generated by
high precipitation events, whereas annual and multi-annual vari-
ations are rather linked to recharge variations and thus to ground-
water processes. This leads to conceptualise the system into a two-
layer aquifer constituted of a perched aquifer (reactive aquifer
responsible of high-frequency displacements) and a deep aquifer
(inertial aquifer responsible of low-frequency displacements). In a
second step, a new lumped model (GLIDE) coupling groundwater
and a creep deformation model is applied to simulate displace-
ment on three extensometer stations. The application of the
GLIDE model gives good performance, validating most of the
preliminary functioning hypotheses. Our results show that
groundwater fluctuations can explain the displacement periodic
variations as well as the long-term creep exponential trend. In the
case of deep-seated landslides, this displacement trend is
interpreted as the consequence of the weakening of the rock
mechanical properties due to repeated actions of the groundwater
pressure.
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Introduction
Groundwater recharge is a key triggering factor for landslide
destabilisation by decreasing the resistance of materials due to
pore water pressure variations (Van Asch et al. 1999; Iverson
2000; Cappa et al. 2004; Corominas et al. 2005; Bogaard et al.
2007). Hydro-mechanical processes which lead to slope failure of
deep-seated landslides are complex and are influenced by the
evolution of the landslide deformation through time (Iverson
2000; Brunsden 2001; Rutqvist and Stephansson 2003; Binet et al.
2007; Prokešová et al. 2013). This is especially true in the case of
deep-seated landslides subject to long-term creep deformation
(Saito 1969; Chigira 1992; Brückl 2001; Bonzanigo et al. 2007; de
Blasio 2011; Federico et al. 2012). Long-term creep mechanism is
characterised by time-dependent deformation of rock masses un-
der stress (Federico et al. 2012). The deformation reduces the
whole landslide strength through the weakening of the slope ma-
terial (Chigira 1992). Besides, in the case of landslides with irreg-
ular displacement patterns, a strength increase by consolidation

may occur during periods at rest (Nieuwenhuis 1991; Angeli et al.
2004). For landslides experiencing such deformation processes,
the modelling of landslide deformation requires the use of
Bdynamic^ models instead of classical Bstatic^ models by intro-
ducing time-dependent components (Brunsden 2001; Corominas
et al. 2005; Du et al. 2013).

Few studies focused on landslide creep deformation since such
approaches require to perform long-term analyses and thus re-
quire multi-annual records of time-series (Corominas et al. 2005;
Guglielmi et al. 2005; Zangerl et al. 2010; Klimeš et al. 2011; Brückl
et al. 2013; Crosta et al. 2015). There is indeed a need to improve the
understanding of landslide creep deformation for which only
sparse data limited to rainfall and displacement are generally
available. For that, investigating rainfall-displacement relation-
ships can help to characterise hydro-mechanical processes
(Matsuura et al. 2008). The non-linear features of these relation-
ships justify the use of adapted signal processing methods such as
the wavelet analysis which gives, unlike the classical Fourier anal-
ysis used to study stationary systems, a time-frequency
localisation of the processes. Wavelet analysis is a powerful tech-
nique commonly used in geosciences (Kumar and Foufoula-
Georgiou 1997; Torrence and Compo 1998; Labat et al. 2000;
Jevrejeva et al. 2003; Grinsted et al. 2004; Maraun and Kurths
2004). By decomposing a time-series into time-scale space, this
method can identify power variations of the signal. It is ideal for
analysing non-stationary signals and for identifying short-scale to
large-scale periodic phenomena. Wavelet analysis has recently
been used with success in hydrogeology to study rainfall-
groundwater and rainfall-runoff relationships of karst springs
(Labat et al. 2000; Massei et al. 2006; Charlier et al. 2015). To our
knowledge, no application on rainfall-displacement data has been
carried out in order to characterise the hydro-mechanical response
of landslides to rainfall.

Two types of numerical models for displacement simulation or
prediction are generally used: (1) black-box models which quantify
the rainfall-displacement relationships and (2) physically based
models which integrate hydrogeological and mechanical landslide
properties. Black-box (or input-output) models are generally
lumped, considering the landslide area as one entity, whereas
physical-based models can be spatially distributed. Various
black-box models can be used: the transfer function model (Belle
et al. 2014; Abellán et al. 2014), the neural network model (Liu et al.
2005; Du et al. 2013) and the inverse function model (Li et al. 1996).
Such modelling methods are simple and parsimonious. However,
few of these models take into account time-dependent factors
which exert significant controls on landslide creep deformation
(Li et al. 1996; Du et al. 2013). Although black-box models show
accurate performance and simplicity to be integrated in a warning
system, they do not emphasise physical process and therefore can
be limited in the understanding of the landslide-control
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mechanisms. Conversely, physically based models (Cappa et al.
2004, 2014; Corominas et al. 2005; Guglielmi et al. 2005; Malet et al.
2005; Tacher et al. 2005; van Asch et al. 2007) provide a good
understanding of the failure mechanisms and integrate time-
dependent factors. These models require numerous in situ geo-
physical, geotechnical or hydrodynamic measurements. The ac-
quisition of these data is complex (even impossible) because of the
continuously moving landslide mass. Moreover, these data are
often poorly representative of the spatial variations of the land-
slide properties, especially in the case of scattered measurements.
Consequently, the necessary parameters are often seldom moni-
tored. Lastly, these models are far from routine and their opera-
tional applicability in a warning system is limited (Corominas
et al. 2005). Hybrid models combining black-box groundwater
models with physically based mechanical models (Angeli et al.
1998; Bernardie et al. 2014) allow an intermediary level of investi-
gation and are more appropriated for landslide prediction. Never-
theless, these models still require in situ measurements.

Reservoir lumped models can be used to decipher the complex-
ity of the hydrogeological systems by considering each reservoir
(e.g. soil, perched aquifer, deep aquifer) as a storage element of the
hydrosystem (Angeli et al. 1998; Charlier et al. 2012). This kind of
model may be an acceptable compromise between empirical
black-box models and distributed models which are physically
consistent but remain difficult to implement. A reliable model
needs precisely characterised hydrogeological and hydro-
mechanical systems in order to relate model parameters to phys-
ically meaningful concepts. Using time-series decomposition, Du
et al. (2013) showed that both long-term trend and residual short-
term periodic components can be modelled separately since their
hydro-mechanical mechanisms have various origins. This suggests
that preliminary time-series decomposition is a promising ap-
proach for new reservoir modelling methods accounting for the
main hydrogeological processes and their role on landslide
displacement.

This paper aims at characterising hydro-mechanical processes
by investigating rainfall-displacement relationships using wavelet
analysis and also at developing a reservoir model to simulate
displacement of rainfall-induced landslides subject to creep defor-
mation. The approach combines two steps. First, a wavelet analysis
carried out on decomposed time-series is performed in order to
separate the effects on the landslide displacement velocities of
precipitation or recharge from the effects of long-term creep de-
formation. Considering the hydrogeological context, this analysis
allows to build a landslide conceptual model. Second, a new time-
dependent lumped reservoir hydro-mechanical model is devel-
oped to simulate the short-term periodic displacement variations
as well as the long-term creep trend from the precipitation data
series. The proposed method is applied to the Séchilienne land-
slide in the French Alps where precipitations and displacement
have been monitored for 20 years.

Signal processing method

Statistical time-series decomposition
The decomposition of time-series is a statistical method that
separates a time-series into several distinct components. Three
components are of interest: a deterministic non-seasonal long-
term trend component Tt, a deterministic seasonal component St

with a known periodicity and a stochastic irregular component It
(or Bnoise^) that describes erratic fluctuations. The seasonal com-
ponent refers here to a statistical term which includes all periodic
variations of a time-series. The irregular component represents the
residuals of the signal after the trend and the seasonal component
are removed from the time-series (Madsen 2007; Cowpertwait and
Metcalfe 2009; Aragon 2011). The two St and It components con-
tribute to the detrended component Dt.

Two statistical decomposition methods are generally used for
representing a time-series yt as a function of its trend, seasonal
and irregular components: the additive decomposition method
and the multiplicative decomposition method. The additive de-
composition method (Eq. (1)) is generally more appropriate when
the magnitudes of the seasonal component and the irregular
component remain constant over time, i.e. independent of the
trend time-series (Madsen 2007).

yt ¼ Tt þ St þ It with Dt ¼ St þ It ð1Þ

On the contrary, the multiplicative decomposition method
(Eq. (2)) is generally more appropriate when the magnitudes of
the seasonal component and the irregular component change
proportionally with the trend of the series (Madsen 2007).

yt ¼ TtStIt with Dt ¼ StIt ð2Þ

St and It fluctuate around 0 or around 1 for the additive and
multiplicative decomposition, respectively. In some cases and no-
tably when the measurement frequency is within the same range as
the high-frequency fluctuations of the time-series, we can assume
that it is negligible, leading to decompose yt into a trend compo-
nent Tt and a detrended component Dt.

Wavelet analysis
The wavelet analysis method used in this paper is briefly presented
on the basis of definitions put forward by several authors in
geosciences (Kumar and Foufoula-Georgiou 1997; Torrence and
Compo 1998; Labat et al. 2000; Jevrejeva et al. 2003; Grinsted et al.
2004; Maraun and Kurths 2004). The equations for wavelet anal-
ysis are given in the Appendix. The wavelet analysis method allows
to decompose a time-series over a time-frequency space, thus
providing a visualisation of the amplitude of any Bperiodic^ signal
within the series and how this amplitude varies with time. It is
suitable for the analysis of non-stationary processes that contain
multi-scale features, for detection of singularities, or for transient
phenomena (Kumar and Foufoula-Georgiou 1997). Thus, the
wavelet analysis gives a time-frequency representation of the pro-
cesses and of their relationships.

The continuous wavelet transform (CWT) can be seen as a
succession of bandpass filters of uniform shapes and varying
locations and widths (Torrence and Compo 1998). CWT is thus
characterised at the time-frequency space (hereafter referred to as
time-scale space) by a window decreasing in width when focusing
on local-scale structures (high frequencies) and increasing in
width when focusing on large-scale structures (low frequencies).
As CWTs are applied to time-series of finite lengths, edge effects
may appear on the wavelet power spectrum (or scalogram), lead-
ing to the definition of a cone of influence (COI) in the region
where such effects are significant (Torrence and Compo 1998). The
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COI is computed at the 95 % confidence level and is marked by
attenuated colour intensities on the scalogram. Many geophysical
time-series have distinctive red noise characteristics (Grinsted
et al. 2004). The 5 % significance level of the wavelet power against
red noise is shown as a thick contour on the scalogram. Only the
identified patches within the thick contours and outside of the COI
region can be reliably interpreted.

The covariance between two time-series x and y is estimat-
ed using a cross wavelet transform (XWT, also called a cross-
scalogram) which is the convolution product of the scalogram
of both x and y signals. The XWT reveals patch areas with a
high common power value. XWT is jointly used with wavelet
coherence (WTC) which is a measure of the covariance inten-
sity of the two series in the time-frequency space. A causality
relationship is interpreted for patches having synchronic com-
mon high powers on XWT and WTC. The choice of the
appropriate wavelet analysis depends on the nature of the
signal and on the type of information to be extracted from
the time-series (De Moortel et al. 2004). In this study, the
Morlet wavelet is used because it is fairly well localised in the
time-frequency space (Torrence and Compo 1998). The Paul
and Mexican hat (DOG) wavelet basis functions were also
tested, but gave poorer results than the Morlet wavelet.

A multi-resolution analysis (MRA) is used to decompose a
signal into a progression of successive approximations and details
in increasing order of resolution. In this study, a multi-resolution
using BDaubechies-20^ wavelet is carried out to filter the times
series, removing outliers by the isolation of the noisy component
in the high frequencies.

Continuous wavelet analyses (CWT, XWT and WTC) were
carried out using a free Matlab software package (Mathworks,
Natick, MA) provided by Grinsted et al. (2004) at http://
noc.ac.uk/using-science/crosswavelet-wavelet-coherence. The
package includes a code originally written by C. Torrence and G.
Compo, available at http://paos.colorado.edu/research/wavelets/,
and by E. Breitenberger of the University of Alaska, adapted from
the freeware SSA-MTM Toolkit: http://www.atmos.ucla.edu/tcd/
ssa/. MRA was carried out using a free Matlab software package
provided by the WaveLab Development Team and available at
http://statweb.stanford.edu/~wavelab/.

Numerical modelling of precipitation-displacement velocity

Model structure and governing equations
The groundwater landslide displacement creep (GLIDE) model
aims at simulating the landslide displacement, using a reservoir
hydro-mechanical model coupling a groundwater model and a
landslide creep model. The structure and the parameters of the
model are given in Fig. 1 and Table 1.

The GLIDE model is a lumped model, which can be applied in a
semi-distributed approach. In this type of model, a complex and
spatially distributed system is first simplified by one or several
discrete entities which can be or not inter-dependent. The behaviour
of each entity is then described by one or several lumped parameters.
Lastly, the combination of the behaviour of each entity accounts for
the behaviour of the entire system. Intrinsically, a lumped model
does not allow to relate the lumped parameters to specific or detailed
physical processes internal to an entity but allow to describe the
global behaviour. The GLIDE model accounts for direct or indirect
hydro-mechanical couplings (Rutqvist and Stephansson 2003).
Concerning indirect hydro-mechanical couplings, the GLIDE model
just takes into account the possible variations of the rockmechanical
properties but not those of the hydraulic properties.

The landslide displacement is decomposed into two compo-
nents according to the multiplicative method detailed in the
BStatistical time-series decomposition^ section. The detrended
component is assumed to be linked to the groundwater trigger
effect, whereas the trend is assumed to result from a long-term
rock weakening of the landslide strength. The detrended displace-
ment and the displacement trend are modelled separately using a
groundwater model and a landslide creep model, respectively.
After that, a re-composition of the global signal is done to simulate
the displacement time-series.

Groundwater model: detrended displacement
The hydrogeology of deep-seated landslides generally shows a high
hydraulic conductivity gradient between the near-surface unstable
zone and the deep fractured rocks. This organisation leads to a two-
layer aquifer system constituted by a perched aquifer, hosted by the
near-surface disturbed rock mass, disconnected from a deep aquifer
(Van Asch et al. 1999; Guglielmi et al. 2002; Binet et al. 2007; Pisani

Fig. 1 Structure of the GLIDE model. Parameters in bold correspond to the model parameters that are to be estimated
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et al. 2010; Huang et al. 2012). The model structure presented in Fig. 1
respects this feature and is based on a two-layer reservoir constituted
of a perched aquifer and of a deep aquifer.

The deep aquifer is considered to be recharged by a large area
at the scale of the massif (ADEEP, [L

2]), whereas the recharge of the
perched aquifer is located on the landslide area (APERCHED, [L

2]).
The input of the perched aquifer is considered as equal to raw
precipitation because the unstable area is characterised by a high
infiltration rate of localised recharge in the collapse zone through
bare ground, crevices or counter-slopes (Cappa et al. 2004;
Charlier et al. 2010) where evapotranspiration becomes a negligible
process. The deep aquifer is recharged by percolation from the
perched aquifer in the landslide area and by diffuse infiltration
from a soil reservoir in the rest of the massif. Lastly, since ground-
water is drained by temporary streams and springs during high
water periods, overflow processes are taken into account, adding
overflow thresholds to both perched and deep aquifer reservoirs
(Overflowp and Overflowd, [L]).

Each reservoir has an input Hin and an output Hout. The depth
H of water stored in the reservoir is obtained using the following
equation:

dH
dt

¼ Hin−Hout with Hout ¼ k⋅H ð3Þ

where k ([T−1] dimension) is a constant characterising the reces-
sion curve of the reservoir (kp for perched reservoirs and kd for
deep reservoirs).

The soil reservoir is a soil-water balance model which simulates
a diffuse groundwater recharge through soil cover according to the
workflow calculation proposed by Vallet et al. (2015a). This com-
putation requires a precipitation dataset and the estimation of the
evapotranspiration ET ([L] dimension) and of parameters
characterising the recharge area. ET is estimated with a calibrated
temperature-based evapotranspiration equation (Penman-

Table 1 Parameters of the numerical model: description and calibration results for scenario 1 (S1) and scenario 2 (S2). Estimation methods of the parameters: measured
(M), calibrated (C) and regression (R)

Name Model Signification Unit Method Station S1 S2

ADEEP Groundwater Surface of the recharge area km2 M – 3

SAWC Soil available water capacity mm M – 105

Kc Coefficient of vegetation – M – 0.777/0.955

Rfcoeff Runoff coefficient – M – 0.128

Overflowd Maximum hydraulic head due
to deep reservoir overflow

m C – 0.12 0.10

kd Reservoir recession coefficient – C – 0.02 0.03

APERCHED Surface of the recharge area km2 M – 0.05

Overflowp Maximum hydraulic head due
to perched reservoir overflow

m C – 0.09 0.06

kp Reservoir recession coefficient day−1 C – 0.06 0.11

α Trigger coefficient between WLp
and WLd expressed as the
contribution of WLp

– C – 0.30 0.23

HT Landslide creep Hydraulic threshold – C – −0.19 −0.20

β Rock weakening coefficient – C A13 8.22 10−4 1.20 10−3

A16 5.34 10−4 7.01 10−4

1101 1.19 10−3 1.51 10−3

γ Rock strengthening coefficient mm C A13 5.71 10−4 9.72 10−4

A16 1.65 10−8 2.44 10−4

1101 1.09 10−3 1.28 10−3

a Time-series Triggering coefficient of WLC – R A13 0.30 0.37

A16 0.35 0.44

1101 0.33 0.44

b Rock weakening impact coefficient – R – 1 1

c Initial state of the modelled trend mm R A13 −0.44 −0.28

A16 −0.19 −0.21

1101 0.02 0.27
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Monteith reduced set, Allen et al. 1998) coupled with a vegetation
coefficient Kc [dimensionless]. The determination of the parame-
ters of the recharge area (soil available water capacity SAWC [L],
the Kc and the surface runoff Rfcoeff [dimensionless]) is based on a
spatial analysis requiring field observations (soil, vegetation and
geological survey….) and spatial datasets (digital elevation
models, aerial photographs and geological maps).

The hydro-mechanical study of Cappa et al. (2014) showed that
the deep aquifer water pressure, beneath the unstable zone, can
facilitate the rupture of slow-moving landslides as a result of stress
transfer and of frictional weakening. In addition to the perched
aquifer, the deep aquifer is assumed to possibly trigger the displace-
ment of the deep-seated landslide. A composite groundwater level
WLc [dimensionless] triggering the landside destabilisation is esti-
mated from both perched and deep reservoir water levels (WLp [L]
andWLd [L] according to a triggering coefficient α varying from 1 to
0 (Fig. 1, Eq. (4)). WLc is deduced from standardised water levels (i.e.
standard score) of the perched and the deep reservoirs in order to be
independent of the water level amplitudes.

WLc ¼ αWLp þ 1−αð ÞWLd ð4Þ

The adjustment of the alpha parameter during the calibration
phase is constrained by the measured data and will therefore
inform about the influence or importance of the deep aquifer on
the destabilisation (alpha=1 means that the deep aquifer does not
play any role; conversely, alpha=0 means that the deep aquifer
entirely controls the destabilisation).

Landslide creep model: long-term displacement trend
The design of landslide creep model is inspired by two main
concepts deduced from two standard mechanical tests: the
creep test and the fatigue test. First, in the creep test, a
time-dependent deformation of a solid material occurs under
an applied stress. Although the applied stress is constant, the
strain rate exponentially increases with strain, eventually lead-
ing to fracture. This evolution is referred to as the rock
weakening process. The GLIDE model therefore non-linearly
links stress and strain. Second, in the fatigue test, the pro-
gressive and localised structural damage of a solid material
occurs under a cyclic applied stress. The input oscillatory
stress can be assimilated to the seasonal groundwater pressure
variations (low-cycle fatigue). However, the stress amplitude
has to be above a threshold named Bfatigue limit^ in order to
produce the failure of the material after a given number of
cycles. Below this threshold, an infinite number of cycles can
occur without affecting the material (no failure). Therefore,
the GLIDE model includes a threshold which has to be over-
taken in order to produce rock weakening.

As this study focuses on rainfall-induced landslides, the pore
water pressure is considered as being the only stress which induces
destabilisation since the weight of the landslide body is not yet
sufficient to self-destabilise the landslide. The threshold is thus
linked to the groundwater level of the aquifer(s) controlling the
destabilisation. This is confirmed for example by the Vaiont case,
where the inverse velocity method (Fukuzono 1985), which ne-
glects triggering factors such as pore water pressure, considers
that the landslide destabilisation kinematics is self-sufficient and
will follow a known empirical law. However, in the case of the

Vaiont landslide, this method would have led to two false failure
alerts (1960 and 1962) as the landslide displacement velocity fell
sharply, after a typical creep tertiary curve, once the water level in
the dam lake had decreased (Petley and Petley 2006). Therefore,
for the Vaiont landslide, the control of the creep curve by the
groundwater level could be relevant.

The GLIDE lumped model approximates the creep behaviour of
the Séchilienne landslide as a homogeneous entity named
BLandslide creep model^. It does not allow to relate the lumped
parameters to specific physical processes inside the landslide.
Consequently, the model remains global about the landslide phys-
ics behind the model, and the significance of the lumped param-
eters remains conceptual. The GLIDE model is based on the
physical concept in which weakening and consolidation are two
antagonist processes. Consolidation and weakening can occur at
the same time at different landslide locations, but the GLIDE
model will only consider the result of these processes. If weaken-
ing overcomes consolidation, the GLIDE model should simulate
the resulting weakening. Conversely, if consolidation overcomes
weakening, the GLIDE model should simulate the resulting
consolidation.

The long-term displacement trend observed on creeping land-
slides is a direct consequence of the time evolution of the whole
landslide strength. Thus, the modelled creep trend MCT ([L]
dimension) increases with the whole landslide weakening, whereas
the MCT decreases with the landslide consolidation. The compos-
ite water level WLc output from the groundwater model is consid-
ered as the water pressure input of the landslide creep model. The
landslide creep model is based on a constant hydraulic threshold
HT (dimensionless) which has to be exceeded (WLc>HT) in order
to increase the MCT, thus simulating rock weakening. Conversely,
when the WLc does not reach the hydraulic threshold, the MCT
decreases, simulating rock consolidation. The weakening mecha-
nism is assumed to be proportional to the water level exceeding
the hydraulic threshold (WLc−HT) by adjusting a weakening co-
efficient β (dimensionless). The weakening process depends on the
antecedent rock mass strength:

MCT jþ1 ¼ MCT j þMCT jβ WLc−HTð Þ ð5Þ

with MCTj andMCTj+1 respectively stand for MCT at day j and day
j+1. On the other hand, the landslide consolidation process is
assumed not to be proportional to the groundwater level and not
to depend on the antecedent rock mass strength. The consolida-
tion is estimated by subtracting a strengthening coefficient γ ([L]
dimension) to MCT:

MCT jþ1 ¼ MCT j−γ ð6Þ

Time-series model: displacement re-composition
The time-series model combines the results of both the ground-
water model and the landslide creep model. First, the modelled
detrended displacement MDD (dimensionless) is assumed to be
linearly proportional to the WLc output of the groundwater model
(Eq. (7)). This assumption is based on Vallet et al. (2015a) which
show that the coefficient of determination obtained from a linear
regression between an estimated water-level and the seasonal
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variation of landslide velocity is really high (>0.6), confirming that
a linear relationship between the two variables should allow to well
simulate the variability of the displacement time-series based on a
water level.

MDD ¼ aWLc þ 1 ð7Þ

The a parameter (dimensionless) is considered as the triggering
impact of the water level on the landslide destabilisation. A
shifting intercept is set to 1 since the detrended component fluc-
tuates around 1, whereas WLc fluctuates around 0 as a conse-
quence of the water level normalisation.

Second, the modelled displacement trend MDT ([L] dimension)
is assumed to be proportional to the MCT state output of the
landslide creep model (b parameter (dimensionless)) of which a
shifting c parameter ([L] dimension), accounting for the initial
condition of the MCT, is added as follows:

MDT ¼ b MCTþ c ð8Þ

The modelled displacement MD ([L] dimension) is then recon-
structed by multiplying MDD and MDT which gives:

MD ¼ b MCTþ cð Þ aWLc þ 1ð Þ
¼ abMCT WLc þ b MCTþ ac WLc þ c ð9Þ

Equation (9) can be simplified as follows:

MD ¼ A MCT WLc þ BMCTþ C WLc þ D ð10Þ

Equation (10) represents the governing equation of the time-
series model at the conditions that the A, B, C and D coefficients
verify the equality AB−1=CD−1 (compare Eq. (9) and Eq. (10) for
the link between a, b, c and A, B, C, D).

Parameterization and calibration strategy of the model

Model parameters
Modelling the displacement at one station using the GLIDE model
requires 16 parameters (Table 1). In order to limit the equifinality,
that is the fact that acceptable simulations can be reached by many
potential sets of parameterization (Beven 2006), five parameters
are estimated and three parameters are deduced from multiple
linear regressions (Table 1). Consequently, the GLIDE model re-
quires the calibration of the other eight parameters, that is an
acceptable parameterization strategy for such reservoir models,
considering that GLIDE is able to simulate two outputs (ground-
water level and creep trend).

The groundwater model needs a total of 10 parameters (ADEEP,
SAWC, Kc, Rfcoeff, Overflowd, kd, APERCHED, Overflowp, kp, α) of
which five (ADEEP, SAWC, Kc, Rfcoeff, APERCHED) can be estimated
from field investigations and five are calibrated. Additionally, the
groundwater model also needs three initial conditions of the soil,
the perched reservoir and the deep reservoir. The landslide creep
model needs a total of three parameters (HT, β, γ) which should be
calibrated. The landslide creep model also needs an initial condi-
tion for the MCT. This initial value of MCT is set to 1 since the
adjustment of the MCT initial condition is carried out by the

calibration of the coefficient c pertaining to the time-series model.
Because the GLIDE model just takes into account the possible
variations of the rock mechanical properties but not those of the
hydraulic properties, the recession coefficient and the HT thresh-
old do not depend on the landslide deformation state.

The three parameters (a, b and c) of the time-series model are
determined with a constraint multiple linear regression between the
three inputs of the time-series model (MCT×WLc, MCT and WLc)
and the measured displacement output, provided that the coeffi-
cients (A, B, C and D) of Eq. (10) verify the equality AB−1=CD−1. The
use of a multiple linear regression allows to avoid the integration of
a, b and c from Eqs. (7) and (8) into the calibration process.

The case of modelling multiple displacement records
In case of modelling displacement records of multiple stations, the
modularity of the model allows adjustment in order to take into
account spatial variability. Various strategies may be performed
depending on the variability of the landslide behaviour.

Calibration strategy of the groundwater model with regard to the
detrended component In the case of homogeneous detrended dis-
placement over various measurement sites, the groundwater model
can then be assumed to be representative of the whole landslide,
leading to use the groundwatermodel as lumped at the landslide scale.
In the opposite case, the groundwater level triggering the landslide
destabilisation should be considered to vary according to the station
location. In this case, a shift lag has to be introduced in the ground-
water model for each zone having significant detrended component
behaviour. The HT threshold, although belonging to the landslide
creep model, is considered as dependent of the groundwater condi-
tions and not of the landslide deformation. Therefore, the HT thresh-
old parameter has been chosen to be calibrated in function of the
detrended component behaviour. Indeed, the spatial variability of the
landslide response to groundwater fluctuation is taken into account by
the β and γ parameters, and the HT threshold parameter is mainly
linked to the groundwater level variations. In the case of homogeneous
detrended displacement over various measurement sites, the HT
threshold is kept identical for the whole landslide and conversely.

Calibration strategy of the landslide creep model with regard to the
trend component In the case of a displacement trend following the
same increasing pattern at various measurement sites, the landslide
creep model can be considered to be representative of the landslide
and only the a, b and c parameters of the time-series model have to
be estimated with a multiple regression. In the opposite case, the
parameters of the landslide creep model (except HT parameter) and
of the time-series model have to be calibrated separately for each
station. In that case, the MCToutput of the landslide creep model is
equal to the displacement trend of each station and only the c
parameter has to be estimated. The b parameter is therefore equal
to 1 and constraints of Eq. (10) become B=1 and A=CD−1. Lastly, for
landslides where no trend can be identified, only the groundwater
model is necessary to simulate the displacement.

Calibration periods and optimization
Simulated annealing (Kirkpatrick et al. 1983; Černý 1985) is a
probabilistic optimization method which allows to find an approx-
imate value of the global minimum of a cost function that may
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possess several local minima. Simulated annealing is a generally
applicable, easy-to-implement and computationally cost-reasonable
algorithm adapted for large search spaces (Bertsimas and Tsitsiklis
1993). In addition, this method is able to produce good solutions
independently of the optimization structure problem. It is imple-
mented here to calibrate the GLIDE model. It allows a fully auto-
matic and optimal optimization process of the model parameters.

The displacement trend accentuates the calibration at the end
of the interval where amplitudes are higher than average, leading
to an unbalanced calibration. A consequence of this accentuation
implies that recent periods are better simulated than former ones.
In order to disregard the trend influence on the calibration pro-
cess, the model is calibrated only on the detrended component by
removing the modelled trend from the measured and modelled
displacements. Moreover, because of the long-term trend, a simple
classical partition of the time-series dataset into two distinct and
successive periods (a calibration period and a validation period)
appears to be inappropriate to account for the time-dependent
evolution of the data. Thus, the definition of the calibration and
validation periods is defined differently. The time-series is split
into constant length intervals which are alternately assigned to the
calibration and to the validation intervals. This setup allows to
obtain both the calibration and the validation intervals spread on
the entire variation range. Lastly, to limit the influence of such
partitioning as well as to assess the model performance on the
whole time-series, a split sample test is conducted (Klemeš 1986).
This test consists in considering calibration scenarios (scenario 1
and 2) corresponding to reversed sets of calibration periods.

Performance criteria
Three criteria were used to assess the model performances: the
Nash-Sutcliffe coefficient of efficiency NS (Nash and Sutcliffe 1970,
Eq. (11)), the Nash-Sutcliffe with logarithmic values NSL (Krause
et al. 2005) and the root mean square error (RMSE, Eq. (12)). The
NSL indicator corresponds to the NS coefficient calculated with
logarithmic values of observed (O) or predicted (P) in Eq. (11).

NS ¼ 1−

X n

i¼1
Oi−Pið Þ2X n

i¼1
Oi−O
� �2 ð11Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
Oi−Pið Þ2
n

s
ð12Þ

where i is an index representing the time step (1<i<n); n, the
number of time steps in the time-series, with O for observed values
(Ō being the mean of the observed values) and P for predicted
values.

The ranges of NS and NSL are between 1.0 (perfect fit) and −∞.
A negative value indicates that the mean of the observed time-
series is a better predictor than the model. The RMSE criteria
range between 0 and +∞, with 0 signifying a perfect fit. The NS
and the RMSE criteria are sensitive to extreme values, while the
NSL allows to give more weight to low values. In the case of
modelling multiple displacement measurement stations, calibra-
tion with a unique composite performance indicator simplifies the

calibration strategy. Rather than computing a performance crite-
rion of each type for each station, a unique weighted mean of the
performance criteria (NSm, NSLm and RMSEm) is calculated. This
calculation is proportional to the dataset time extent of each
station. The NSm, the NSLm and the RMSEm criteria are used to
assess the performance for the detrended displacement (ground-
water model), whereas the RMSEm indicator is only used for the
two other components (landslide creep model and time-series
model). Indeed, NS and NSL indicator values depend on the
time-series mean and are therefore biased by the long-term trend.
The calibration of the GLIDE model parameters with the simulated
annealing optimization method is based on the NSm criterion.

Study site: the Séchilienne landslide

Geological context and landslide description
The Séchilienne landslide is located in the southwestern part of the
Belledonne External Crystalline Massif (western Alps) on the south-
ern slope of the Mont Sec (Fig. 2). The Belledone Massif, which
extends over more than 120 km in a N30° direction with an altitude
of 3000 m a.s.l., is bounded to the west by the large depression of the
Isère valley (Fig. 2a). The Belledone Massif consists of a complex of
varied Palaeozoic metamorphic rocks (Ménot 1988; Le Roux et al.
2011). These metamorphic rocks are unconformably covered by
Mesozoic sedimentary rocks (Carboniferous and Triassic-Liassic on
Fig. 2a) and were reworked during the Alpine orogenesis.

The massif is divided into two major tectonic and lithological
domains: the external domain to the west and the internal one to
the east (Guillot et al. 2009). These two domains are separated by
the major Late Paleozoic near-vertical NNE-trending Belledonne
Middle Fault (Fig. 2a). To the west, the external domain consists of
micaschists unconformably covered with Carboniferous and Me-
sozoic (Triassic-Liassic) sedimentary rocks and Quaternary de-
posits (Le Roux et al. 2011; Fig. 2a). The Romanche valley
morphology results from the alternate activity of water and ice
during Quaternary times (Monjuvent and Winistörfer 1980; Le
Roux et al. 2011; Moraine on Fig. 2a).

Landslide geological structure
Recent dating of Le Roux (2009) by the method of cosmogenic isotopes
performed on the Séchilienne landslide shows that slope destabilisation
was not an immediate consequence of the Romanche valley
debutressing but occurred over 5400 years after ice down-wastage in
the valleys (Lebrouc et al. 2013). Lebrouc et al. (2013) suggest that this
time lag can be explained by the persistence of permafrost, which would
have temporarily increased the resistance of the slope.

The Séchilienne landslide is limited eastwards by a N-S fault
scarp and northwards, below the Mont Sec, by a major head scarp
of several hundred meters wide and several tens of meters high.
Rare geomorphological evidence allows to precisely define the
western and southern boundaries of the unstable area. Below the
head scarp, between 1100 and 950 m a.s.l., a gentle slope zone is in
depletion, while between 950 and 450 m a.s.l., the slope becomes
steeper (more than 40°) and is interpreted as an accumulation
zone (Vengeon 1998; Le Roux et al. 2011). The area affected by the
landslide is estimated to about 1 km2 (Le Roux 2009). The slope is
cut by a dense network of two sets of near-vertical open fractures
trending N110° to N120° and N70° (Le Roux et al. 2011; Fig. 2a, b).
In the accumulation zone, the dense network of opened N70°
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fractures divides the slope into several vertical compartments. The
fractures are filled by colluvium and by clayey material near the
surface, and change to crushed zones filled with clayed material in
depth (Vengeon 1998; Lebrouc et al. 2013). Additionally, a large
number of N50°–N70° fractures dipping near-parallel to the slope
are present in the accumulation zone (Vengeon 1998). In the upper
part of the slope (depletion zone), the N110° to N120° fractures are
dominant (Lebrouc et al. 2013; Fig. 2a, c).

Kinematic and deformation
The Séchilienne landslide is presently the most active gravitational
movement at the present time in the area (Duranthon et al. 2003).
The displacement monitoring shows displacement vectors rela-
tively homogeneous in directions (N140°) and in dip angles (10°
to 20°). Low velocity displacements (2 to 15 cm/year) are observed
for the depletion and the accumulation zones (Le Roux et al. 2011).
These velocities gradually decrease towards the west and south,
allowing to define the limits of the unstable area. The unstable
mass is estimated between 48 and 63 million m3 (Le Roux et al.
2011). A very active moving zone, where displacement velocities
about 150 cm/year are measured, lies within the unstable slope.

This zone is responsible for abundant rockfall and its volume is
estimated at 3 million m3 (Le Roux et al. 2011). Seismic and
electrical tomographic profiles allow to characterise the
micaschists mass deconsolidation state (Le Roux et al. 2011). The
zones strongly affected by the landslide (depletion zone and high
motion zone) result from an intense fracturing and air-filled voids
(Le Roux et al. 2011).

The Séchilienne landslide is characterised by a deep progressive
deformation controlled by the network of faults and fractures. A
particularity of the Séchilienne landslide seems to be the absence
of a well-defined basal sliding surface. The landslide is affected by
a deeply rooted (about 100–150 m) toppling movement of the N50°
to 70° slabs to the valley (accumulation zone) coupled with the
sagging of the upper slope (depletion zone) beneath the Mont Sec
(Vengeon 1998; Durville et al. 2009; Lebrouc et al. 2013).

Hydro-mechanical background
The Séchilienne site is characterised by a mountain climate where
precipitations consist of rain and snow. Annual snow amount
is 7-fold lower than rainfall. Unlike the groundwater recharge
which shows high seasonal contrasts (dry summers vs. wet

Fig. 2 Séchilienne landslide site and monitoring network. a Localisation and geological map of the southern part of Belledonne massif with faults network within the
Séchilienne landslide. b Cross section along the Séchilienne landslide. The Bunstable slope limit^ refer to the part of the slope where the porosity exceeds a threshold
porosity of 3.7 % (Le Roux et al. 2011). c 3D view of the Séchilienne massif where faults and network are displayed
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winters), precipitations do not show any pronounced seasonal
tendencies.

The Séchilienne landslide shows a higher hydraulic conductivity
than the underlying stable bedrock (Vengeon 1998; Meric et al. 2005;
Le Roux et al. 2011). This vertical heterogeneity leads to a two-layer
aquifer, with a shallow perched aquifer localised in the unstable zone
and a deep aquifer in the whole massif overlaid by a thick (about
100 m) vadose zone (Guglielmi et al. 2002). Heterogeneous, aniso-
tropic and discontinuous properties of the landslide lead to a dis-
continuous perched fractured reservoir. The massif supporting the
Séchilienne landslide is characterised by a dual-permeability behav-
iour typical of fractured rock aquifers where conductive fractures
play a major role in the drainage (Vallet et al. 2015b). In addition, the
sedimentary deposits distributed above the landslide (Fig. 2a) hold a
perched aquifer (Guglielmi et al. 2002).

The perched aquifer in the landslide is temporary, mainly
discontinuous, and its extent and connectivity fluctuate according
to short-term recharge variations (Vallet et al. 2015b). The recharge
of the landslide-perched aquifer is essentially local, enhanced by
the trenches and the counterscarps which tend to limit the runoff
and to facilitate groundwater infiltration in the landslide area.
However, during high-flow periods, the recharge area of the
landslide-perched aquifer may become larger than the landslide
surface and may include the remote sedimentary cover-perched
aquifer (Guglielmi et al. 2002; Vallet et al. 2015b).

The hydro-mechanical study of Cappa et al. (2014) shows that
the deep aquifer can trigger the Séchilienne landslide
destabilisation. The Séchilienne landslide destabilisation can
therefore be regarded as triggered by a dual-aquifer layer: the
landslide-perched aquifer and the deep aquifer. Consequently,
the Séchilienne landslide is characterised by a good correlation
between antecedent precipitation and average displacements
(Rochet et al. 1994; Alfonsi 1997; Durville et al. 2009; Chanut
et al. 2013; Vallet et al. 2015a).

Dataset

Measured meteorological and displacement data
Precipitations are recorded at theMont Sec weather station, located a
few hundred meters above the disturbed zone (Fig. 2). This station is
equipped with rain and snow gauges. The snow gauge provides an
estimate of the snowpack thickness expressed in water depth. The
equivalence between the snowpack thickness and the water depth is
estimated with the measurement of the attenuation of the cosmic
radiation by the snowpack. Therefore, this station allows to account
for snow storage and melting which cause the infiltration at different
rates and with different time delays between rain and snow. As a
consequence, hereafter, precipitation combines rainfall and snow
melt as one component. The Séchilienne landslide is monitored by
several displacement measurement stations, managed by the CERE
MA Lyon (Duranthon et al. 2003). A variety of techniques
(extensometers, radar, infra-red, inclinometers and GPS) is used.
The aim of this study is to assess short-term to long-term influences
of precipitation on landslide displacement velocities. We focused on
displacement measurement stations which were installed since the
very beginning of the Séchilienne monitoring, thus maximising the
extents of the time-series data. For this reason, only the data from
one infra-red measurement station (referred to as 1101) and from
three extensometers (referred to as A16, A13 and G5) have been used.

1101, A16 and A13 are located within the most active unstable zone
(Fig. 2). Data are available from 1 September 1992 to 31 August 2013
with record percentages of 87 % for A16, 94 % for A13, 33 % for 1101,
45 % for G5 and 100 % for the weather station (Table 2). The
extensometers used at Séchilienne are characterised bymeasurement
errors of ±0.5 mm, while infra-red measurement errors are ±4 mm.
Although the difference between the two errors seems important, it
should not affect the results since the displacement data are filtered
and the frequencies below 8 days are not considered.

Data processing
The groundwater recharge is estimated according to the
workflow calculation proposed by Vallet et al. (2015a). Param-
eters of the recharge area were estimated by Vallet et al.
(2015a) as follows: a SAWC of 105 mm, an Rfcoeff of 12.8 %
and a Kc varying linearly from 0.777 in winter to 0.955 in
summer. Displacement time-series show outliers attributed
either to instrumentation error or to external influencing
factors. For example, extensometer stations are, among others,
influenced by sticky snow, strong winds, fallen branches and
electromagnetic interferences. Infra-red measurements are re-
corded only during good weather conditions and if no obsta-
cle, such as branches, hinders the measurements. A method
has been developed to remove the largest outliers from the
displacement data. In this method, the displacement values
are considered as unacceptable outliers when their values
exceed a given threshold. The threshold is defined with the
help of the computed standard deviation and the computed
mean of displacement data included in a moving window. The
threshold is further arbitrarily adjusted according to the signal
characteristics. The arbitrary adjustment factor is chosen after
performing several iterative tests and by retaining the factor
which best eliminates the visually identified outliers. The
threshold definition is obtained by adding or subtracting the
mean to the product of the standard deviation by the arbi-
trary factor (threshold=mean±(standard deviation×arbitrary
factor)). Two successive windows are used: an annual window
(365 days) and a seasonal window (90 days). The aim of the
wavelet analysis is to investigate the precipitation and re-
charge influences on the displacement from short-time to
long-time scales. Since recharge dynamics occurred mostly in
the monthly to seasonal frequency domain, high frequencies
corresponding to 1 to 8 days of displacement measurement
periods were removed using multi-resolution, to remove sig-
nal noise. Meteorological and displacement datasets are here-
after investigated at a computation step of 8 days. An
example of data filtering using multi-resolution and outliers
removing for the A13 extensometer is shown in Fig. 3.

The multiplicative method is the more appropriate method to
decompose the displacement time-series (detail in the BStatistical
time-series decomposition^ section). The displacement trend is
defined by curve fitting of a fifth-order polynomial (parametric
trend) for the four displacement measurement stations. A fifth-
order polynomial is used because it maintains the balance between
under-fitting and over-fitting with the displacement dataset, thus
allowing to faithfully reproduce the trend. The result is a unitless
time-series fluctuating around 1, named detrended displacement,
with both variance and mean trend removed (Fig. 4). Since the
trend amplitude in the raw displacement signal tends to hide
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variations at seasonal and annual scales, both raw and detrended
displacement signals were compared in the wavelet analysis.

Model parameterization for the case study
The GLIDE model is calibrated against the displacement measure-
ment stations located on the most active zone (1101, A16 and A13).
The data of the G5 extensometer are disregarded because they are
characterised by a low signal-to-noise ratio (Fig. 4). The model
calibration is implemented according to the results detailed in the
BDiscussion of the groundwater functioning and modelling
constraints^ section. The similarity of the detrended displacements of
the four stations leads to use the groundwater lumped model without
introducing any shift lag. The different trends observed between the four
stations lead to separately calibrate the parameters of the landslide creep
model and the time-series model for each station. For the groundwater
model, the soil reservoir parameters are detailed in the BData
processing^ section. The recharge areas of the deep aquifer (identical
to that of the soil reservoir) and of the perched aquifer are estimated to
3 km2 and 0.05 km2, respectively (Fig. 2), according to Guglielmi et al.
(2002) and Vallet et al. (2015b). The recharge area of the perched aquifer
is limited to the high motion zone of the landslide.

In this study, three displacement time-series are modelled,
involving 23 parameters. Five parameters are deduced from field
measurements, 12 parameters are calibrated and 6 are deduced
from multiple linear regressions. Among these parameters, 11
parameters are common to the three stations (the 10 parameters
of the groundwater model and 1 parameter (HT) of the landslide
creep model) and 12 parameters are specific to the targeted station
(4 parameters per station of which 2 are deduced from the multiple
linear regression). A warm-up period of 1 year is implemented,

after which the model output variables can be considered as
independent from the initialisation bias. Initial conditions of the
warm-up period for the soil, perched and the deep reservoir are set
by default at 50 % of SAWC maximum, Overflowp and Overflowd,
respectively. The groundwater model requires five parameters (kp,
Kc, Overflowp, Overflowd and α) to be calibrated. The landslide
creep model HT parameter remains the same for the three targeted
stations, while the β and γ parameters, accounting for local vari-
abilities, are calibrated specifically. Similarly, the time-series model
parameters (a, c) are deduced from the multiple linear regres-
sion for each target station. At Séchilienne, the b parameter is
equal to 1 (see BThe case of modelling multiple displacement
records^ section).

The performances of the numerical model are analysed with a
sensitivity analysis of the performance indicators from week
(8 days, minimum imposed by the use of displacement data
filtered at 8 days) to month (31 days) time step windows. Two-
year periods were alternatively assigned to the calibration and to
the validation intervals.

Results and discussions

Investigation of hydro-mechanical processes using wavelet analysis

Hydrologic input
Precipitation and estimated recharge time-series are plotted in
Fig. 4. Precipitations show low seasonal variations with winter
and summer months drier than the rest of the year likely due to
water storage in the form of snow cover. On the contrary, the
recharge signal shows a high seasonal contrast (dry summer vs.
wet winter). The recharge signal is clearly influenced by atmo-
spheric temperature variations through evapotranspiration pro-
cesses. The precipitation and the recharge signals do not show
any trend, and the amplitude of the seasonal variations remains
constant over the whole time-series.

The CWT of precipitation plotted in Fig. 5a shows numerous
weekly to monthly structures (less than 64 days) mostly during
winter periods. Some abnormally wet years even show consistent
seasonal structures (64–128 days period) during the 1994, 1995,
1999, 2002, 2005, 2008, 2011 and 2012 winters. One-year structures
can be identified from 2002 to 2004 and from 2008 to 2010, which
are the years with the highest monthly rainfall depth. Lastly, a 5-
year component is observed, reflecting a clear variation in large-
scale precipitation distribution. The CWT of recharge (Fig. 5b) is
similar to that of precipitation, but structures almost miss during
summer months. It leads to a more pronounced power contrast in
the scalogram, generating spread structures. Moreover, 1-year
structures for recharge, matching with wetter years, are more

Table 2 Summary of the meteorological and landslide velocity dataset

Name Type From To Number of data (days)

A13 Extensometer 01 September 1992 31 August 2013 7182

A16 Extensometer 02 March 1994 30 June 2013 6685

1101 Infra-red 01 January 2006 30 June 2013 2519

G5 Extensometer 15 September 2000 8 July 2013 3614

Mont Sec Weather station 01 September 1992 31 August 2013 7671

Fig. 3 Displacement data processing: multi-resolution filtering and outlier
removing (see BData processing^ section) on the A13 extensometer data
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developed and more regular over the time-series than those for
precipitation signal.

Displacement velocity output
Long-term displacement time-series, plotted in Fig. 4, show that dis-
placement rates and amplitudes increase significantly with time from
2008 onwards. The displacement time-series show an exponential
growth, with the amplitude of the infra-annual variations growing with
themean of the series. Although the G5 extensometer is located in a less
active zone, the trend is also observable, meaning that the creep process
affects the whole landslide. However, the trends observed at the four
displacement measurement stations have a significantly different in-
creasing pattern (Fig. 4). The detrended displacement time-series of the
four displacementmeasurement stations show sharp seasonal variations
with the lowest values in summer and the highest values in winter
(Fig. 4), within a relatively constant range of values over the years. The
seasonal variations of the four stations show synchronous peaks and
troughs, meaning that the hydro-mechanical response at the infra-
annual scale is homogeneous over themost active zone of the landslide.

Since the four displacement data series show similar pat-
terns and since A13 has the widest recording period, results of
the wavelet analysis are presented only for the extensometer
A13. The CWT for A13 is performed for the raw displacement
and for the detrended displacement (Fig. 5c, d). The CWT of
A13 raw displacement (Fig. 5c) shows a weak power at all
scales until 2008. From 2010 to 2013, high-frequency struc-
tures (<64 days period) gradually increase in number, in
power and in period. A vertical Bdendriform^ structure in
the scalogram for an 8-day to a 1-year period is observed,
highlighting the multi-scale distribution of the power through
scales over the more recent years. This scale effect reveals that
the landslide destabilisation at the annual scale may be linked
to the destabilisation at lower periods. The CWT of the
detrended displacement of A13 (Fig. 5d) shows a very different
scalogram. Low-power erratic structures are observed at the
infra-annual scale, whereas most of the power is located at
the annual scale through regular structures which appear
concomitant with those highlighted in the recharge signal.

Fig. 4 Input and output dataset. a Input: monthly precipitation and monthly recharge. b–e Output: filtered displacement data with raw signal and trend and detrended
signal
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Landslide input-output relationships
Relationships between the various signals are investigated using
XWT and WTC. Figure 6 presents cross-scalograms between pre-
cipitations and recharge (input signals) and detrended displace-
ments (output signal). The XWT between precipitation and
detrended displacement (Fig. 6a) highlights numerous weekly to
seasonal structures (8–128-day period) that are irregularly con-
nected through scales and erratically distributed through time.
Compared with CWT of precipitations and recharge signals
(Fig. 5a, b), the occurrence of these structures matches with highest
water inputs. A discontinuous structure on the 1-year band (256–

512-day period) is also displayed. Unlike for infra-seasonal struc-
tures, no significant coherence is observed for annual structures
on the WTC although XWT shows high power. This analysis shows
that precipitations and displacements are correlated in the infra-
annual scale only, scale at which the power for the displacement
signal is the lowest, meaning that the precipitation signal is not the
variable able to explain most of the displacement variations. XWT
between recharge and detrended displacement (Fig. 6b) shows
identical coherent structures in the infra-annual scale. However,
structures in the 1-year band are more widespread and more
connected. A significant coherence appears throughout the time-
scale space from 8 days to 2 years, suggesting strong relationships
between recharge and detrended displacement time-series at small
and large scales (except at pluri-annual scales such as the 5-year
band visible on the CWT). It shows globally that the recharge
signal is correlated to displacements over the whole time-
frequency space from weekly to bi-annual scales.

Discussion of the groundwater functioning and modelling constraints
The analysis of the input-output relationships shows that annual
variations of the detrended displacement are better explained by
the recharge signal than by the precipitation signal. It appears that
the infra-annual detrended displacement results in high precipita-
tion events (for both precipitation and recharge signals), whereas
annual and bi-annual variations, for which most of the variability
is observed, are rather linked to recharge and thus to groundwater
processes. Consequently, we may assume that two recharge types
occur. The periodic variations of the Séchilienne displacement
seem to be triggered by a dual-groundwater layer with a perched
(reactive aquifer responsible of high-frequency displacements)
and a deep aquifer (inertial aquifer responsible of low frequencies
of displacement). This assumption is in agreement with Cappa
et al. (2014) which show that pore pressure effects in the deep
aquifer can resolve at least 40 % of the total motions measured at
the slope surface, which is far from being negligible. In addition,
the hydrochemistry survey of Vallet et al. (2015b) shows that the
landslide body is mainly dry and only a saturated zone occurs at
the base of the landslide during high water periods, which mini-
mises the influence of the perched aquifer groundwater level on
the destabilisation. Unlike the observed exponential trend of the
amplitude and of the mean for the four displacement measure-
ment stations, the meteorological data series does not show any
trend over the year. The trend on amplitude (Fig. 4) may be related
to a sensitivity increase of the landslide to rainfall triggering
impulses (Fig. 6), whereas the trend in mean is not directly de-
pendent on rainfall, accounting for the disturbed state of the
landslide. The trend is interpreted as a long-term modification of
the landslide mechanical properties. Rock weakening is likely a
cause of the long-term creep deformation.

In order to verify the main hypotheses about the hydrological
processes highlighted above, a new modelling approach adapted to
the overall framework summarised below is needed. The ground-
water model should take into account a two-layer aquifer with a
reactive perched aquifer overlying an inertial deep aquifer. This
pattern is coherent with the conceptual groundwater model of
Guglielmi et al. (2002) and Vallet et al. (2015b). In addition, the
detrended displacements of the four stations show synchronous season-
al variations with regular amplitude, meaning that the groundwater
process responsible of the destabilisation can be considered to be

Fig. 5 Continuous wavelet power spectra of a precipitation, b recharge, c A13 raw
displacement and d A13 detrended displacement. The thick black line designates
the 5 % significance level against red noise. The cone of influence, whose edge effects
might distort the picture, is shown by using attenuated colour intensities
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homogeneous at the Séchilienne landslide scale, leading to use
the model as lumped for groundwater processes. The displace-
ment trends indicate that the Séchilienne landslide is subject
to a non-linear deformation, showing a standard creep defor-
mation curve that cannot be directly related to the
precipitation/recharge input. The four displacement measure-
ment stations show significantly different growing patterns on
their trends. This spatial variability has to be taken into
account in the model. To predict the Séchilienne displacement
with only the precipitation time-series, the model must simu-
late the two identified components: seasonal variations and
long-term creep trend. The GLIDE model fulfils these condi-
tions and is applied for Séchilienne.

Results and implication of the GLIDE model

Model performance
Figure 7 shows the evolution of the performance criteria according
to the computation step from 8 to 32 days. Figure 8 illustrates the
ability of the model to reproduce observed data for a computation
step of 8 days. The model parameter values estimated for scenarios
1 (S1) and 2 (S2) are detailed in Table 1.

Regarding the detrended displacement, S1 shows a better perfor-
mance than S2 in taking into account the performances on both
calibration and validation periods (Fig. 7). For the three performance
criteria, a time step above 20 days (average break point) does not
improve significantly the model performances. Above this break
point, NSm and NSLm are always larger than 0.65 and 0.67, respec-
tively, and RMSEm are lower than 0.23 (Fig. 7). The model shows
similar performance for the displacement trend and for raw dis-
placement. For the two scenarios, the performances are always
significantly better on the interval I1 than on the interval I2 (Fig. 7),
with the RMSEm indicator always lower than 1.5 mm/day for the
displacement trend and raw displacement (Fig. 7). The performance
of S2 is distinguishable from S1 for the I2 interval with a RMSEm
lower than 1 mm/day, meaning that the RMSE criterion is sensitive to
the calibration interval. The I2 interval covers periods for which the
detrended displacement shows higher values (peaks) than the inter-
val covered by the I1 interval. In contrast to the detrended displace-
ment, the computation time step does not significantly influence the
performance of the model for the trend and raw displacement, and
no average break points are observed.

The following discussion is based on the results from the model-
ling for S2 which shows the best performance to model the raw
displacements. According to Fig. 8, the modelled detrended displace-
ments reproduce satisfactorily the dynamics of the displacement
time-series variations. In particular, peaks and troughs are synchro-
nously simulated, as well as their increasing and decreasing slopes.
However, the model fails to reproduce several extreme values (as
indicated by the better performance of the NSLm indicator than that
of the NSm indicator, Fig. 7). The modelled raw displacement fits well
the creep trend over most of the studied interval except the last part
where the model underestimates the exponential increase (Fig. 8).
The calibration process by the mean of the RMSEm values is signif-
icantly dependent on the creep trend (see BCalibration periods and
optimization^ section), meaning that the model in order to be
accurate should be calibrated over the last part of the trend.

The difficulty of the model to faithfully reproduce the expo-
nential trend part in the recent years can be the consequence of
two phenomena: (1) the control mechanism of the landslide
destabilisation becomes mainly driven by the landslide weight to
the detriment of the groundwater pressure or (2) the stress-strain
relationship is deeply modified by the rearrangement of the land-
slide constitutive material. During the summer 2013, the
Séchilienne landslide showed a sharp decrease of the displacement
velocity (Fig. 8), meaning that the rainfall trigger is still required to
accelerate the landslide. Nevertheless, for these two dry periods,
the landslide velocities did not return to a normal level (i.e. before
the exponential growing). These observations support the second
assumption involving indirect hydro-mechanical couplings, i.e. a
mutual influence between mechanical and hydraulic processes
through changes in landslide constitutive material properties
(Rutqvist and Stephansson 2003).

Fig. 6 Cross wavelet (XWT) and wavelet coherence (WTC) spectra with a
precipitation and A13 detrended displacement and b recharge and A13
detrended displacement. The thick black line designates the 5 % significance
level against red noise. The cone of influence, whose edge effects might distort the
picture, is shown by using attenuated colour intensities
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Relationship between groundwater pressure and creep deformation
Applied to the Séchilienne landslide, the GLIDE model is able
to simulate displacement short-term periodic variations as well
as the displacement long-term creep trend. Thus, most of the
hydro-mechanical functioning hypotheses are validated. The
model shows that the long-term creep deformation mechanism

is mainly the consequence of groundwater pressure recurrent
variations. Moreover, despite the exponential increase, the
Séchilienne landslide destabilisation is not independent from
the precipitation trigger. The creep trend is a consequence of
indirect hydro-mechanical couplings which modifies the stress-
strain relationships.

Fig. 7 Evolution of model performances according to a computation time from 8 to 30 days for the two scenarios S1 and S2

Fig. 8 Simulations of the three displacement recording stations and of the three displacement components (trend, detrended and raw signals) for an 8-day computation time
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Model parameter values can give insights about the hydro-
mechanical mechanisms they account for and can improve the
conceptual groundwater model. The HT corresponds to the 46 %
percentile of the WLc, meaning that the weakening of the
Séchilienne landslide occurs over 46 % of the studied interval
time. The reservoir recession coefficients, representative of the
aquifer permeability, show that the disturbed zone in the perched
aquifer has a higher transmissive behaviour (kp=0.1) than the
undamaged bedrock in the deep aquifer (kd=0.03). This contrast
agrees with the occurrence of a reactive perched aquifer in the
disturbed zone (Guglielmi et al. 2002). The α triggering coefficient,
used to compute the WLc from the perched (WLp) and the deep
(WLd) water levels, shows that the Séchilienne destabilisation is
triggered at 77 % by the deep aquifer and 23 % by the perched
aquifer, while the contribution areas are 98 and 2 %, respectively.
This result confirms the dual influence of the two-layer
hydrosystem on the destabilisation. This result also shows that
the perched aquifer, despite its small surface area, plays a signif-
icant role in the destabilisation. However, the main destabilisation
triggering role still lies in the deep aquifer, in agreement with
Cappa et al. (2014).

The a parameter estimates the periodic groundwater triggering
impact on the destabilisation for the three stations (A13, 0.37; A16,
0.44; and I1101, 0.44). The rock weakening coefficient β allows to
estimate relatively the weakening amount for each station (A13,
1.20×10−3; A16, 7.01×10−4; and I1101, 1.51×10−3). The rock strength-
ening coefficient γ estimates the consolidation rate for each
modelled station (A13, 9.72×10−4 mm/day; A16, 2.44×10−4 mm/
day; and I1101, 1.28×10−3 mm/day). Low γ values (<10−3 mm/day)
mean that periods at rest are better characterised by the absence of
weakening processes rather than by physical consolidation. The
A13 extensometer is the least influenced by the groundwater pres-
sure, whereas the 1101 infra-red station is the most influenced by
the changes of the mechanical properties of the constitutive ma-
terial showing the higher weakening and strengthening coeffi-
cients. This difference cannot be attributed to differing
measurement methods (see BData processing^ section). The ex-
tensometer A16 shows the lowest strengthening coefficient γ, but
this station is reactive to the periodic groundwater stress since it
shows the highest α coefficient. The differences between the three
stations confirm that local mechanical properties affect signifi-
cantly the surface deformation and the creep process.

Domain and limits of application of the model
The main asset of the GLIDE model is that it is an easy-to-use
approach using a relatively simple parameterization with 16 pa-
rameters, of which only 8 parameters have to be calibrated. In
contrast with most empirical models (see BIntroduction^), GLIDE
allows a better understanding of the precipitation-displacement
relationship by enabling the simulation of the two displacement
components (seasonal variations and creep trend), although it is
not able to simulate all the physics of the studied system. More-
over, the good performance of the model allows to overcome
problems of missing data for periods up to several years.

Although GLIDE performances for the most recent intervals are
not as good as those for the former intervals, it does not mean that
the model is not reliable for displacement prediction. Indeed, this
study models the precipitation/displacement relationships with
the aim of improving the understanding of creep deep-seated

landslide functioning. For this purpose, the calibration of the
model is performed independently of the trend (see BThe case of
modelling multiple displacement records^ section). For prediction
purposes, it would be necessary to calibrate the model with the raw
displacement data, i.e. by taking into account the trend influence.
This should considerably reduce the error on the prediction of
future values.

The main limit of the model lies in the fact that it has been
tested only on the Séchilienne landslide, owing to the use of
empirical relationships which are based on physical and geomet-
rical characteristics specific to the study site. This may prevent a
straightforward application of the model to other sites where the
landslide geological or hydrogeological structures are different
from that of Séchilienne or where only scarce data are available.
Considering that GLIDE is able to predict displacement with a
good performance, its ability to be used in an operational early-
warning system should be assessed by performing a forecasting
procedure such as the one proposed by Bernardie et al. (2014).

Conclusion
The aims of this paper are (i) to characterise hydro-mechanical
processes by investigating precipitation-displacement relationships
using a wavelet analysis and (ii) to develop a lumpedmodel (GLIDE)
to simulate displacement for landslides subject to creep deformation.
First, the wavelet analysis applied on raw and detrended
dataset allows to define a first conceptual model that shows that
the infra-annual detrended displacement results from short duration
high intensity precipitation events. Conversely, annual and multi-
annual variations, where most of the displacement variability is
observed, are rather linked to recharge and thus to groundwater
processes. Our approach demonstrates the relevancy of wavelet
analysis in characterising the non-linear creep processes for land-
slides on pluri-annual time-series. Second, the GLIDE model, cou-
pling a groundwater model to a creep landslide model built on this
preliminary model, shows good performances to simulate the
decomposed displacement time-series into trend and detrended
displacement, validating the functioning hypothesis.

The main insights of this study are that (i) the Séchilienne
landslide displacement periodic variations are triggered by a dual
groundwater layer, with a perched reactive aquifer (responsible of
high-frequency displacements) and a deep inertial aquifer (re-
sponsible of low frequencies of displacement), and that (ii) al-
though the displacement trend cannot be directly related to the
precipitation input, the trend is the consequence of rock mechan-
ical weakening due to recurrent groundwater pressure variations.
These results show that the long-term creep deformation is mainly
the consequence of the recharge input. Lastly, the good perfor-
mance of the GLIDE model opens the possibility of further devel-
oping early-warning systems for deep-seated landslides.
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Appendix—wavelet analysis

Continuous wavelet transforms
The continuous wavelet transform (CWT)Wx(τ, a) of a time-series
x(t) is given as follows:

Wx τ ; að Þ ¼
Z þ∞

−∞
x tð ÞY �τ ; a tð Þdt ð13Þ

where

Y τ ; a ¼ 1ffiffiffi
a

p Y
t−τ
a

� �
ð14Þ

represents a group of wavelet functions,Ψτ, a, based on amother wavelet
Ψ which can be scaled and translated, modifying the scale parameter a
and the translation parameter τ, respectively. (*) corresponds to the
complex conjugate. Wavelet functions have multi-scale properties, di-
lating or contracting a (a>1; a<1).When a increases, thewavelet covers a
higher signal window. It allows the large-scale behaviour of x to be
extracted. Conversely, when a decreases, the analysed signal window
decreases, allowing local variations of x to be studied.Wavelet transform
is thus characterised on the space scale by a window decreasing in width
when we focus on local-scale structures (high frequency) and widening
when we focus on large-scale structures (low frequency).

As in the Fourier analysis, a wavelet power spectrum (WPS, also
called a scalogram) Px(τ, a) can be defined as the wavelet trans-
form of Wx(τ, a):

Px τ ; að Þ ¼ Wx τ ; að Þ W*
x τ ; að Þ� � ¼ Wx τ ; að Þj j2 ð15Þ

The choice of the appropriate analysis wavelet depends on the
nature of the signal and on the type of information to be extracted
from the time-series (De Moortel et al. 2004). Statistical signifi-
cance level was estimated against a red noise model (Torrence and
Compo 1998; Grinsted et al. 2004). As CWTs are applied to time-
series of finite length, edge effects may appear on the scalogram,
leading to the definition of a cone of influence (COI) as the region
where such effects are relevant (Torrence and Compo 1998). The
COI is marked as a shadow in the scalogram.

The covariance of two time-series x and y is estimated using a
cross wavelet spectrum (XWT, also called a cross-scalogram)
Wxy(τ, a), which is defined as:

Wxy τ ; að Þ ¼ Wx τ ; að ÞW*
y τ ; að Þ

� �
ð16Þ

XWT reveals an area with a high common power value, but
Maraun and Kurths (2004) reported that it appears unsuitable
for significance testing of the interrelation between two series.
These authors recommend the use of wavelet coherence
(WTC) which is a measure of the intensity of covariance of
the two series in the time-scale space. Beginning with the
approach of Torrence and Webster (1999), the WTC of two
time-series x and y is defined as:

C2
xy τ ; að Þ ¼ S a−1Wxy τ ; að Þ� ��� ��2

S a−1 Wx τ ; að Þj j2ð Þ⋅S a−1 Wy τ ; að Þ�� ��2� � ð17Þ

where S is a smoothing operator in both time and scale (see
Torrence and Webster (1999) and Jevrejeva et al. (2003) for de-
tailed mathematical expressions). The 5 % significance level of
WTC against red AR1 noise is estimated using Monte Carlo
methods (Grinsted et al. 2004).

Multi-resolution analysis
In order to implement the wavelet transform on sampled signals,
the discrete wavelet transform (DWT) can be used to discretise the
scale and location parameters j and k, respectively. The discrete
form of the wavelet transform of a time-series x(t) is given accord-
ing to Eq. (18):

Wx τ0; a0ð Þ ¼
Xþ∞

−∞
x tð ÞY �τ0; a0 tð Þdt ð18Þ

where

Y τ0; a0 ¼
1ffiffiffiffiffi
aj
0

q Y
t−ka j

0τ0
aj
0

 !
ð19Þ

with a0
j being the scale parameter, τ0 the translation parameter

and k and j integers. Ψ *
τ0; a0 corresponds to the complex conjugate

of Ψτ0; a0 .
Multi-resolution analysis (MRA) is able to study signals repre-

sented at different resolutions. It can be used to decompose a signal
into a progression of successive approximations and details in in-
creasing order of resolution. Choosing particular values of a0 and τ0,
in Eq. (8), namely a0=2 and τ0=1, corresponds to the dyadic case
used inMRA. The aim is to reduce/increase the resolution by a factor
of 2 between two scales. Therefore, the approximation of a signal x(t)
at a resolution j, denoted byAx

j and the detail of the same function at
a resolution j, denoted by Dx

j, are defined by:

Aj
x tð Þ ¼

Xþ∞

k¼−∞
C j;kΨ j;k tð Þ ð20Þ

Dj
x tð Þ ¼

Xþ∞

k¼−∞
Dj;kΦ j;k tð Þ ð21Þ

where Φj,k(t) is a scaled and translated basis function called the scaling
function, which is determined with Ψj,k(t) when a wavelet is selected.
Cj,k is the scaling coefficient given the discrete sampled values of x(t) at
resolution j and location k. It is calculated from Φj,k(t) in a similar way
for the wavelet coefficient Dj,k from Ψj,k(t) (see Kumar and Foufoula-
Georgiou (1997) for detailed mathematical expressions).

The signal x(t) can be reconstructed from the approximation
and detail components as:

x tð Þ ¼ Aj
x tð Þ þ

XJ

j¼1

Dj
x tð Þ ð22Þ
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where J is the highest resolution level considered. Since MRA
ensures that variance is well captured in a limited number of
resolution levels, analysis of energy distribution in the sampling
time-series across scales gives a good idea of the energy distribu-
tion across frequencies.
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