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Abstract The rainfall threshold determination is widely used for estimating the minimum
critical rainfall amount which may trigger slope failure. The aim of this study was to
develop an objective approach for the determination of a statistical rainfall threshold of a
deep-seated landslide. The determination is based on recharge estimation and a multi-
dimensional rainfall threshold. This new method is compared with precipitation and with a
conventional ‘two-dimensional’ rainfall threshold. The method is designed to be semiau-
tomatic, enabling an eventual integration into a landslide warning system. The method
consists in two independent parts: (i) unstable event identification based on displacement
time series and (ii) multi-dimensional rainfall threshold determination based on support
vector machines. The method produces very good results and constitutes an appropriate
tool to define an objective and optimal rainfall threshold. In addition to shortened com-
putation times, the non-necessity of pre-requisite hypotheses and a fully automatic
implementation, the newly introduced multi-dimensional approach shows performances
similar to the classical two-dimensional approach. This shows its relevance and its

D4 A. Vallet
a.vallet@brgm.fr

D. Varron
davit.varron @univ-fcomte.fr

C. Bertrand
catherine.bertrand @univ-fcomte.fr

O. Fabbri
olivier.fabbri @univ-fcomte.fr

J. Mudry
jacques.mudry @univ-fcomte.fr

Parc scientifique et industriel, BRGM, 21 A rue Alain Savary, 25000 Besancon Cedex, France

UMR6249 Chrono-Environnement, Université Bourgogne - Franche-Comté, 16 route de Gray,
25030 Besangon Cedex, France

UMRG6623 Laboratoire de Mathématiques de Besancon, Université Bourgogne - Franche-Comté,
16 route de Gray, 25030 Besancon Cedex, France

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-016-2453-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-016-2453-3&amp;domain=pdf

822 Nat Hazards (2016) 84:821-849

suitability to define a rainfall threshold. Lastly, this study shows that the recharge is a
relevant parameter to be taken into account for deep-seated rainfall-induced landslides.
Using the recharge rather than the precipitation significantly improves the delineation of a
rainfall threshold separating stable and unstable events. The performance and accuracy of
the multi-dimensional rainfall threshold developed for the Séchilienne landslide make it an
appropriate method for integration into the present-day landslide warning system.

Keywords Rainfall threshold - Support vector machines - Groundwater recharge -
Deep-seated landslide - Probability - Early warning system

1 Introduction

The determination of a rainfall threshold is a widely used method for estimating the minimum
critical rainfall amount which may result in slope failure (Wilson and Wieczorek 1995; Terlien
1998; Vita et al. 1998; Wieczorek and Guzzetti 1999; Iverson 2000; Aleotti 2004; Guzzetti
et al. 2008; Frattini et al. 2009). This tool, first established by Caine (1980), is mainly used for
shallow landslides. Rainfall thresholds can be defined either by empirical (statistical) or by
deterministic (physical based) approaches, at local or at regional scales. The rainfall threshold
identifies the boundary which separates rainfall conditions which do or do not cause slope
destabilization. Although landslide warning systems can be based on various data (landslide
displacement velocity, micro-seismic activity monitoring, rockfall, etc.), only rainfall thresh-
olds allow predictions to be made, due to the availability of weather forecasts. This association
reinforces the prominent role that rainfall thresholds play in slope failure alert system.

Elevated pore water pressure, induced by the recharge of groundwater hydrosystems, is
one of the main triggering factors of deep-seated landslides (Iverson 2000; Rutqvist and
Stephansson 2003; Bogaard et al. 2007; Bonzanigo et al. 2007). However, the relationship
between groundwater level and destabilization rate is complex for deep-seated landslides
(Rutqvist and Stephansson 2003; Binet et al. 2007; Berti et al. 2012). In addition, for deep-
seated landslides involving groundwater flow, the groundwater recharge, rather than pre-
cipitation, is a relevant parameter to consider (Vallet et al. 2015a). Lastly, the identification
of stable and unstable events, on which the rainfall threshold definition is based, is difficult
for continuously moving landslides. To the best of our knowledge, no attempts to define an
empirical rainfall threshold to a deep-seated landslide (>100 m) have been successfully
undertaken (Zhang et al. 2006).

Most studies dealing with rainfall thresholds are biased since thresholds are usually
determined visually or with poor mathematical or statistical bases (Terlien 1998; Guzzetti
et al. 2007; Segoni et al. 2014). In addition, the identification of the stable or unsta-
ble events along with the determination of the associated rainfall conditions mainly rely on
subjective decisions (Terlien 1998; Segoni et al. 2014). An objective definition of the
threshold, which minimizes false-positive or false-negative occurrences, is fundamental to
integrate rainfall thresholds as a warning system tool.

The aim of this study is to develop an objective approach for the determination of a
statistical rainfall threshold for deep-seated landslides. The determination is based on the
estimation of recharge and on the definition of a multi-dimensional rainfall threshold. This
new approach will be compared with precipitation and with a classical ‘two-dimensional’
rainfall threshold. It is designed to be semiautomatic, enabling an eventual integration into
a landslide warning system. It is based on a daily time step and consists in two independent
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parts which can be used together or separately, according to the user’s requirements and
according to the site constraints. These two parts are: (1) a semiautomatic identification of
stable/unstable events based on displacement velocity time series and (2) a determination
of a multi-dimensional rainfall threshold based on support vector machines (SVM), a linear
classifier related to the statistical learning theory (Fig. 1). Preliminary results of this
research have been presented at the IAEG XII Congress (Vallet et al. 2015d).

2 Strategy for the definition of an optimal and objective rainfall threshold
suitable for deep-seated landslides

The rainfall threshold quantifies the minimal rainfall conditions supposed to trigger slope
destabilization. The definition of the rainfall threshold is based on a historical inventory
either of only unstable events (the so-called one-class label threshold) or of both stable and
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unstable events (the so-called two-class label threshold). For any event, the rainfall con-
ditions, also referred to as the rainfall index, are classically on the basis of two parameters.
As such, the classical index is referred to as a two-dimensional index. The literature
presents various combinations of indexes (Guzzetti et al. 2007, 2008), among which the
most used are rainfall intensity and duration, or daily rainfall and antecedent rainfall. The
selection of the rainfall index depends mainly on the landslide settings (landslide type,
climate conditions, geomorphology, etc.).

2.1 Rainfall threshold in the case of deep-seated landslides

The complex structural geology and the complex groundwater hydrodynamics of deep-
seated landslides generally involve complicated hydro-mechanical relationships between
precipitation and deformation (Terlien 1998; Cappa et al. 2004; Binet et al. 2007; Berti
et al. 2012). For deep-seated landslides, threshold deterministic approaches based on
hydro-mechanical models are difficult to implement or to calibrate because of the scarcity
or absence of measured hydrodynamic parameters such as groundwater levels or spring
flows in the disturbed areas (Guzzetti et al. 2007). Therefore, in the case of large amounts
of available data, the definition of a statistical local threshold (specific to a landslide) is
preferred since it can implicitly take into account these relationships (Guzzetti et al. 2007).
The statistical threshold method is an efficient method by which the rainfall threshold can
be simply and unambiguously determined from the data and does not require extensive
investigations. In addition, there is no need for an a priori knowledge of the hydro-
mechanical behavior of the landslide to propose valid predictions. Using a statistical
approach rather than a deterministic approach provides a truly objective method for the
stakeholders managing the warning system.

Geomorphological, geological and hydrogeological characteristics play key roles in the
destabilization of deep-seated landslides (Peruccacci et al. 2012). In addition, although the
deep-seated landslide destabilization is mainly controlled by a rainfall trigger (short-term
component), site-specific time-dependent factors (long-term components) such as creep
deformation or slope groundwater hydraulic connectivity modifications can also be sig-
nificant (Rutqvist and Stephansson 2003; Corominas et al. 2005; Berti et al. 2012). For
these reasons, global thresholds are not suitable for landslides which are strongly influ-
enced by site characteristics other than the rainfall trigger. In these cases, a local threshold
which implicitly takes into account the landslide characteristics is more adequate (Guzzetti
et al. 2008)

The inertia and the buffering hydraulic properties of the groundwater reservoir trig-
gering the deep-seated landslide destabilization can significantly smooth short-term fluc-
tuations such as the intensity or the duration of rainfall events (Terlien 1998; Van Asch
et al. 1999; Nafarzadegan et al. 2012). The landslide aquifer hydrodynamical response is
therefore more influenced by the antecedent rainfall (which takes into account multiple
rainfall events over a long period) than it would be by a single rainfall event (Martelloni
et al. 2012). Therefore, the commonly used daily rainfall-antecedent rainfall index is more
suitable for deep-seated landslide studies. The daily rainfall amount can be replaced by a
period not necessarily limited to one day, hereafter named precedent rainfall amount
(Fig. 2a). This choice is justified by the fact that a single rainfall day will not have a
significant influence on destabilization for a large deep-seated landslide (Van Asch et al.
1999). Lastly, Vallet et al. (2015a) showed that the recharge is a more suitable parameter
than the precipitation to be considered for deep-seated landslides. The recharge is therefore
a relevant parameter to take into account to establish a rainfall threshold.
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2.2 Rainfall conditions: from two-dimensional to multi-dimensional rainfall
index

Classically, rainfall thresholds are determined with a two-dimensional rainfall index. For
deep-seated landslides, the definition of the two-dimensional rainfall index requires the
choices of the cumulative method (decreasing or conventional sum, decay method and
decay factor) and of the period extent (Terlien 1998). These choices are subjective and may
depend on the actual knowledge of the landslide—rainfall relationship, with the possibility
of missing the best combination (among the numerous possible combinations), that is the
combination which maximizes the discrimination between stable and unstable events. The
proposed multi-dimensional method is based on a multi-dimensional rainfall index (MDI).
The MDI is built for each identified event, whatever stable or unstable. The index
dimension is the number of days of the investigated period preceding a given event. The
rainfall amount of each day will be a value of the MDI (Fig. 2b). For example, for a given
event and a given period of 15 days (preceding the event), the dimension of the MDI will
be 15 and the rainfall amount of each day will be one value of the MDI which can be seen
as a point in a 15-dimension space with rainfall amount as coordinate values. This
approach allows an objective determination of the rainfall conditions associated with an
event. It, however, requires a mathematical tool able to classify multi-dimensional datasets.

2.3 Mathematical classifier tool for an optimal definition of the rainfall
threshold

Recent studies (Guzzetti et al. 2007; Brunetti et al. 2010; Berti et al. 2012; Peruccacci et al.
2012) determined an optimal rainfall threshold using Bayesian statistical approaches or
frequentist methods which, in addition to threshold identification, allow an estimation of
landslide failure probabilities. The probability estimates are a great advantage for threshold
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definition where data quality and rainfall-displacement complex relationships can lead to
significant uncertainties (Berti et al. 2012). Moreover, precipitation is not the only factor
that causes destabilization or failure (Aleotti and Chowdhury 1999). A probabilistic
approach allows to take into account the uncertainties in the rainfall-destabilization
relationship.

The Bayesian approach was tested in recent studies (Guzzetti et al. 2007; Brunetti et al.
2010; Berti et al. 2012). However, the support vector machines method (SVM classifier), a
supervised learning method, is chosen here to determine the optimal rainfall threshold. The
SVM classifier is characterized by a higher accuracy than other classifying methods (Ben-
Yacoub 1999; Huang et al. 2003). Furthermore, the SVM classifier is a widely available
tool on various software platforms (Ivanciuc 2007) and is easy to implement and to
calibrate (Cristianini 2000; Hsu et al. 2003; Ben-Hur and Weston 2010). For studies where
landslide probability assessment is important, even though it is a non-probabilistic binary
linear classifier, SVM add-ins (complementary functionalities) are developed for produc-
ing probabilistic estimates dependent on the SVM classifier (Platt 1999; Lin et al. 2007).
Most rainfall threshold mathematical studies (Brunetti et al. 2010; Peruccacci et al. 2012;
Martelloni et al. 2012) are based only on unstable events (one-class rainfall threshold) and
do not take into account stable events. Although the SVM classifier was initially designed
to classify two-class datasets, a new SVM formulation for a one-class classification
problem was developed (Scholkopf et al. 1999; Tax and Duin 2004) and is suitable for such
studies. Lastly, for the new threshold approach using a multi-dimensional rainfall index,
the SVM classifier demonstrated a better performance for classification (Huang et al. 2003;
Byvatov et al. 2003). For all these reasons, the SVM classifier is considered here as the best
solution, being generic and being easily implemented as an objective tool by stakeholders
in landslide warning systems.

2.4 Stable or unstable event detection

The use of a mathematical tool to define a rainfall threshold is not sufficient to warrant an
operational applicability for an early warning system. Indeed, the identification of the
stable/unstable events needs also to be based on an objective and reproducible method. For
continuously moving landslides without any historical acceleration crisis catalog, it is
relevant to use a velocity criterion method based on displacement velocity time series in
order to detect acceleration crises (peaks) and periods of rests (troughs) accounting for
unstable and stable events, respectively.

Peak/trough identification is a classical task in signal processing and in time series
analysis. A commonly used identification method is based on the derivative of the data
series and looks for downward-going zero crossings. However, in a natural dataset, a
random noise can cause false zero crossings, leading to incorrect peak/trough detections.
To avoid this bias, data series are often smoothed to remove random noise, resulting in
signal information loss (O’Haver 1997; Palshikar 2009). Generally, the more generic the
method, the more necessary it is to inform input parameters. Generic methods can be too
general to fit to specific signal properties (non-periodic signal, trend, amplitude, etc.) or to
detect only given peak/trough patterns. On the contrary, methods which require few input
parameters (Excoffier and Guiochon 1982; Li et al. 1995; Jacobson 2001) are usually
restricted to a specific domain of application.

Generally, deep-seated landslide displacement velocities present random peak/trough
location distributions and random peak/trough properties with a large range of widths,
amplitudes and shapes. Most of the peaks/troughs of the displacement velocity time series
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are asymmetrical. In addition, displacement velocity signals can be considered to be rel-
atively noisy, considering that not all peaks/troughs match with an unstable landslide event
and have to be filtered according to the definition of the events. None of the above-
mentioned methods are suitable to account for the displacement velocity signal charac-
teristics and for the detection requirements. In this contribution, a method is specifically
designed with the aim to be applicable to any other deep-seated landslide sites.

3 The semiautomatic event detection method

Most deep-seated landslides are continuously moving, and it is not possible to identify
stable or unstable events. Therefore, the choice is made here to define a critical statistical
threshold defining the minimal amount of rainfall (precipitation or recharge) which results
in a significant increase in slope destabilization. Based on the displacement velocity time
series, two types of events are defined: low-destabilization (LD) events and high-desta-
bilization (HD) events.

3.1 Definition of LD and HD events

In this study, LD and HD events are defined following a simple statistical indicator
(quartile) and a data series pattern (peak or trough) based on the displacement velocity time
series. The LD events must be inferior to the first quartile and must match a trough. The
HD events must be superior to the third quartile and must match a peak. Because dis-
placement velocities are measured locally, an event is considered as representative of
landslide destabilization only if it is identified on a selected set of displacement mea-
surement devices. In the cases where several stations are required, an event is considered as
representative only if it is identified on all selected stations within a 10-day margin (spatial
and temporal coincidence). The event date is then defined as the barycentre of the various
event dates identified on each displacement velocity time series.
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3.2 Detection of events

The method to detect LD or HD events is based on two moving windows scanning the
displacement velocity time series (Fig. 3). The peak or trough characteristics (width and
amplitude) are first taken into account in the detection process by a moving window named
the event window. The characteristics of the background signal neighboring the considered
event are defined by a second moving window named the neighbor window. This window
consists in two parts (back part and front part) on either side of the event window. Since the
patterns of the displacement velocity peaks and troughs are not symmetrical, both moving
windows have the possibility to be asymmetrical with respect to the scanning increment
date (Fig. 3). The neighbor window never overlaps with the event window. The detection,
within a 10-day time interval, of peaks and troughs on all selected displacement velocity
time series allows the definition of LD/HD events.

For a given displacement velocity time series, the condition for a displacement event to
be considered as a HD event peak is threefold (Fig. 3). First, the mean value within the
previously defined event window must be larger than the third quartile of the entire
displacement velocity time series. Second, the mean value within the event window must
be larger than the mean of the back part of the neighbor window to which a ‘safety’ margin
is added. Third, the second condition also applies to the front part of the neighbor window,
with a different safety margin value. Eventually, if the three above-mentioned conditions
are fulfilled, then the date of the detected peak is defined as the date corresponding to the
maximum value of displacement velocity within the event window (Fig. 3). The reverse
procedure allows to detect a LD event trough: The mean value of the event window must
be lower than the first quartile, and it must also be lower than the mean values of the back
and front parts of the neighbor window, themselves lowered by ‘safety’ margins. Similarly,
the date of the detected trough is defined as the date corresponding to the minimum value
of displacement velocity within the event window.

A period of 20 days devoid of any LD/HD events is imposed after each identified LD/
HD event, in order to reduce rainfall index information redundancy between successive
events. This condition is required to improve the SVM classifier. Ideally, the LD/HD
event-free period should be equal to the maximum number of days covered by the rainfall
index (150 days in this study). However, by doing so, the amount of detected events will be
significantly reduced, leading to a loss of statistical meaning of the rainfall threshold. A
20-day period is an acceptable trade-off. The event detection method requires 6 parameters
to be estimated (Fig. 3): (i) back and front neighbor window widths (w;, wy), (ii) the event
window widths on either side of the scanning increment date (w;, ®;) and (iii) back and
front ‘safety’ margins (¢, t,), (ii). These parameters are calibrated with an optimization
algorithm.

3.3 Calibration of the parameters

A supervised learning method is implemented to calibrate the parameters of the event
detection. This learning method uses a training interval where LD and HD events are
identified manually on a set of selected displacement velocity time series. The training
interval is a part of the whole study time interval. The event detection method parameters
are adjusted on this training interval, with respect to manually identified events, with the
use of an optimization algorithm. Once the method is calibrated, it is applied to the whole
study time interval in order to define a list of LD and HD events required for the rainfall
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index definition. Since this method mixes manual and automatic procedures, it is con-
sidered as a semiautomatic method.

An automatically identified event is considered as valid (true positive) if and only if it
falls within a 10-day interval from a manually identified event. In the reverse case (more
than 10 days), the automatically identified event is considered as a false positive. The
optimization algorithm aims at minimizing the quantity —4; TPE + /4,D,,, + 23FPE which
is composed of three terms: (i) TPE, the proportion of true-positive automatically identified
events (Eq. 1), (ii) D,y,, the average deviation of the time difference between manually and
automatically identified matching events (Eq. 2) and (iii) FPE, the proportion of false-
positive automatically identified events (Eq. 3). A global optimization method, the simu-
lated annealing (Kirkpatrick et al. 1983; Cerny 1985), is used in the minimization process.
The weighting factors 4, 4, and A5 are applied to each of the terms in order to balance their
relative influence in the optimization process. The weighting factors are adjusted manually
(41 =1, 4, = 0.01 and /3 = 0.02).

The six parameters of the event detection method are calibrated separately for LD and
for HD events. In order to avoid unrealistic values, the calibration algorithm seeks the
parameter values within predefined ranges: w; and w, ranging from 2 to 200, w; and w
ranging from 1 to 20 and #; and #, ranging from O to 4.

In summary:

TPE — 0 (1)
NbT,,
2% (v/(0u - Dwr)
Dy = 2
an Nba ( )
NbT, — Nb,
FPE = —*>
NbT, ®)

with:
NbT,, NbT,, total number of events identified automatically or manually
Nb, number of events automatically identified which match with manual events
D,, Dy, date of automatic and manual events which match together.

4 Rainfall threshold definition method

The support vector machines (SVM) linear classifier is used to define an optimal and
objective rainfall threshold by finding the best line separating two classes of n dimensions.
A nonlinear classification can be achieved with the SVM classifier by using the so-called
kernel trick. For the two-dimensional rainfall index, only the linear kernel is used, while
for the multi-dimensional rainfall index, the linear kernel and the radial basis function
kernel are tested. The SVM calibration and threshold performance are assessed with the
cross-validation method by computing an average misclassification error rate (MER). The
SVM analysis is performed with the multiplatform package LIB-SVM®© (Chang and Lin
2011). The SVM classifier as well as the SVM classifier calibration and the kernel selection
procedures are detailed in ‘Appendix.’
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4.1 The classical approach: the two-dimensional rainfall index (2DI)

Terlien (1998) showed the importance of selecting the proper period extent for the defi-
nition of a failure threshold. In several studies, the choice of the period extent of the
antecedent rainfall is explored empirically, with no optimization to find the best number of
days which maximizes the classification performance. In this study, the rainfall threshold is
estimated for all combinations of antecedent and precedent periods varying from 2 to
150 days and from 1 to 10 days, respectively. The 150-day period is based on the study of
Vallet et al. (2015a) which shows that the best coefficient of determination between the
cumulative groundwater recharge and the landslide velocity is obtained for periods from 68
to 132 days. The impact of a rainfall event after a 150-day period therefore is considered as
negligible.

The antecedent rainfall and the precedent rainfall match with the cumulated amount of
rainfall over a specified number of days before an event (unstable or not). The precedent
and the antecedent periods correspond to short and long periods, respectively (see Sect. 2.1
and Fig. 2a). The establishment of the threshold must be based on independent variables in
order to be statistically true (Peruccacci et al. 2012). Consequently, the two periods,
antecedent and precedent, do not overlap and are always adjacent. Groundwater hydro-
dynamic processes due to drainage are nonlinear, and an old rainfall event displays less
impact than the most recent event on the aquifer saturation state (Canuti et al. 1985;
Crozier 1986). As a consequence, a decay weight factor o is applied to the cumulated
rainfall amount to take into account this nonlinearity (Eq. 4). Fifteen weighted sum
combinations based on 5 decay factors o equal to 1, 0.99, 0.98, 0.95 and 0.90 are tested
(Figs. 1 and 4).

For o being equal to one, the decreasing cumulated rainfall amount WI matches with a
classical arithmetic sum.

WI = i: 2=y (i) (4)
i=1

where WI, decreasing cumulated rainfall amount of an event (mm); n, cumulative period
extent (day); i, ith day (i = 1 match with event day); y, recharge or rainfall (mm); o;, decay
weight factor (« = 1 for i = 1).

The two-dimensional rainfall index approach leads to 24,450 combinations which are
evaluated with the SVM method. The SVM classifier performance (based on MER) is used
to assess the best combination.

4.2 The new approach: the multi-dimensional rainfall index (MDI)

The maximum MDI dimension is set to 150 days that is the same as the maximum number
of days allowed for the two-dimensional rainfall index (Fig. 2b). From a statistical point of
view, it is important to find the most parsimonious model for the classification. It is well
known that when the amount of data is moderate, a too complicated model can lead to poor
prediction due to the lack of data available to estimate that model (Hastie 2009). This is
known as the ‘bias variance trade-off.” Furthermore, not all dimensions (also called fea-
tures in this paper) are relevant in the event classification, i.e., the class labels can be
predicted by only a few number (k) of features from the total available number p of
features (k < p). In our case, the following question is a key question: How many days of
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precipitation/recharge are necessary to accurately predict whether an event is unstable or
not?

Penalized SVM formulations (also called Least Absolute Shrinkage and Selection
Operator or LASSO SVM penalty) were developed to seek sparse solutions by removal of
irrelevant and redundant dimensions (Knight and Fu 2000; Hastie 2009). For this study, the
penalized SVM classifier analysis is tested with the MATLAB®© code NLPSVM (Fung and
Mangasarian 2004), but the results, which consist in scattered selected features, are not
consistent with hydrogeological processes. Instead, in order to seek the shorter continuous
interval minimizing MER, a sensitivity analysis is carried out by iterating precipitation and
recharge MDIs from 1 to 150 days (Fig. 1). For each iteration, a traditional SVM model is
performed and the corresponding MER is computed. The MDI solution having the mini-
mum MER is selected as the best solution to separate stable events from unstable events.
Therefore, the multi-dimensional rainfall index approach leads to evaluate only 300
combinations.

4.3 Validation procedure to test the forecast ability of the rainfall threshold
Most rainfall threshold studies are conducted only by determining a threshold based on a
list of discrete rainfall events, but do not test their operational applicability with a vali-

dation procedure performed against an independent continuous dataset recorded over a
period different from the one used for the rainfall threshold definition (Martelloni et al.
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2012; Bernardie et al. 2014). Landslide risk managers deal with continuously monitored
rainfall datasets and also with weather forecasts. Even if a rainfall threshold defined with
discrete historical stable/unstable events gives an acceptable classification performance,
there is no guarantee that it can also give good classification performances on continuously
monitored present-day or forecast rainfall datasets. In particular, it could lead to false
positives or it could miss the detection of unstable events. In order to simulate hazard
management requirements, the rainfall threshold forecast ability is tested against periods of
high destabilization. These periods will be referred to as expected destabilization stages
(EDS) which are arbitrarily defined as days during which the landslide velocity is larger
than its third quartile. In other words, during EDS periods, the displacement velocity is
greater than 75 % of its recorded values. The forecast ability is evaluated with a sensitivity
analysis based on SVM probability outputs over an independent period. Two performance
criteria are computed on the validation interval and plotted for each threshold solution:
(i) the proportion of detected EDS (number of automatically detected true-positive
unstable events divided by total number of EDS days) and (ii) the proportion of false-
positive events (number of automatically detected false-positive unstable events divided by
the total number of days of the independent validation time interval).

5 Geological and hydrogeological setting of the study area

The Séchilienne landslide is located to the southeast of Grenoble (France), on the right
bank of the Romanche River on the southern slope of the Mont-Sec massif (Fig. 5). The
landslide is located in the Belledonne crystalline belt and is composed of micaschists. The
micaschists are characterized by a N-S trending vertical foliation. Carboniferous to Liassic
sedimentary deposits unconformably cover the micaschists along the massif ridge line,
above the unstable zone. Locally, glacio-fluvial deposits overlie both the micaschists and
the sedimentary deposits.

The Séchilienne landslide is limited eastwards by a N-S fault scarp and northwards by a
major head scarp of several hundred meters wide and tens of meters high below the Mont-
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Fig. 5 Map of Séchilienne landslide with location of the monitoring network used in this study. Elevation is
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Sec. Rare geomorphological evidence allows to define precisely the western and southern
boundaries of the unstable area. Below the head scarp, between 1100 and 950 m asl (above
sea level), a low-slope depletion zone shows an area in depression, while between 950 and
450 m asl, the slope becomes steeper (>40°) and is interpreted as an accumulation area
(Vengeon 1998; Le Roux et al. 2011). The slope is cut by a dense network of two sets of
near-vertical open fractures trending N110° to N120° and N70°. The Séchilienne landslide
is characterized by a deep progressive deformation controlled by the network of faults and
fractures and by the absence of a well-defined basal sliding surface. The landslide is
affected by a deeply rooted (about 100-150 m) toppling movement of the N50° to 70°
slabs to the valley (accumulation zone) coupled with the sagging of the upper slope
(depletion zone) beneath the Mont-Sec (Vengeon 1998; Durville et al. 2009; Lebrouc et al.
2013). The displacement monitoring shows displacement velocity vectors being relatively
homogeneous in direction (N140°) and in dip angles (10° to 20° toward the valley). Low
displacement velocities (2—15 cm/yr) are observed for both the depletion and the accu-
mulation zones (Le Roux et al. 2011). These velocities gradually decrease toward the west
and the south, allowing to estimate the limits of the unstable area. A very actively moving
zone with high displacement velocities about 150 cm/yr is distinguishable from the
unstable slope.

5.1 Hydrogeology and rainfall triggering

The hydraulic conductivity of the Séchilienne is higher than that of the underlying
stable bedrock (Vengeon 1998; Meric et al. 2005; Le Roux et al. 2011), thus leading to a
landslide perched aquifer (Guglielmi et al. 2002). The fractured metamorphic bedrock
beneath the landslide contains a deep saturated zone at the base of the slope and an
overlying thick (about 100 m) vadose zone. The recharge of the landslide perched aquifer
is essentially local, enhanced by trenches and counterscarps which tend to limit the runoff
and to facilitate groundwater infiltration (Vallet et al. 2015b). However, the hydrochemical
analyses of Guglielmi et al. (2002) show that the sedimentary deposits distributed above
the landslide hold a perched aquifer which can recharge the landslide perched aquifer. The
groundwater flow of the entire massif is mainly controlled by the well-developed network
of fractures with high flow velocities [up to a few kilometre per day; (Vallet et al. 2015b)].
The triggering of the Séchilienne landslide is likely driven by a two-layer hydrosystem
consisting of a landslide perched aquifer and a deep aquifer over the whole massif hosting
the landslide (Cappa et al. 2014; Vallet et al. 2015c). As a result, the Séchilienne landslide
is characterized by a good correlation between precipitations and displacement velocities
(Rochet et al. 1994; Alfonsi 1997; Durville et al. 2009; Chanut et al. 2013). Vallet et al.
(2015a) show that the Séchilienne displacement rates are better correlated with the
recharge than with the precipitation, reinforcing the significant role of groundwater flow in
the Séchilienne destabilization.

5.2 Monitoring network and method implementation

The Séchilienne landslide is monitored by numerous displacement stations using a wide
range of techniques (extensometer, radar, infrared geodesy, inclinometer, GPS). A weather
station is located at Mont-Sec, a few hundred meters above the top of the disturbed zone
(Fig. 5). This weather station is equipped with rain and snow gauges. The snow gauge
provides an estimate of the snowpack thickness expressed in water depth. The equivalence
between the snowpack thickness and the water depth is estimated with the measurement of
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the attenuation of the cosmic radiation by the snowpack. Therefore, this station allows to
account for snow storage and melting which cause infiltration at different rates and with
different time delays between rain and snow. As a consequence, hereafter, precipitation
will combine rainfall and snow melt as single component.

Displacement and weather data are recorded at a daily rate. The daily displacement,
identical to a velocity measurement in mm/day, is hereafter named displacement. The
weather station is equipped with rain and snow gauges. Extensometer stations are selected
for displacement data as they are the most reliable displacement recording devices on the
site and also because they have been operating since the very beginning of displacement
monitoring. For the semiautomatic detection event method, three extensometers: A13, A16
and C2, are selected. They are located on the most active moving zone, which is also the
most reactive zone with regard to precipitation events (Fig. 5). The event detection method
is calibrated on the testing interval from January 1, 2001, to December 31, 2004 (about
20 % of the studied period), as displacement time series variations are representative of the
overall time series for this period, and is then applied on the period from January 1, 1994,
to December 31, 2011. The two rainfall threshold approaches are trained from January 1,
1994, to December 31, 2011 (same as for the event detection process interval), while the
validation procedure is implemented over the recent period, from January 1, 2012, to
August 31, 2013. The training interval, which is longer than the test interval, is constrained
by SVM classification accuracy which is enhanced with the number of LD/HD events
identified. For the validation procedure, the SVM classifications are filtered, with isolated
detected one-day LD or HD events disregarded since not being significant enough to lead
to a destabilization event. The currently existing Séchilienne warning system, partly based
on precipitation, in addition to displacement rate, micro-seismic and rockfall monitoring,
integrates an operational rainfall threshold (SWS threshold) defined as 80 mm of accu-
mulated precipitation for a period of less than 3 days.

5.3 Recharge estimation

Evapotranspiration is estimated from temperature records by using the Penman—Monteith
reduced-set equation (Allen et al. 1998) and Bristow—Campbell radiation equation (Bris-
tow and Campbell 1984), calibrated against the benchmark Penman—Monteith equation
(Allen et al. 1998) and radiation measurements, respectively. Calibration is performed with
three neighboring weather stations, where all required parameters (temperature, wind,
humidity and radiation) are measured. A soil water balance method is used to compute
recharge with soil available water storage set at 105 mm and a runoff coefficient of 11 %.
Information and details on the methodology adopted in this study can be found in Vallet
et al. (2015a).

5.4 Displacement detrending

The long-term displacement records of the three extensometers show that displacement
rates and amplitudes exponentially increased through time (Fig. 6b). The precipitation data
series does not show any trend over the year, meaning that the displacement trend is
independent of the recharge amount (Fig. 6a). Consequently for the same amount of
precipitation, the Séchilienne displacement rate and magnitude responses increase steadily
with time. The observed trend is the consequence of a progressive damaging of landslide
mechanical properties due to long-term repetitive stresses which cause permanent defor-
mation. This deformation can be assimilated to long-term creep (Briickl 2001; Bonzanigo
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et al. 2007) and can lead to a decrease in the slope shear strength and/or to a modification
of hydraulic properties (Rutqvist and Stephansson 2003). In addition to the trend, the
Séchilienne landslide is constantly moving and shows large daily to seasonal variations.
These variations are clearly linked to the recharge amount (Vallet et al. 2015¢). Conse-
quently, the semiautomatic event detection and the determination of EDS periods are based
on the detrended displacement time series which is the true response of the landslide to the
precipitation trigger.

The exponential trend is removed with the statistical multiplicative method (y, = T;S,I,)
where the time series (y,) is composed of three components (Madsen 2007; Cowpertwait
and Metcalfe 2009; Aragon 2011): trend (7}), seasonal (S,) and irregular (/;). In this study,
the irregular and seasonal components are assumed to be linked to the precipitation trig-
gering factor (y, = T;R, with R, = S;I,). The trend is determined by curve fitting of a
fifth-order polynomial (parametric detrending). The result is a detrended unitless time
series (R;) with both variance and mean trend removed. The time series decomposition
process is illustrated with the A13 extensometer in the Fig. 6c.

6 Results
6.1 Semiautomatic event detection

The results of the semiautomatic event detection results are plotted in the Fig. 7, and the
calibrated parameters are presented in Table 1. Over the training interval (January 1, 2001,
to December 31, 2004), all the manually identified HD events are located in winter—spring
seasons (high flow periods), whereas LD events take up the rest of the year. For HD events,
13 events are automatically detected among the 13 manually identified (100 %) and O false
positive is identified (Fig. 7a). For LD events, 10 events are automatically detected among

100, (@) = Recharge = Precipitation
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Displacement detrended

g L
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n

Fig. 6 Meteorological dataset and detrending of extensometer A13 records. a Precipitation and recharge
dataset. b A13 daily displacement and parametric trend. ¢ Detrended A13 daily displacement
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the 13 manually identified (77 %), and 3 false positives are identified (Table 1 and
Fig. 7a). The calibration performance is better for HD events, as peak patterns are better
constrained (sharp width, large amplitude, short wave length, one HD event per peak),
while several LD events can be identified within the same trough (longer wave length).
Fifty-seven HD events and 55 LD events are identified for the whole studied interval
(January 1, 1994, to December 31, 2011) on the three detrended displacement time series
and are plotted on the raw displacement time series (Fig. 7b). Detections of events are
regularly spread over the time series interval, although only a few events are identified for
some years (1997, 1999, 2003 and 2006). LD and HD events mainly occur in summer—
autumn and winter—spring, respectively, reflecting the seasonal pattern of manual events.
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Table 1 Results of the calibration of the automatic event detection method for low-destabilization (LD)
events and high-destabilization (HD) events

Type LD event HD event
Calibrated parameters Neighbor window (wy, w,) [day] (123; 56) (80; 16)

Event window (w;, @,) [day] (2; 3) 2;2)

‘Safety’ margin: (¢, ;) [mm] (0.0154; 0.0095) (0.0524; 0.0649)
Performance True-positive events (TPE) [%] 77 100

Average date deviation (D,,) [day] 3.5 1.33

False-positive events (FPE) [%] 23 0

The number of identified events is well balanced for each class, and the total number of
events is sufficient to perform a SVM analysis.

—_
Q
~

Two-dimensional threshold

Precipitation

Antecedent/precedent decay factor:1/1

B

Soft margin 0.86 - MER 13.27%
+

Recharge
Antecedent/precedent decay factor: 0.98/0.98
Soft margin 7.03 - MER 7.08%

+

150 140
% y = -2.4948 x + 70.2442 =-0.3918 x + 25.0961
€ 125-] £ 120
€ . = ;
2 100 + @ 0o +
3 £t + S 80+ i+
[Te) 0 4+ i
- b N
a:> S 60 1 + +$ gl *
8 * 8 * * + - + %
1] - & 40 B +
o + o . *
o L X o 204 y 35 =g 5 +
0 et N1 0 oty T T T T
0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100 120
Antecedent 10 days - mm Antecedent 34 days - mm
_ ... Multi-dimensional threshold
(b) 50 Precipitation 50 — Recharge
45 45
40 40
- LM & GM mingled : 8 days ] .
88 Soft margin: 20.91 55 é’gﬁi‘ifyi_ 54 16
2 30+ MER:15.93% ® 809y g GM: 60 days
x x 25 Soft margin: 1.38
5 ] MER: 9.73%
s s 20
15
10
5 -
0 T T T T T D“Y_l— 0 T T T T T D“Y‘r
0 50 100 150 0 50 100 150
Low destabilisation events + High destabilisation events ~ —— Linear kernel — rbf kernel

Fig. 8 Results of rainfall threshold classification on the training interval for the a two-dimensional and
b multi-dimensional approaches. MER, LM and GM stand, respectively, for misclassification error rate,
local minimum and global minimum

@ Springer



838 Nat Hazards (2016) 84:821-849

6.2 Rainfall threshold performances on the training interval

Among the combinations tested for the two-dimensional threshold (2DI threshold), the best
rainfall threshold MER for precipitation (13.27 %) is about two times larger than the best
MER obtained with recharge (7.08 %, Fig. 8a). The antecedent precipitation/precedent
precipitation indexes involved in the two best threshold performance are 10/5 days for
precipitation (short-term) and 34/8 days for recharge (long-term) with decay weight factors
of 1 and 0.98 (identical for the two periods for the two cases), respectively.

Regarding the multi-dimensional approach (MDI rainfall threshold), the two tested
kernels (linear and RBF) show no significant differences in the MER performance for
precipitation as well as for recharge (Fig. 8b). The linear kernel, which is much simpler
than the RBF kernel, is chosen to determine the MDI rainfall threshold. The MDI number
of days, from which MER is not significantly improved, is identified as a local minimum,
whereas the MDI number of days having the minimum of MER is identified as a global
minimum. Regarding precipitation, the local and the global MER minima are mingled
(MER 15.93 %) for a rainfall MDI of 8 days. Regarding recharge, the local minimum
(MER 13.27 %) is obtained at 8 days, whereas the global minimum (MER 9.73 %) is
obtained at 60 days, both recharge MERs being lower than the MER derived from
precipitation.

Both threshold approaches lead to short-term and long-term components. Recent studies
(Guglielmi et al. 2002; Cappa et al. 2014) show that a two-layer hydrosystem may
destabilize the Séchilienne landslide, with a shallow perched aquifer localized in the
unstable area and a deep aquifer below the landslide. The perched aquifer behavior is more
reactive to short-term precipitation events, whereas the deeper aquifer is more sensitive to
long-term seasonal recharge variations. In order to take into account the possible coupling
of the two aquifers on the landslide destabilization, a rainfall threshold is estimated for
each threshold approach by averaging the probability of the short- and long-term com-
ponents (the so-called composite threshold). The two-dimensional precipitation and
recharge thresholds are combined, while for the multi-dimensional threshold, only the
recharge short-term and long-term MDI solutions are used. Although the precipitation is a
more appropriate signal to characterize the landslide perched aquifer, the short-term
component of the recharge is chosen for the multi-dimensional threshold. Indeed, the
precipitation and recharge short-term optimal solutions of the multi-dimensional threshold
occur within the 8th dimension, but recharge shows a slightly enhanced MER (see
Sect. 7.2 for process explanation). In the case of the composite threshold, if infra-day (e.g.,
hourly) precipitation dataset were available (which is not the case for Séchilienne), it
would worth testing this dataset to check whether the performances of precipitation
threshold accounting for the landslide perched aquifer are improved or not.

6.3 Rainfall threshold performances on the forecast testing interval

The performances and the results of the thresholds estimated with the 2DI and the MDI
approaches on the forecasting testing interval are plotted versus the time in Fig. 9. Fig-
ure 10 shows the performances of these thresholds according to the threshold SVM
probability outputs.

The probability output signals show similar patterns between respective components of
2DI threshold and MDI threshold approaches, i.e., short term, long term and composite
(Fig. 9b, c). For the SVM default classification (probability >0.5), regardless of the
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approach, short-term components show a more scattered HD event detection, sensitive to
precipitation events, with several false positives during low flow periods. Conversely, the
long-term components show a more continuous HD event period during high flow periods,
also leading to several false positives. The two-dimensional approach is characterized by a
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less noisy probability signal, which can be explained by the decreasing sum acting a
smoothing function (Fig. 9b). The SWS threshold shows a low performance with an EDS
detection at 1 %.

For the 2DI and MDI approaches, the rainfall thresholds estimated with precipitation are
always outperformed by those estimated from recharge, whatever the probability limits
(Fig. 10). The composite 2DI threshold does not improve the classification performance,
and the recharge 2DI threshold is clearly the best solution of the classical two-dimensional
approach (Figs. 9b and 10a). On the contrary, the composite MDI threshold slightly
improves the classification performance, compared to the short-term and long-term com-
ponents of the recharge MDI threshold, mostly for false positives in a proportion lower
than 15 % (Figs. 9c and 10b).

7 Discussion on the event detection method and the rainfall threshold
performances on the forecast testing interval

7.1 Event detection

The event detection method shows a very good performance and produces a large number
of events to train SVM classification. Although the method is relatively robust and easy to
implement, it requires a wide data interval with at least a daily time step to produce a
sufficient number of events (statistical significance) for rainfall threshold classification.
However, improvements in instrumental technology allow more and more cost-effective
monitoring, and nowadays, many landslides have been monitored daily for more than
10 years. In addition, more and more landslide monitoring data are available with the
open-access initiatives of the scientific community, such as the French OMIV observatory
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Fig. 10 Rainfall threshold performance comparison with proportion of false positives and EDS detected on
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(Multidisciplinary Observatory of Versant Instabilities) in charge of the Séchilienne
landslide. The proposed event identification should therefore be suitable for a large number
of landslides, and this number is expected to increase over the years.

7.2 Precipitation, recharge and composite rainfall threshold

Regardless of the approach (2DI or MDI), the recharge thresholds show the best perfor-
mances. The use of precipitation leads to a poor performance/error ratio and is likely to
produce an unreliable rainfall threshold. In addition, the best precipitation 2DI threshold
does not require a decay factor in the decreasing cumulated precipitation amount com-
putation (Fig. 8a), meaning that the short-term component does not involve a nonlinear
relationship with the displacement records. This reflects the fact that the key parameter to
account for destabilization of deep-seated landslides controlled by nonlinear groundwater
processes is not precipitation but recharge (Van Asch et al. 1999; Vallet et al. 2015a).

The composite threshold shows the best performance for the MDI approach, whereas
the recharge threshold shows the best performance for the 2DI approach (Fig. 10). This
difference can be explained by the fact that the composite MDI threshold is estimated only
with the recharge component, whereas the composite 2DI threshold involves the precipi-
tation component. The rainfall threshold takes only interest in classifying extremely low-
or high-destabilization events resulting from extremely high or low precipitation events.
Consequently, the soil-water balance which acts as a filter by removing numerous pre-
cipitation events of low magnitude (soil water storage cutoff) enables to define a better
rainfall threshold identifying less false positives. This is another advantage to use the
recharge signal rather than the precipitation signal. Lastly, the good performance of the
composite threshold agrees with a landslide destabilization triggered by a two-layer
hydrosystem.

7.3 Two-dimensional versus multi-dimensional rainfall threshold

The similarity of the probability output signals between the two methods (2DI and MDI)
indicates that the weight applied by the SVM classifier to the dimensions of the MDI
successfully reproduces the nonlinear relationship between precipitation/recharge input
and landslide destabilization (Fig. 9). Unlike the 2DI rainfall threshold determination,
there is no need to introduce parameters such as decay factors in order to adjust for the
nonlinearity. The multi-dimensional approach (MDI) fulfills the requirement of the method
to adhere to the concept of requisite simplicity (Stirzaker et al. 2010), balancing technical
accuracy with utility for operational implementation. For all these reasons, although the
2DI threshold globally shows slightly better performance, a composite MDI threshold is an
efficient alternative method. Indeed, it has the benefit of having a truly objective and cost-
effective computation method. From an implementation point of view, although the two-
dimensional approach requires numerous hypotheses and extended computation time, it
has, nevertheless, the advantage of defining the rainfall threshold by a simple linear
equation which can be used regardless of the SVM model from which it originates
(Fig. 8a). Conversely, the MDI rainfall threshold method does not require any hypothesis
or extended computation time. It, however, requires the use of the SVM established model
to discriminate between events.
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7.4 Relevancy of the SVM probability output

The SVM probability outputs are investigated in Fig. 10 with a sensitivity analysis in
relation to the proportion of detected EDS and false-positive events. Whatever the
approach (2DI and MDI), the probability outputs allow a finer and more flexible classi-
fication than the SVM default classification (probability >0.5). In the case of the recharge
2DI threshold (Fig. 10a), the default SVM classification identifies 33.3 % of false-positive
events for a 96.5 % proportion of detected EDS. The modification of the probability limit
to 0.77 allows, for a similar proportion (94.7 %) of detected EDS, to decrease the pro-
portion of false-positive events to 19.4 %, that is an improvement of about 40 %. The
sensitivity analysis shows that the higher the probability, the fewer the EDS events
detected and the fewer the false-positive events (Fig. 10).

For each rainfall threshold, the break point on the detected EDS vs. false-positive plot
above which the EDS proportions do not significantly increase compared to the false-
positive proportion has been identified (highlighted by arrows in Fig. 10). This point
corresponds to the probability limit which maximizes the proportion of detected EDS with
respect to the proportion of false-positive events.

The composite MDI threshold probability outputs and the A13 displacement time series
are plotted for seven limits from 0.5 to 0.99 for illustration purposes (Fig. 11). These
results highlight the relevance of using a validation procedure, in order to assess the
forecast ability of the rainfall threshold (Martelloni et al. 2012; Bernardie et al. 2014).
Indeed, the validation procedure allows to choose the appropriate probability limit
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according to the threshold purpose and to assess whether the accuracy of the threshold is
sufficient to be integrated or not into a warning system. Time series signal patterns of
displacement and SVM probability outputs (Figs. 9 and 11) suggest that the SVM prob-
ability outputs might be linked to hydraulic stress levels triggering the landslide destabi-
lization, but this has still to be proven.

7.5 Operational applicability of the rainfall threshold in the Séchilienne
warning system

The low performance of the present-day SWS threshold can be partly explained by the fact
that the identified periods for EDS do not match the detection requirement of the rainfall
threshold in the Séchilienne warning system. However, the SWS threshold misses
numerous high-destabilization events, demonstrating that the SWS threshold does not
consistently link rainfall input with landslide destabilization (Fig. 9). The composite MDI
threshold outperforms the presently used SWS threshold whose probability output flexi-
bility makes it suitable to be integrated in the Séchilienne warning system (Fig. 11).

8 Conclusion and perspectives

The aim of this study is to develop a new operational objective method to determine
statistical rainfall thresholds for deep-seated landslides. Combining the SVM multi-di-
mensional rainfall threshold with a semiautomatic event detection method produces very
good results and constitutes an appropriate tool to define an objective and optimal rainfall
threshold. In addition to shortened computation times, to the non-necessity of pre-requisite
hypotheses and to a fully automatic implementation, the newly introduced multi-dimen-
sional (MDI) approach shows performances similar to the classical two-dimensional
approach. This shows its relevance and its suitability for defining a rainfall threshold.
Moreover, the multi-dimensional approach allows to find the best period combination
which maximizes the separation of stable and unstable events. Lastly, this study shows that
the recharge is a relevant parameter to be taken into account for deep-seated rainfall-
induced landslides. Using the recharge rather than the precipitation significantly improves
the delineation of a rainfall threshold separating stable and unstable events. The perfor-
mance and accuracy of the multi-dimensional composite threshold make it an appropriate
method for integration in the Séchilienne landslide warning system. Probability outputs
allow to design an adjustable rainfall threshold adapted to early warning system require-
ments, especially for those having multi-step crisis alerts.

The outcomes of these results are numerous. It would worth testing the proposed
method for other deep-seated or shallow landslides in order to evaluate its application and
performances. As well, it would worth comparing performances of the proposed method to
frequentist and Bayesian studies. Indeed, the intensity—duration thresholds, especially for
the identification of the triggering rainfall conditions (Segoni et al. 2014), are often defined
by resorting to subjective decisions. For shallow landslides, it may be necessary to adjust
the method by defining a multi-dimensional index at an infra-hourly time step, in order to
characterize intensity and duration of rainfall events. Another application would be to
define a rainfall threshold with the proposed method for micro-seismic and rockfall events,
linked to landslide destabilization mechanisms. Lastly, in order to improve threshold
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accuracy, it will be of interest to evaluate rainfall threshold biases induced by meteoro-
logical forecast uncertainties.
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Appendix: Application of the support vector machines
for the determination of rainfall threshold

The SVM classifier tool

The support vector machines (SVM) method is a widely used two-class linear classifier,
belonging to supervised learning models and kernel methods (Hastie 2009). The purpose of
a supervised learning method is to produce an inferred function from a set of training data
(with known properties). The inferred function is then used to classify new data for
prediction. The SVM classifier can be used to find the best hyperplane separating two
classes of n dimensions by maximizing the margin between the two classes (Fig. 12). The
margin can be defined as the width between data points (called support vectors) of the two
classes that are closest to the separating hyperplane with no points within the margin
(Cristianini 2000). Data scaling or normalization are strongly recommended to enhance the
SVM classifier performance (Hsu et al. 2003; Ben-Hur and Weston 2010). For this study,
all data are scaled to the [0, 1] range.

The SVM classifier assumes that the data are linearly separable and requires that the
best hyperplane classifies each point correctly. However, a rainfall threshold classification
presents possible nonlinear separable data. In order to achieve a larger margin, the soft
margin SVM formulation (Cortes and Vapnik 1995) allows some points to be in the margin
or even to be misclassified. This is achieved by introducing slack variables ¢; in the
minimization program (Eq. 5). A soft margin cost parameter C must be specified by the
user. The C parameter controls the trade-off between errors of the SVM on training data
and the margin maximization. Small values of C will produce a classifier with larger
margins and will allow a higher proportion of misclassified sample data. The optimal
hyperplane is obtained by solving the optimization problem in Eq. (5). The optimization
function is built-in for the SVM packages used. More details and an introduction to the
SVM classifier can be found in Hsu et al. (2003) and Ben-Hur and Weston (2010).

Manual SVM with soft margin e 1 Linearly separable

e + Linearly non-separable
e Non-optimal plan (manual)
— Optimal plan

+ e « Support vectors

+

Infinite solutions High C value Small C value ~— Margin

Fig. 12 Schematic illustration of the SVM classifier principle and the soft margin formulation
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(5)

subject to y;(w'x; +b) > 1 — &, >0

with: w, normal vector of the classifier; p, number of dimensions; b, intercept of the
separating hyperplane (also called bias); C, soft margin cost; y;, labels +1 or —1; x;, ith
sample dataset (p-dimensional row); ¢;, slack variable; n, number of sample (observations).

SVM Kkernel selection

The efficiency of the SVM classification depends on the soft margin parameter, the
selected kernel function and kernel parameters. The kernel function allows to map data
from the input space to a higher-dimensional space where the SVM classifier can find a
linear separating hyperplane (kernel trick). A nonlinear kernel can handle the cases for
which the separation between class labels is nonlinear in the input space. In order to do so,
the nonlinear kernel finds a linear solution in the feature space. In this study, the kernel is
selected from the four commonly used kernel functions: linear, polynomial, radial basis
function (RBF) and sigmoid.

Two-dimensional rainfall index

Although the RBF kernel is recommended by default for classification with a number of
instances larger than the number of features (Hsu et al. 2003), the linear kernel is selected
for the classical rainfall threshold. The choice of the linear kernel is justified as the
nonlinearity is already taken into account by the decreasing cumulated rainfall amount. In
addition, the linear kernel does not require the input of any parameter, so only the soft
margin parameter (C) need to be adjusted. This allows a cost-effectiveness computation
given the large amount (24,450) of combinations to explore.

Multi-dimensional rainfall index

For the multi-dimensional approach, the number of features involved in the classification
varies from 1 to 150, whereas the number of instances (events) is constant. The linear and
RBF kernels are tested and compared for each iteration. The linear kernel is selected for its
cost-effectiveness and simplicity in calibration computation. Among the nonlinear kernels,
the RBF kernel (Eq. 6) is chosen for the reasons mentioned by Hsu et al. (2003) and Ben-
Hur and Weston (2010): having only one parameter y to calibrate, generally outperforms
other nonlinear kernels and presents less numerical difficulties.

K(X:X;) = exp(fyX,-ij), 7>0 (6)

SVM calibration and threshold performance: cross-validation

The cross-validation is a statistical method which evaluates a model performance and is
especially adapted to a learning predictive model such as the SVM classifier (Hsu et al.
2003; Refaeilzadeh et al. 2009; Ben-Hur and Weston 2010). The cross-validation consists
in successive rounds where the dataset is randomly partitioned into two subsets: One will
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be used for training the model (learning) with known properties, and the other will be used
for validating the model with unknown properties (testing). The method ensures that all
data are used both for training and validation. The cross-validation assesses the accuracy of
the model to predict new data by estimating the average misclassification error rate (MER).
The cross-validation is recommended for SVM calibration. It can also avoid model
overfitting (Hsu et al. 2003). There are several methods to partition the data according to
the goals of the study. In this study, a ‘leave-one-out’ cross-validation is chosen as it allows
unbiased performance estimation. The leave-one-out is a particular case of k-folds cross-
validation where k equals the number of observations. The k-folds method consists of
dividing the dataset into k equal subsets (folds). Each fold in turn is used for validation,
while the remaining k—1-folds are used for SVM training for k iterations.

The built-in MATLAB® function fminsearch, which is an unconstrained nonlinear
optimization, is used to search for the best soft margin cost parameter C and the RBF
parameter y which minimizes MER of the cross-validation (calibration process). Because
fminsearch is dependent on an initial estimate of the parameter to calibrate, an exponential
grid search of C solutions from —4 to 8 (with an increment of 0.01 rounds) is performed for
each SVM model. The fminsearch function is then applied to the model with the best
performance. The calibration is performed for each tested combination. The MER obtained
after SVM calibration from the leave-one out cross-validation is used to assess the clas-
sification performance for each tested combination for both the classical and new
approaches. The MER is the ratio between the number of erroneous predictions and the
total number of predictions produced.
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