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1 INTRODUCTION 

Rainfall threshold is a widely used method for estimating minimum critical rainfall amount which can yield 
to slope failure. Rainfall threshold can be defined either with empirical (statistical) or deterministic (physical 
based model) approach  from local to worldwide scale (Terlien, 1998). To the best of our knowledge, no at-
tempts of defining an empirical rainfall threshold to a deep seated unstable slope (>100m) have yet been suc-
cessfully undertaken. Literature reviews shows that most of the threshold studies are subjective and not opti-
mal, as thresholds are usually drawn visually or with poor mathematically/statistically bases (Guzzetti et al., 
2007). Moreover, effective rainfall, which is the part of rainfall which recharges the aquifer, is relevant to 
consider instead of raw rainfall for deep seated landslides involving groundwater flow (Vallet et al., 2013). 
The aim of this study is to develop a new objective approach using effective rainfall to establish hydro-
geological statistical threshold of a deep seated unstable slope. The method has been designed in order to be 
easily incorporated in a landslide warning system. Support vector machine (SVM) and automatic events iden-
tification were implemented for this study.  

2 MONITORING NETWORK AND DATASET 

The Séchilienne site is located on the external part of Belledonne crystalline range in the French Alps 
(mica-schist bedrock), south-east side of Grenoble city (France). The climate is mountainous with mean an-
nual precipitations of 1200 mm. The Séchilienne site is a deep unstable slope on mica-shist bedrock. Precipi-
tations are recorded at Mont Sec weather station (Météo France), including a rain gauge and a snow gauge. It 
allows estimating total precipitation (rainfall + snowfall), rainfall, snow cover, and snow melt in water equiva-
lent. Effective rainfall was computed using a water balance method from precipitation, runoff and evapotran-
spiration with a soil available water storage of 35mm  (Vallet et al., 2013). Displacement velocities of the Sé-
chilienne unstable slope are monitored by several extensometers since 1990. The A13, A16 and C2 extensom-
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eters were selected as representative of the Séchilienne most active zone displacement. Daily precipitation, 
recharge, and displacement time series range from 1st January 1994 to 31 July 2012.  

3 HYDROGEOLOGICAL THRESHOLD FOR DEEP SEATED LANDSLIDE 

3.1 Threshold definition 
Threshold matches with the separation boundary between rainfall conditions (rainfall index) which have 

required amount of rainfall which 
yields to destabilization. Establishment of rainfall threshold is based on a two dimensional rainfall index. Lit-
erature presents various combination of index with the most common used are intensity-duration and daily-
antecedent. Index selection depends mainly of study site settings (landslides type, climatic conditions, geo-
morphology, local or global thresh  

Séchilienne unstable slope involves a large scale aquifer with water catchment by far larger than the unsta-
ble slope extension. Hydrosystem inertia and buffering properties are significant and smooth over short term 
events properties such intensity and duration. Unstable slope aquifer hydrodynamic response is then more in-
fluenced by antecedent rainfall which considers multiple rainfall events than a single event. Therefore for Sé-
chilienne, threshold definition is based on antecedent and precedent rainfall index. Antecedent rainfall and 
precedent rainfall match with the accumulated amount of rainfall over a period of days before an event (unsta-
ble or not). 

Complex structural geology and induced groundwater hydrodynamic of deep seated landslide involves 
generally a complicated hydro-mechanical relationship with rainfall (Berti et al., 2012; Terlien, 1998). For 
deep seated landslides, threshold deterministic approach, based on hydro-mechanical model, are challenging 
to implement due to rarity of direct hydrodynamic parameters measured.  Therefore, in case of large amount 
of available data, definition of a statistical local threshold (specific to a landslide) is preferred as it can implic-
itly take into account these relationships. 

3.2 Hydrogeological index 
Even though, Terlien (1998) has shown the importance of period extension selection in threshold defini-

tion, in literature, choice of period extension of antecedent rainfalls is mainly explored empirically, with no 
optimization to find the best number of days.  

Hydrogeological threshold was estimated for all combinations of antecedent and precedent period varying 
from 1 to 60 days and from 1 to 10 days, respectively yielding to 545 combinations for each dataset (effective 
and raw rainfall). The two periods, antecedent and precedent, do not overlap and are always adjacent (Figure 
1). SVM performance was used to assess the best combination of precedent/antecedent period extension 
which maximizes the discrimination between low and high instability events for both raw and effective rain-
fall. 
 
  
 

Figure1: Scheme of combinations of antecedent and precedent period for hydrogeological index 
and associated notation 

4 EVENTS IDENTIFICATION 

Although deep seated landslide destabilization is controlled mainly by rain triggered (short term compo-
nent) ,time-dependent factors (long term component) such as rock weakening, slope groundwater permeability 
and connectivity modifications can be significantly influenced the destabilisation (Berti et al., 2012). Long 
term displacement monitoring, of the three extensometers, shows that displacement rate and amplitude have 
significantly increased with time and follows an exponential trend (Figure 2
show any trend over the year, meaning that displacement trend is independent of the recharge amount. On Sé-
chilienne, detrended  displacement seasonal variations are clearly linked to the hydrocyle and to the recharge 
amount (Vallet et al., 2013). Observed trend is interpreted as the consequences of a progressive deterioration 
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of rock mechanical properties (weakening) due to long term repetitive stress which has yielded to permanent 
deformation.  

For this study, no stable or unstable events have been identified as Séchilienne unstable slope is constantly 
moving. Furthermore due to the long term increasing trend, it was not possible do define absolute landslide 
response from rainfall trigger. Therefore, choice has been made to define a critical statistical threshold which 
defines minimal amount of rainfall (raw or effective) which yield to a significant increase of slope destabiliza-
tion (relative and not absolute variation) independently from the trend. Thus, displacement trend which is in-
herent to mechanic rock slope weakening was removed and not taken into account for events identification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure2: Illustration of the displacement trend with extensometer A13 where raw displacement is 

in orange, exponential trend is in green and detrended displacement is in brown 

4.1 Automatic events detection 
Two types of events were defined, low (LDE) and high (HDE) destabilisation events and were assimilated 

respectively as local time series minima (Valley) and maxima (Peak). Most of peaks of displacement data se-
ries are asymmetrical with steep increasing side followed by a soft decreasing side (inverse for valleys), re-
vealing system memory and reactivity. Neighbouring points of the peak/valley are then defined by a moving 
window cut into two parts back and front (named neighbour window). In addition, to take into account 
peak/valley width in the detection process, event location is also defined by a second moving window cut into 
two parts, included and centred on the first one, rather than only one point (named event window). The 
neighbour window does not overlap the event window and they have both the ability to be asymmetrical to fit 
to signal pattern. If event window average is superior to a general threshold and is superior to average of both 
neighbour window parts added with their own local threshold, then maximum value of event window is con-
sidered as a peak (figure2). For valley detection, inverse reasoning was adopted. General threshold is set as the 
data series third and second quartile, for peak and valley respectively. Because extensometers are a local 
measurement, an event is considered as a landslide representative event only if it is identified on the three ex-
tensometers selected with a shift less than 10 days (spatial and time coincidence). Event date is then defined 
as the barycentre of the three identified events. 

4.2 Method calibration 
This method has 6 parameters to estimate (three for each peak/valley side: local threshold (t1, t2), neighbour 

window half-width (w1, w2), event window half- 1 1) which can yield to complex manual calibration 
(Figure 2). To overstep this constrain, a supervised learning method was implemented to calibrate the input 
parameters. Year 2001 to 2004 of the studied interval was chosen to train the algorithm. For these four years, 
events were identified manually based on the three extensometers measurements (Figure 2). Events detection 
method input parameters were estimated thanks to an algorithm of optimization by maximizing,  (i) the pro-
portion of automatic events matching  with manual events and minimizing (ii) the date average difference be-
tween manual and automatic matching events and  minimizing (iii) the  proportion of automatic events which 
do not match with manual events. Simulated annealing, which is a global optimization method, was used for 
minimization process. Method was calibrated separately for peak and for valley detection. 
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5 OBJECTIVE AND OPTIMAL THRESHOLD DEFINTION: SUPPORTS VECTOR MACHINE 

Establishment of a rainfall threshold requires defining a linear frontier between two categories of two di-
mensions points, labelled as stable or unstable, where misclassification is authorized for few points of the 
dataset. There are infinite possibilities of linear lines which can separate two classes of points. Support vector 
machines (SVM) are a widely used two-class linear classifier, belonging to supervised learning models and 
kernel methods (i.e. dot products) (Hastie, 2009).  

5.1 SVM 
Soft margin SVM formulation, by allowing some points to be in the margin or even to be misclassified in 

order to achieve a greater margin, is adapted to threshold context. A soft margin cost parameter (C) need to be 
specified by the user. Small values of C will produce a classifier with larger margin but will allow a higher 
proportion of misclassified sample data. Optimal hyperplane is obtained by solving the optimization problem 
of equation 4. The effectiveness of SVM classification depends on calibration of the soft margin parameter. 
SVM analysis was performed with the Matlab® package LIB-SVM (Chang and Lin, 2011). Data scaling (or 
normalization) is strongly recommended to enhance SVM performance and is performed for this study. 

5.2 Calibration and performance 
Cross-validation is a statistical method which assesses model performance, specially adapted to learning 

predictive model such as SVM (Hsu et al., 2003). Cross-validation assesses the accuracy of the model to pre-
dict new data by estimating the average classification rate in percent, i.e. for instance if 55 points are well 
classified on a total of 60, then accuracy is equal to 91.5%. Cross-validation is also recommended for SVM 
calibration and can avoid model overfitting (Hsu et al., 2003). For our purpose, leave-one-out cross-validation 
was chosen. 

6 RESULTS AND DISCUSSIONS 

6.1 Automatic events identification: calibration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Calibration results of automatic of automatic events detection with (a) extensometer 

A13, (b) extensometer A16 and (c) extensometer C2. LDE (Low destabilization events) and HDE 
(High destabilization events) 
For HDE, 13 events were automatically detected on the 13 manually identified (100%) and 0 events were de-
tected whereas no manual events were identified (Figure 3). For LDE, 10 events were automatically detected 
on the 13 manually identified (77%) and 3 events were detected whereas no manual events were identified 
(Figure 3). Performances of calibration is better for HDE as peak time series patterns are better constrained 
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(sharp width and amplitude: short wave) having one HDE per peak whereas multiple LDE can be identified 
for one valley pattern (long wave).  

6.2 Automatic events identification: results 
57 high destabilisation events (HDE) and 55 low destabilisation events (LDE) were identified for the whole 

studied interval on the extensometers detrended displacement and are plotted on the raw displacement time 
series (Figure 4). Events detections are relatively well spread on the time series extension, although for some 
years (1997, 1999, 2003 and 2006) only few events are identified. Number of identified events for each class 
is balanced and the total events number is sufficient to perform SVM analysis. 
 

 

 

 

 

 

 

 

 

Figure 4: Results of automatic events detection for extensometers (a) A13, (b) A16 and (c) C2. 

6.3 Hydrogeological threshold 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Results of best SVM performance for effective rainfall and raw rainfall. Both dataset are 

scaled from 0 to 1. 
Among the antecedent/precedent combinations tested, hydrogeological threshold results, for effective and 

raw rainfall, show similar performance and configuration. Accuracy of the two thresholds is comparable, 
88.5% and 86.73% and the index combination antecedent/precedent is pretty much identical, 9D/4D and 
10D/5D, for effective rainfall and raw rainfall respectively (Figure 5). Accuracy of both thresholds is suffi-
ciently high to be then integrated as a tool in an early warning system. Both thresholds only require a maxi-
mum of 10 days (on the 60 days tested) to discriminate low from high destabilisation stages.  

Although, Vallet et al. (2013) have shown that seasonal variation of Séchilienne displacement signal is 
rather correlated to effective rainfall than raw rainfall, effective rainfall does not improve significantly the 
threshold performance. Indeed, with a soil available water storage of 35 mm and a evapotranspiration poten-
tial daily average of 2 mm, sum on a low extension period (here  5 days for each index component) yield to 
low difference between effective and raw rainfall. In addition, establishment of a hydrogeological threshold 
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does not take into account amplitude of destabilisation as it only classifies binary data labelled.  Results show 
that the precipitations, until 10 days have a great influence on the occurrence or not of a destabilisation stages. 
This short term component shows the high reactivity of Séchilienne slope to water input with a fast transit 
time. Nevertheless, effective rainfall seems to be the best water input variable to predict displacement ampli-
tude fluctuations (Chanut et al., 2013) which are more dependent on the long term component of hydrosystem 
inertia (saturation state). Destabilisation increasing could be the consequences of a high satured state of hy-
drosystem simultaneous with high rainfall events. This assumption, deduced from these study preliminary re-
sults, will have to be confirmed by further analyses. 

7 CONCLUSION 

SVM and automatic events detection have produced good results for the establishment of a hydrogeologi-
cal threshold for Séchilienne landslide.  Accuracy of threshold defined for Séchilienne landslide, makes it ap-
propriate to be integrated in a landslide warning system. Effective rainfall does not improve significantly 
threshold performance and raw rainfall seems to be the best variable to use as no computation is required. Fur-
ther analyses are required in order to confirm these study preliminary results. 
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