
THÈSE
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Abstract
Three remote sensing techniques, Lidar, satellite radar interferometry and aerial pho-

togrammetry are applied to quantify the spatial and temporal evolution of two clayey land-
slides (Avignonet and Harmalière, located in the Trièves area, French Alps) in complement to
in-situ instrumentations. A geomorphological analysis based on Lidar-derived filtered DEM,
coupled to analysis of ortho-photos dating back to 1948 and geophysical investigations, shows
that the different evolution of the neighbouring landslides could be partly controlled by the
paleotopography of the bedrock underlying the clay layer. Directional roughness is shown to
help distinguishing between landsliding and gully erosion patterns. Cross-correlation tech-
nique adapted to DEMs has been developed to derive 3D-displacement-vectors between two
Lidar acquisitions (2006 and 2009), paying attention on measure quality assessment. The
displacement map reveals that, at the Harmalière landslide, the main sliding channel, very
active from 1981 - 2001, is now relatively slow (< 0.4 m over 3 years), in contrast with four
surrounding distinct areas of large movements (up to 3 m) partly with rotational components.
At the Avignonet landslide, displacements generally increase towards the toe (up to 1 m near
the drainage outlets). Persistent Scatterers Interferometry technique allows to derive new
reliable displacement-rates (1992 - 2000) at 16 points of the Avignonet landslide, consistent
with GPS time-series. The long-term average headscarp retreat rates are estimated to 1 - 5
cm/y at Avignonet and 7 - 14cm/y at Harmalière. The retreat of the Avignonet landslide
seems to be controlled by the erosion of the top of the underlying compacted alluvial lay-
ers. The presence of a paleovalley (Drac river) below the Harmalière toe could explain the
difference of kinematics between the two landslides.

Résumé

Trois méthodes de télédétection (Lidar, interférométrie radar satellitaire et photogram-
métrie aérienne) ont été appliquées pour quantifier les évolutions spatiales et temporelles de
deux glissements argileux (Harmalière et Avignonet, situés dans la région du Trièves, Alpes
françaises) en complément d’instrumentation in-situ. Une analyse géomorphologique a été
réalisée à partir d’ortho-photos (depuis 1948) et du MNT Lidar filtré. Couplée à des recon-
naissances géophysiques, elle a montré que la cinématique différente des deux glissements
contigus était partiellement contrôlée par la paléotopographie sur laquelle s’est déposée la
couche d’argile. La rugosité directionnelle a permis de distinguer les processus d’érosion
résultant de mouvements gravitaires et de ravinement. Une technique de corrélation d’images
adaptée aux MNT a été développée pour obtenir les vecteurs de déplacement 3D entre deux
acquisitions Lidar (2006 - 2009), avec une attention particulière portée à l’évaluation de la
qualité des mesures. La carte des déplacements obtenue montre que la zone la plus active du
glissement de Harmalière entre 1981 et 2001 est maintenant relativement lente (déplacement
< 0.4 m en 3 ans), contrairement à d’autres zones proches montrant des mouvements im-
portants atteignant 3m avec une composante rotationnelle. Pour le glissement d’Avignonet,
les déplacements déduits augmentent généralement vers le pied du glissement et peuvent
atteindre 1 m. La technique des réflecteurs permanents en interférométrie radar a permis de
déterminer de nouvelles valeurs de taux de déplacements (entre 1992 et 2000) en 16 points
du glissement, qui sont cohérentes avec les données GPS existantes. Le taux moyen de recul
à long terme de l’escarpement principal a été estimé à 1-5 cm/an à Avignonet et entre 7
et 14 cm/an à l’Harmalière. La régression du glissement d’Avignonet semble contrôlée par
l’érosion du sommet de la couche d’alluvions compactes reposant sur le substratum. La
présence d’une paleovallée du Drac sous le pied du glissement de l’Harmalière pourrait ex-
pliquer cette différence de cinématique entre les deux glissements.
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do!”). Thierry Villemin and Stéphane Schwartz for their help to get the Lidar data.
Grégory for the nice collaboration. All the people from the Ecole Doctorale, the Lab-
administration and computer department for their collaboration. Merci bien!

At Enschede, I would like to thank Cees can Westen for his scientific guiding and the
organisation of my carefree stay. Many thanks also to the most helpful contributions
from Enrique and Antonio. Dank je wel!

At Florence, many thanks for the warm welcome to Nicola Casagli and Veronica
Tofani, the Rigini family for the nice accommodation, Francesca for the countless help
when struggling with Gamma and all the other nice people of the Arcetri outpost.
Mille Grazie!

And last but not least I would like to thank all the members of the Mountain
Risks project which made this work possible, especially Jean-Philippe for the great
coordination in general and all the other scientific leaders for the powerful workshops,
meetings and fieldtrips. Special thanks also to Jacopo, Marjory, Melanie, Ping and all
the other young fellows for the nice time we had together.

I also thank the European Space Agency for providing the SAR-data through the
project CAT-1 6124.

ix





CHAPTER 1
Introduction

A landslide evolution is characterised by spatial and temporal change at different scale.
The efficient quantification of landslide evolutions is important, because landslides in-
creasingly causing risks, among other natural hazards, to the modern society world-
wide due to the increasing spatial demands by society and partly due to climate change
(Kjekstad, 2007; Sidle and Ochiai, 2006). Landslides are slope movements of soil or
rock controlled by gravity. Reliable numbers of the socio-economic impact from land-
slides are difficult to obtain on a global scale, because they are often caused by other
natural hazards like floods and earthquakes. According to the EM-DAT database1

about 17% of fatalities from natural disasters can be accounted for landslides(Sassa
and Canuti, 2008). After a World Bank report (Dilley, 2005) are 3.7 million km2 pop-
ulated by 300 million people are exposed to landslide hazards and from that 820 000
km2 with 66 million people within high risk areas. Petley (2008) reports for the year
2007 that 90% of the world wide landslide fatalities were due to precipitation triggered
landslides, 3.4% due to construction, 1.8% due to mining, only 0.7% due to earthquakes
and 3.4% due to unknown causes. This might have changed significantly within years
of large earthquakes like the Sichuan earthquake of 2008 in China which caused many
big landslides with lots of fatalities.

In order to manage the risk for economic values it is usual helpful to make a cost-
benefit analysis determining useful counter-measures to landslides. When dealing with
human lives the analysis is more sensitive and the notion of an acceptable risk has to be
defined, which depends on culture, risk perception, availability of alternative building
land, etc. (Glade et al., 2005). Usually, less developed countries show high fatality
rates with natural disasters, while higher developed countries are more vulnerable in
terms of economic values. However, compared to the gross domestic product (GDP),
low developed countries are also more vulnerable in terms of economic values (Smith
and Petley, 2009). Also the majority of undeveloped countries are prone to tropical
storms and earthquakes, the main trigger factors for landslides and usually building
codes, spatial planning and education are less advanced causing high fatalities due to
landslides (Petley, 2008).

1EM-DAT database of the Centre for Research of Epidemiology of Disasters (CERD) - emdat.be

1

emdat.be
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Type Rock Debris Soil

Fall Rockfall Debris fall Soil fall
Topple Rock topple Debris topple Soil topple
Slide (rotational) Multiple Multiple Multiple

Successive Successive Successive
Slide (translational) Block slide Block slide Slab slide

Rock slide Debris slide Mudslide
Lateral spreading Rock spreading Debris spread Soil spreading
Flow Rock flow Debris flow Soil flow
Complex (change of e.g. rock avalanche e.g. flow slide e.g. slump-earthflow
behaviour downslope)

Table 1.1: Landslide Classification after (Dikau et al., 1996). The materials are based on
an engineering definition, meaning that instead of soil also earth can be used.

Velocity Description Velocity Typical Human
class (m/sec) velocity response

7 Extremely Rapid Nil
5 5 m/s

6 Very Rapid Nil
5 · 10−2 3 m/min

5 Rapid Evacuation
5 · 10−4 1.8 m/h

4 Moderate Evacuation
5 · 10−6 13 m/month

3 Slow Maintenance
5 · 10−8 1.6 m/a

2 Very Slow Maintenance
5 · 10−10 16 mm/a

1 Extremely Slow Nil

Table 1.2: Landslide velocity classification after (Cruden and Varnes, 1996)

1.1 Landslide classification and terminology

The term landslide covers a large variety of mass movements, and can be classified us-
ing different characteristics like the type of movement, the involved material, the status
of activity or the sliding velocity (Varnes, 1978; Cruden and Varnes, 1996; Dikau et al.,
1996). Table 1.1 shows the classification after Dikau et al. (1996), which subdivides
landslides depending on the source material (rock, debris, soil) and the type of move-
ment (fall, toplle, slide, etc.). Figure 1.1 illustrates some of the most common landslide
types. They can be further described by the status of activity (active, suspended, re-
activated, inactive, dormant, stabilised, relict (Varnes, 1978)) or the sliding velocity as
listed in Table 1.2, reaching from extremely rapid to extremely slow.

Other less commonly used classifications can be according to age, morphology,
geography, topography, climate or cause of the movement.

This work focuses on clayey landslides, which usually exhibit extremely slow to
slow movements (see Tab. 1.2), but can sometimes accelerate and evolve into rapid
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Figure 1.1: Most frequently occurring landslide types. Source: USGS (United States
Geological Service), fact sheet 2004-3072 http://pubs.usgs.gov/fs/2004/3072/.

catastrophic earthflows causing severe damages to the society (e.g. Zogning et al.,
2007). Figure 1.2 shows the schematic of a typical complex slump-earthflow including
the terminology for different observable features.

The difficult to predict transition from slower to higher velocities is what makes
these type of landslide dangerous. On the other hand the often continues but very slow
movements can be used to detect and analysis the spatial and temporal kinematics for
a better understanding of the underlying mechanisms before larger hazards occur.

http://pubs.usgs.gov/fs/2004/3072/
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Figure 1.2: Terminology of features of a slump-earthflow (rotational landslide + mudslide)
after (Cruden and Varnes, 1996)

1.2 Study site: the Avignonet and Harmalière

landslide

This work is focusing on two adjacent typical clayey landslides in the French Alps
(Fig.1.3). They are located in the northern part of the Trièves (Fig. 1.3a) at the
westside of the Lake Monteynard (Fig. 1.3b). The area consists of a plateau (S),
bordered by a mountain range in the West and five erosion valleys, which retreat
into the plateau from North, East and South. The Drac River flows from South to
North and is dammed-up at the North end of the artificial Lake Monteynard. The
Avignonet landslide (1.3c) is covered by agricultural fields, forests and some rural
settlements (about 50 buildings including abandoned ones).The Harmalière landslide
is predominantly covered by forest with major parts exposing bare soil due to landslide
activity. Just from looking at the photos, one can see the different landslide activity
between both landslides. The fundamental question wether the Avignonet landslide can
develop such high activity like the Harmalière landslide (which had a catastrophic event
in 1981) asks for the better understanding of the mechanisms of the two landslides. A
detailed description about the geological setting and history of the study site can be
found in Section 3.1.
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Figure 1.3: Location of the study site. a) Relief map of the Trièves valley and surrounding
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views are indicated in Subfig. b.
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1.3 Objectives of the thesis

The evolution of landslides through time can be examined using geotechnical (exten-
siometer, inclinometer), geodetic (GPS) or remote sensing techniques, where the latter
one is the focus of this thesis. In particular, three remote sensing techniques are inves-
tigated: Lidar, Insar and aerial photogrammetry.

The first main objective is the evaluation and enhancement of those techniques
for a better quantification of the evolution of slow moving landslide. This includes in
particular:

• Production of high resolution bare-earth DEMs from aerial Lidar acquisitions.

• Production of different DEM-derivatives for geomorphological interpretations.

• Extraction and analysis of surface displacements from multi-temporal Lidar-
DEMs.

• Production and analysis of ortho-photos and DEMs from aerial photogrammetry,

• Extraction of surface displacements from spaceborne SAR-images (i.e. PS-Insar)

The challenge lies in the fact that the expected surface velocities of the study site
are near the limits of accuracy of the methods. Figure 1.4 shows the expected velocities
of the Avignonet landslide (gray) in relation to the predicted velocities obtainable from
the given datasets. For the PS-Insar technique the particular problems are coming from
the unfavourable reflective properties of the rural study site.

The second main objective of the thesis is to use the increased knowledge about the
past and present of the study site to explain the different behaviour of the Avignonet
and Harmalière landslide and the general driving mechanisms. This includes more
particular

• the spatial and temporal evolution of the landslides,

Avignonet

1950 1960 1970 1980 1990 2000 2010

1 mm/a

10 m/a

1 m/a

10 cm/a

1 cm/a

100 m/a

Aerial Photos
Lidar

GPS

Insar

velocity

years

Figure 1.4: Approximately detectable surface velocities through time from the investigated
datasets for the Avignonet landslide. The assumed methods for displacement extractions are
Aerial photos: Feature-tracking on ortho-photos, Lidar: Cross-correlation of DEMs, Insar:
Persistent Scatterer Insar, GPS: biannual campaigns using differential GPS
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• the short and long term history of the landslides (since the last glacial maximum,
the last decades and the last few years),

• the differences between Avignonet and Harmalière in terms of activity and con-
trolling factors,

• the evaluation of probable future scenarios

1.4 Structure of the thesis

The thesis is structured in three main chapters: methods, geomorphology/geology and
kinematics, framed by an introduction and a summary. Chapter 2 (Methods) gives an
overview about the state of the art of remote sensing techniques on landslides and some
background information for all methods and processing concepts, which are used in the
following chapters. Chapter 3 (geomorphology and geology) deals with the static infor-
mation extracted from datasets. The first part is basically a published paper containing
an introduction in the geomorphology and geology of the study site; it focusses then
on the different behaviour of the Avignonet and Harmalière landslide and discusses the
reasons, with the help of the paleotopography, obtained by geophysical investigations.
The second part of that chapter contains the analysis and discussion of different deriva-
tives of the DEM like slope, shaded relief, drainage system and roughness. Chapter 4
(Kinematics) deals with the results obtained from the temporal analysis using aerial
photogrammetry (Sec. 4.1), aerial Lidar (Sec. 4.2) and permanent scatterer inter-
ferometry (Sec. 4.3). The methodical limits and possibilities are discussed for each
method separately in its section and the results are then summarised and discussed in
Section 4.4. Finally Chapter 5 gives a summary and conclusion over the whole the-
sis. Appendix A contains more detailed informations about some datasets (i.e. aerial
photos, GPS-displacements, Lidar). They are referenced in the text when a particular
dataset is used.

1.5 Framework of the thesis

The research of this thesis was embedded and mainly funded through the European
project “Mountain Risks: from prediction to management and governance”2, a Marie
Curie Research Training Network (RTN) of the 6th Marie Curie framework from 2007-
2010. Figure 1.5 shows the main organisation structure of that project with the four
working blocks Hazard Analysis, Quantitaive Risk Assessment, Risk management and
Risk Governance. The main objective of this project were:

• To provide high-level training, teaching and research in the field of hazard and
risk management.

• To overcome the fragmentation of the research on mountain natural processes.

• To strengthen and expand collaboration between the teams.

• To promote scientific and technological excellence in the science of hazard and
risk.

2Mountain Risks Project - www.mountain-risks.eu

www.mountain-risks.eu
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Philosophy – Participative Management

• Tasks and role of each partner: defined in DoW

• Decision-making structure: defined in DoW

Scientific Assistant (4 yrs): 

- assist the coordination team

- assist the WB leaders

- assist the organizer of courses, workshops, etc
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MOUNTAIN RISKS: Kick-off Meeting, Paris, 19-21 January 2007

Project structure

• 4 working blocks (WBs) and several topic actions (TAs) per working blocks

• WB leaders are in charge of coordinating the tasks of their WB – Working groups

• Associate strongly the ESR/ER to the project tasks, management and communication

Figure 1.5: Organisation scheme of the Mountain risks project.

The project was concentrated on specific study sites in Spain, France, Italy, Switzer-
land and Germany. The research in the scope of this thesis was mainly embedded in
WB1, partly in WB2 and focussed on the Avignonet and Harmalière landslides in the
Trièves Plateau (French Alps).

This study site is also part of the French collaborative network OMIV3, a union of
six French scientific institutes focusing on four landslides in the French Alps in order
to intensify the technical and scientific findings from slow and rapid moving landslides.
This includes mainly the exchange of equipment, data and technical expertise concern-
ing geodesy, inclinometers, extensiometers, aerial and satellite imagery, microseismic,
regional seismic, hydrology and meteorology.

3OMIV (Observatoire Multidisciplinaire des Instabilités de Versants) - http://www-lgit.obs.

ujf-grenoble.fr/observations/omiv/omiv.html

http://www-lgit.obs.ujf-grenoble.fr/observations/omiv/omiv.html
http://www-lgit.obs.ujf-grenoble.fr/observations/omiv/omiv.html
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Methods

Conventional geodetic methods have been widely used for monitoring the kinematics of
slow moving landslides (centimetres per year to centimetres per day). Ground velocities
are derived from successive field surveys measuring positions of reference stations by
geodetic techniques like triangulation and tacheometry (Angeli et al., 2000) or using
GPS (Jackson et al., 1996; Malet et al., 2002). Such techniques can achieve millimetric
positioning and allow to choose specific points to measure the distribution of such data
is temporally and spatially limited and needs human intervention in the field for the
measurement. Remote sensing imagery instead is a powerful tool due to its capability
to get a synoptic view of a landslide that can be repeated at different time intervals
and its efficiency at various scales from a single landslide to regional scale (Metternicht
et al., 2005; van Westen et al., 2008; Delacourt et al., 2007).

An overview of the Remote-sensing techniques used for quantifying landslide evolu-
tion is given in Section 2.1. Then, the aim of this chapter is to present the different
methods used in the study of the Avignonet and Harmalière landslides. Most of the
remote sensing approaches benefit from the GPS technique at different levels (acqui-
sition, processing or analysis step). That is why the fundamentals of GPS will be
explained in Section 2.2 in this chapter, even if the GPS is usually not classified as a
”remote sensing” technique because, although it is based on satellites, it requires in situ
instrumentation. The ways optical imagery and Lidar are used for the study of the Avi-
gnonet and Harmalière landslides are detailed in sections Sec. 2.3 and 2.4. One of the
main product that can be derived from these two methods are Digital Elevation Models
(DEM). These DEMs are used through quantitative analysis like slope or roughness
maps. Section 2.5 describes how these DEM derivatives are obtained and gives illustra-
tion of their usefulness. Another important part of this thesis is dealing with ground
displacement measurement from the remote sensing data. This is done through two
main approaches: correlation technique applied on DEM acquired at different times
and SAR interferometry (INSAR). The principles of the correlation technique that can
also be applied on remote-sensing images are described in section 2.6. The last Sec-
tion 2.7 explains the fundamentals of spaceborne Radar imagery techniques and then
focusing on the Permanent Scatterer technique used in this study.

This thesis deals with data from different sources and different times and the ge-
ographical informations are not always given in the same coordinate system and pro-
jection. A description of the different projections and datums used in France and

9
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the methods to transform between them (for instance from NTF to RGF93 geodetic
systems) can be found in the Appendix B.

2.1 Overview of Remote-Sensing on landslide

Several remote sensing techniques have been used to get information about landslide
like optical imagery, Lidar and radar imagery. However, their performances are very
variable from one technique to another and from one dataset to another. The balance
between spatial coverage and spatial resolution is a typical example: for instance, on
one hand satellite Landsat images are not suitable to detect landslides smaller than
250 m (Eyers et al., 1998), but they cover a swath of 185 km, on the other hand aerial
photos obtained from an airplane at low altitude (500 m) can be used to compute
DEMs with an accuracy of 50 cm (Henry et al., 2002), but the spatial extent is quite
limited. Imaging techniques currently used for landslide monitoring can be divided
in passive and active methods. The passive methods are measuring the electromag-
netic radiation from the sun reflected from the earth surface or from the own thermal
radiation from the ground. For landslide studies, mainly optical sensors are used at
different bands covering the visible part of the electromagnetic spectrum up to the mid
infrared or thermal bands (wavelength from 0.4µm up to 15µm). The active methods
are measuring the backscattered signal of an artificially emitted pulse. For that, dif-
ferent wavelengths can be used, near-infrared (NIR) in the case of topographic Lidar
(LIght Detection And Ranging) and microwaves (1 mm - 1 m wavelength) for Synthetic
Aperture Radar (SAR). The sensors are operated from mobile platforms like satellites,
airplanes, helicopters, drones or from fixed ground based stations. Table 2.1 gives a
comparison of the performance between different optical and radar imagery techniques
(Lidar is not included in the table but is detailed in Section 2.1.3).

Ground based remote sensing methods, like Terrestrial Laser Scan (TLS), Ground
based SAR or fixed camera), need to be installed on a good view-point not to far from
the landslide (typically less than 1 km), which makes them sometimes inappropriate,
especially for low slope (<30◦) landslides. In addition they require electrical supply,
not easy to implement for a landslide monitoring over several months or years.

2.1.1 Optical Images

Optical images are used either directly for visual, semi-automatic or automatic inter-
pretation (Kääb, 2002; Hervas et al., 2003; Leprince, 2008; Delacourt et al., 2009) or
to obtain DEMs using the stereo geometry of multiple images if available (Baltsavias
et al., 1996; Lee and Lee, 2006; Pesci et al., 2007). Optical Imagery from satellites exists
for about 40 years. Up to the 21st century, the spatial resolution of civil spaceborne
optical sensors was typically not adequate for identifying single landslides, except very
big ones (e.g. Landsat Thematic Mapper sensor can only achieve 30 m spatial reso-
lution). But terrain conditions associated with landslides like lithology, differences in
vegetation and soil humidity were derived from Landsat and SPOT images (Mantovani
et al., 1996). Since about 10 years new developments of optical sensors from satellites
with higher resolutions onboard IKONOS (0.8 m), Quickbird (0.6 m), SPOT5 (2.5 m)
and Geoeye (0.5 m) allow studying kinematic details even inside of single landslides
(Delacourt et al., 2007). Usually the higher the resolution the smaller the spatial cov-
erage (e.g. meteorological satellites NOAA cover a swath of 2400 km with a resolution
of 1.1 km and Geoeye covers 15 km with a resolution of 0.5 m).
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a few days to 30 days 5-7 years for France (IGN-coverage)

Table 2.1: Characteristics of the radar and optical remote-sensing sensors, platforms and
techniques for landslides surface displacement measurements.(from Delacourt et al. (2007))

Another trend in optical imagery in the last two decade has been the development
of airborne (e.g. Aviris, Hymap) and spaceborne (e.g. hyperion) hyperspectral im-
agery with measurement in tens of bands from visible to infrared (Kruse et al., 2003).
However only a few studies have been done over landslides using hyperspectral imagery
(Crowley et al., 2003; Mondino et al., 2009). This may be explained by the balance
between spectral resolution and spatial resolution (due to the relatively small extent
of landslides, the priority is still on the spatial resolution), the lack of long time series,
the restricted availability of the data and their costs.

The temporal resolution is another important factor. One should distinguish be-
tween the return time and the revisit time. The time a satellite returns to the same
position can vary between 1 day (NOAA, Terra) and 46 days (ALOS) depending on the
height and the orbits inclination (return time). Usually optical sensors look perpendic-
ular to the earth surface, but some newer satellites can change the incidence angle up
to 60◦ and therefore are able to shorten the revisiting time for a desired target without
flying at the same orbit (e.g. IKONOS) by looking from aside (revisiting time). If the
revisiting time is usually shorter than the return time, as the images are not taken
exactly from the same point of view, they can be more difficult to compare.

Before the availability of high resolution satellite images the alternative source
were photos from airplanes. The availability varies a lot from one country to another,
for France aerial photos are available since 1948 every 5-7 years with scales between
1:15 000 and 1:30 000. Optical imagery has been successfully used for landslide as-
sessment. Some studies are based on automatic classification of single time satellite
images (Barlow et al., 2006) and aerial photos (Weirich and Blesius, 2007) to support
landslide susceptibility mapping. Stereo-images from satellites and aerial photos are
used to build DEMs for landslide interpretation (Nichol et al., 2006). Multi-time aerial
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Figure 2.1: Displacement and velocity maps calculated by Aerial photo correlation using
images from 1995-1999 at La Clapière - landslide. a) Aerial photo. b) Horizontal velocity.
c) Horizontal displacement orientations. d) Vertical velocity map. (Delacourt et al., 2007)

photos (Casson et al., 2003; Walstra et al., 2004), satellite images (Cheng et al., 2004;
Lee and Evangelista, 2006) or both (Kääb, 2002), acquired at multiple time for the
same area, are used to compute radiometric and DEM differences between acquisi-
tions of different times on landslides. These changes in time can also be horizontally
tracked visually using image control points (Chadwick et al., 2005) or automated using
cross-correlation techniques (Delacourt et al., 2004) (see Fig. 2.1 for an illustration).

Very high resolution aerial photos for landslide investigations and other morphol-
ogy studies have been also derived using unmanned drones (helicopter, hang-glider,
airplanes) (Henry et al., 2002; Lejot et al., 2007). Multi-temporal image analysis on
landslides has also been done using fixed cameras on the ground (Delacourt et al.,
2007), which can give much higher accuracies using image-correlation because the view
angle is always the same and the images do not have to be geometrical corrected.

This study will only focus on the use of aerial photos as they are available since
1948 at relatively low costs and provide spatial resolution of about 30-100 cm over
the whole studied area. Indeed, low resolutions satellite images could not serve the
necessary resolutions to resolve the expected velocities in the studied landslides and
high resolution satellite images would only cover at maximum the last 10 years, which
would not include the years of the highest reported activities since 1981 at Harmalière.
Acquisitions from drones are may be feasible, despite the large extents of the landslides,
but expensive and the technology was not available. Ground based cameras would lack
a good terrain-point with a complete view on the landslides within a range allowing
resolutions of the images to track changes. The treatment of the aerial photos is
described in section 2.3.
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2.1.2 InSAR

Synthetic Aperture Radar (SAR) is an active microwave device capable of recording the
amplitude and phase of electromagnetic echoes backscattered from the Earth surface
and of arranging it in a 2D image map. With respect to optical sensors, SAR offers
several unique opportunities like all-weather and day-night capability, but also presents
considerable data processing and interpretation difficulties.

To derive information about landslide displacements from SAR imagery, four main
approaches are possible: visual interpretation, image correlation, DEMs generation and
comparison and differential SAR interferometry (InSAR). The three first approaches
are quite similar to those applied in optical imagery. Regarding the visual interpreta-
tion, as optical imagery gives generally a better spatial resolution than radar imagery
and because optical imagery are easiest to interpret, optical images are preferred even
if the all-weather capability of SAR images provide more regular time-series of ex-
ploitable images compared to optical time-series often affected by cloud coverage. The
resolution issue also favours optical imagery for image correlation or DEM genera-
tion. By contrast, the ability of SAR instruments to record the phase of the coherent
backscattered signal makes interferometric methods (InSAR) possible by combining
phase images acquired at different time. The INSAR method has the potential to mea-
sure ground displacements up to millimetric scale. This accuracy is not achievable by
optical imagery.

Despite some severe limitations (high vegetation density leading to signal decor-
relation, high variation of topography and high deformation rate leading to loss of
coherence (Vanderbecq, 2000)), the capability of InSAR to detect movement fields in
landslide areas has been demonstrated using spaceborne SAR (Fruneau et al., 1996;
Rott et al., 1999; Hilley et al., 2004; Colesanti and Wasowski, 2006) and using ground
based SAR (Antonello et al., 2004; Tarchi et al., 2003). By using ground based InSAR
some of the problems arising from spaceborne observations can be solved by adapting
view angles, acquisition intervals and distance to single landslides resulting in displace-
ment fields of higher accuracy and resolution (Tarchi et al., 2003).

Using ground based InSAR spatial resolutions at metric scale can be reached. The
viewing geometry and re-observation time can be freely adapted to the expected veloc-
ities and directions of the assessed landslides. Successful studies included observation
distances of 500 to 2 000 km. This is above all useful to supervise emergency cases
(Antonello et al., 2004).

Spaceborne SAR images can achieve resolution in range direction up to 1 m with
a 10 km swath (e.g. mode spotlight of CosmoSkymed and TerraSarX). The swath can
be extended up to 500 km in ScanSAR mode (Envisat, Radarsat) but with a degraded
resolution of about 100 m. The most common mode is the stripmap mode that typ-
ically achieve a resolution in range of 5-10 m with a 100 km swath (ERS, ENVISAT,
RADARSAT, ALOS. . . ). The return time varies from 11 days to 44 days for single
satellites (see Fig. 2.2) but can be reduced when a constellation of satellites is available.
For instance for the period 1995-2000 ERS-1 and ERS-2, that have similar acquisition
parameters, were on the same orbit (35 days cycle) with one day timeshift. Conse-
quently it was possible to get pairs of images (called Tandem) with one day interval
every 35 days. A summary of some sensor specific parameters can be found in Table
2.1 and Figure 2.2 gives an overview of civil satellites from the past and planned for
the future carrying SAR imager suitable for interferometry.

For this study ERS-1 and ERS-2 data is used because they provide the longest (up
to 1992) and most dense time series and are affordable (compared to Radarsat) thanks
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Figure 2.2: Past and future civil satellites carrying a Synthetic Aperture Radar imager
suitable for interferometry. The letter and number in brackets indicate the band frequency of
the SAR and the return time in days respectively. C-band corresponds to 4 - 8 cm wavelength,
X-band 2 - 4 cm, L-band 15 - 30 cm and P-band 1 m. Note that for satellite constellation the
return time is divided by the number of satellite (e.g. for Cosmo-Skymed constellation with
4 satellites the return time is 4 days). From E. Pathier (unpublished).

Figure 2.3: Spectrum of microwaves. SAR systems using microwaves in the C-, X- and L-
band. Frequencies of commonly used in spaceborne SAR systems are in the C-band (5.30 GHz
at ERS-1/2 and Radarsat, 5.33 GHz at Envisat), in the X-band (9.65 Ghz at TerraSAR-
X) or L-band (JERS). Figure from CCRS (Canada Centre for Remote Sensing - http:

//www.cct.nrcan.gc.ca/resource/tutor/fundam/chapter1/03_e.php).

http://www.cct.nrcan.gc.ca/resource/tutor/fundam/chapter1/03_e.php
http://www.cct.nrcan.gc.ca/resource/tutor/fundam/chapter1/03_e.php
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to the ESA distribution policy (CAT-1 projects).

Major difficulties arising from the side looking geometry of SAR instruments in
mountainous areas because of shadowing and layover effects (details in section 2.7) at
steep slopes (>15◦), which can sometimes be mitigated by choosing images acquired
with the most adapted geometric configuration (ascending or descending path, inci-
dence angle) to the topography of the investigated landslide.

To derive ground displacements from InSAR, several methods are possible. The
simplest is to consider pairs of images, making single interferogram that give infor-
mation about the displacement between two dates. However interpretation of single
interferograms are always difficult, because the deformation signal is mixed with other
sources, such as atmospheric effects, orbital errors or decorrelation noises. When using
C-band data like ERS1 and ERS2 data, over rural area, the various change in vege-
tation cover make the deccorelation problem critical. To overcome these limitations
time-series approaches have been developed since a decade. They can be classified
in two types : Small-Baselines (Usai, 2001; Berardino et al., 2002) and Permanent
Scatterers (PS) (Ferretti et al., 2000; Werner et al., 2003; Hooper et al., 2004). The
main difference between the two methods is that the small-baseline approach tries to
optimise the signal for all the pixels but needs to start with interferograms showing a
good spatial coherence, in contrast the PS approach aims to work only with points that
are less sensitive to variations in the acquisition geometry but then can deal with low
spatial coherence interferograms. Some mixed approaches have been recently proposed
(Hooper, 2008; Ferretti et al., 2011).

Figure 2.4 shows an example of PS analysis used to determine long-term trends at
discrete point networks. Permanent scatterers often correspond to man-made features
or rock outcrops, so that the number of observation points can vary a lot between
hundred thousands of points per square kilometre in urban areas to large rural soil and
vegetation covered areas without any point. As the interest of landslide investigation is
often more focused in areas where they interfere with manmade structures or previous
activity of the landslide expose rock outcrops, this techniques is feasible for landslide
assessment.

For this thesis the PS approach is chosen, because most of the studies done on
landslide so far has used this approach and because in the framework of the Mountain
Risks project a collaboration with University of Florence (Italy) using this approach
with the Gamma Software1 has been developed. Section 2.7 will give more details on
the ERS data and their PS processing to measure ground displacement of the Avignonet
and Harmalière landslide.

2.1.3 Lidar

Lidar has been increasingly used since about 2000 for landslide investigations (Jaboyed-
off et al., 2010). It is mainly used to derive high resolution DEMs even in highly veg-
etated areas, where for example stereo-photogrammetry cannot be very successful (at
small scales) due to geometrical distortions and vegetative “noise”. It can be done
by terrestrial laser scans (TLS) observing single landslides (Kasperski et al., 2010) or
by aerial laser scans (ALS) from aircrafts like airplanes and helicopter covering larger
areas. Such DEMs are well-suited to support geomorphological mapping and updat-
ing landslide inventories especially in highly vegetated terrain (Rowlands et al., 2003;

1Gamma Software by Gamma Remote Sensing http://www.gamma-rs.ch/

http://www.gamma-rs.ch/
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Figure 2.4: PS-InSAR results at the Triesenberg-Triesen landslide in the Rhine valley
from Colesanti and Wasowski (2006) showing positions and average Line Of Sight (LOS)
displacement rates of the Permanent Scatterers (marked by colour dots). A) SAR image
showing the landslide location within the Rhine river valley; white square near the centre of
the image marks the reference PS supposed motionless; B) SAR image showing the landslide
slope; white dotted rectangle indicates the area represented in C); C) SAR image showing
locations of two representative PS located on the landslide (marked 1., 2.). The images are
in SAR co-ordinates, with 4 times oversampling applied along range. The pixel size amounts,
therefore, to 4 m in azimuth and 3 to 5 m (depending on the local slope) in ground range.
LOS velocity has been saturated at ±7mm/yr for visualisation purposes only. The graphs
show LOS displacement time series of the PS 1 and 2.

Schulz, 2007; Van den Eeckhaut et al., 2007). The high resolution DEMs allow to
determine spatial distributions of morphological properties inside single landslides or
landslide complexes like slope, roughness and drainage networks (McKean and Roer-
ing, 2004; Haneberg et al., 2005; Glenn et al., 2006). The example from McKean and
Roering (2004) in Figure 2.5 illustrate the distinction of kinematic units from a shaded
relief representation derived from an aerial Lidar scan of a landslide complex.

Using multiple laser scans differential DEMs can be derived showing accumulation
and depletion of material through time (Chen et al., 2006; Corsini et al., 2008). Of-
ten an ALS is combined with aerial photo acquisition, so that both methods can be
complementary combined, for example to produce high resolution ortho-photos using
the Lidar-DEM or producing realistic 3D-views by draping the ortho-photos on the
derived DEM. An extensive review about the use of Lidar for landslide investigations
is given by Jaboyedoff et al. (2010).

In this study aerial Lidar scans have been used, because the area of the two land-
slides is too large to cover it by multiple terrestrial laser scans (TLS) and furthermore
it does not exist exposed locations in the terrain from where scans of larger areas
of the landslides would be possible within reasonable distance. The acquisition and
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Figure 2.5: Shaded relief representation of the Coringa Landslide near Christchurch, New
Zealand derived by Lidar. The primary kinematic units within the slide are earthflows E1
and E2, the area of compression U1 and the Blocky area with incorporated limestone blocks.

processing of the aerial Lidar used in this study is described in section 2.4.
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2.2 Global Positioning System (GPS)

GPS is usually not classified as a remote-sensing tool because it requires receiver on
the ground. However, we dedicate a subsection to this method, because not only
the GPS is a common tools to measure surface displacements of landslides, but it
is also useful for remote sensing technique like LIDAR and aerial photogrammetry in
providing reference and ground control points. To measure ground displacements, it can
be done continuously by permanent stations (Pambrun and Nocquet, 2005; Rutledge
et al., 2001; Malet et al., 2002) or by repeated campaigns measuring marked points
throughout the area (Squarzoni et al., 2005). Both methods are applied to Avignonet.
Three permanent GPS-stations are operational since 2007 and 30 reference points were
measured biannual since 1995 by RTM (Restauration de Terrains en Montagne, a
french public service) (see App. A.5). Differential GPS has been used to derive ground
control points for the processing of the aerial photos. Because GPS-processing for
displacement measurements is not the main scope of this study, GPS techniques are
explained as far as it is necessary to understand the processing of the ground control
points and to judge the accuracies of displacement data from GPS. Further details
(principle, applicability, procedures of measurements, equipment, accuracy) are given
in Hofmann-Wellenhof et al. (2001) and for the explicit application on landslides in
Malet et al. (2002).

First the basic concept of positioning using GPS is explained, followed by a pre-
sentation of differential GPS a method more difficult to implement but increasing the
positioning accuracy. Section 2.2.3 describes the strategy for acquiring the ground
control points needed for the processing of the aerial photos covering the study area
(Sec. 2.3).

2.2.1 GPS concept

GPS or more precise “Navstar GPS” is a global navigation satellite system (GNSS)
developed by the United States of America, besides the not yet operational systems
GLONASS (Russia) and Galileo (Europe). The GPS system is made up of at least
24 satellites (currently 30). They are distributed on 6 different orbits at altitudes of
approximately 20 000 km, with 4 satellites on each. This configuration assures visibility
from every point on the earth surface to at least 4 satellites at the same time. These
satellites send continuously information about their position and time coded on two
frequencies (L1 = 1.2 GHz and L2 = 1.5 GHz). In order to determine its position the
GPS-receiver at the point of interest (POI) needs to receive the position and time
from at least 4 satellites (Fig. 2.6a). The time information is used to calculate the
travel time of the signal from the satellite to the receiver, from which the distance can
be estimated. To determine the position of the receiver by trilateration in 3D-space,
only three distances would be enough, but it requires a very accurate timing in the
receiver and the satellites. To achieve this the satellites contain an atomic clock, which
would be not practicable on the receiver side. The signal from a fourth satellite is
used to solve the equation-system of four equations and four unknown variables (three
directions and time error). The accuracy of the positioning depends on one hand on
the properties of the receiver (code and phase measurements, mono- or dual-frequency)
and the strategy of calculation. On the other hand the accuracy is limited by physical
factors like selective availability of satellites, ephemerides, precision of the orbits and
alterations of the travel time of the signal due to atmospheric conditions (Hofmann-
Wellenhof et al., 2001). Lastly, the use of special antennas and their installation on
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Figure 2.6: GPS basic concept. (a) Single GPS: A minimum of 4 GPS-satellites send their
positions and time to the receiver at the POI. The receiver calculates the distances to the
satellites and from that its own position. (b) Differential GPS: The reference station has
known coordinates and measures the position by GPS. The receiver at the POI measures a
position by GPS, which can be corrected using the difference (delta) from the known and
measured position of the reference station. This can be done directly in the field by a data
link between the reference and the POI-stations or in post-processing using the raw data
received from the satellites.

sites with an open view must limit the multipath effects, which introduce additional
errors in the resolution of the equations (Gili et al., 2000). Typical accuracies of single
(handheld) GPS receivers are about 5 m horizontally and 15 m vertically.

2.2.2 Differential GPS

To overcome some limitations of the positioning by a single GPS receiver, differential
GPS can be used to obtain more accurate coordinates at the POI (rover) relative
to a second GPS receiver (reference). If the coordinates of the reference station are
known (e.g. from long-term GPS measurements or other geodetic methods), precise
absolute coordinates can be calculated at the rover station. The basic principle of
differential GPS is shown in Figure 2.6b. The difference (delta) between the expected
and received signals at the reference station is used to correct the measured signal at
the rover station. For this method the two stations have to see the same satellites at
the same time, meaning that the rover and reference station should have an open view
to the same part of the sky. With this method errors introduced from delays of the
signal in the ionosphere and troposphere can be minimised as the introduced error in
the signal will be about the same at the reference station and the rover station. As the
constellation of satellites changes over time, the relative orientations of the satellites
towards the GPS receiver changes, giving new geometrical information. Therefore the
accuracy of the positioning increases over time. The example of (Malet et al., 2002)
in Figure 2.7 shows the improvement of the positioning with the increased duration of
measurements for a differential GPS setting.

2.2.3 Ground control points

For the processing of the aerial photos, described in section (2.3), ground control points
with accuracies close to the images resolution (< 0.5 m) was needed. Therefore two
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Figure 2.7: Repeatability as a function of measurement duration between two single-
frequency GPS stations using differential GPS techniques. The baseline between the stations
is 1.1 km. (Malet et al., 2002)

campaigns were realised in 2006 (1 day) and 2007 (3 days) using differential GPS
techniques. In order to be able to use the ground control points in all aerial photos,
before the actual field campaigns, the aerial photos of three different times (1948, 1985,
2003) were examined in details searching for landmarks (cross-roads, field-borders,
houses, walls, etc.) existent over time (see an example in Fig. 2.8a). These points
were chosen as ground control point candidates and surveyed during the campaigns.
Each point was measured by GPS for at least 15 min in static mode with a sampling
frequency of 2 s. Several parameters of the acquisition were reported in a datasheet
including receiver properties, sample interval, antenna height, date, time and duration
(Fig. 2.8b). Furthermore one or more photos were obtained (Fig. 2.8c) to illustrate the
measurement conditions in order to be able to judge causes of errors maybe arising in
the later post-processing (e.g. field of free view to the sky, wrong reported parameters).

In both campaigns the same location for the reference station was chosen to min-
imize shifts between the two campaigns by using the same fixed coordinates for this
station. The reference station was recording over the whole time-span when the GCPs
were measured (local reference in Fig. 2.9). In order to calculate the coordinates of the
GCPs the recorded raw GPS-data was post-processed with Ashtech Solutions2. To de-
rive accurate absolute coordinates for the local reference station REF1, its coordinates
were calculated using two permanent GPS stations at Avignonet (with unknown co-
ordinates) and the geodetic permanent GPS station CHAM of the RENAG-network3.
Because all these three stations were only available since 2007, first the coordinates
at REF1 were calculated at 2007 and the obtained coordinates where used as fixed
coordinates for 2006 (Fig. 2.9). During the calculations it took out that some rover
stations were not observing the same satellites as the reference station and therefore it
was not possible to derive valuable coordinates for them. Because of that the geodetic
reference stations were included in the calculations for the GCPs. As this was also the
case for the measurements of 2006 and the permanent stations of Avignonet as well as
the CHAM station were not available for that time, four stations of the RGP-network4

about 100 km away were used instead (Fig. 2.9). To optimize the final solution for the
coordinates the IGS final orbits5 were used, which hold more precise orbit solutions

2Ashtech Solutions from Ashtech (ashtech.com), version 2.70
3RENAG - Réseau National GPS from collaborating french science institutes - renag.fr
4RGP - Réseau GNSS permanent from the IGN - rgp.ign.fr
5Final IGS orbit solutions are available from the US National Geodetic Service (NGS) at www.

ngs.noaa.gov/orbits/ about 2 weeks after the day of interest

ashtech.com
renag.fr
rgp.ign.fr
www.ngs.noaa.gov/orbits/
www.ngs.noaa.gov/orbits/
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(a)

(b) (c)

Figure 2.8: Example of a report of a ground control point (G013) including (a) an extraction
around the GCP from aerial photos of three different years (1948, 1985 and 2003), (b) a
datasheet containing a description and a sktech of the site, the time and several acquisition
parameters and (c) a photo of the site showing the GPS-receiver position and the surrounding
conditions.
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Figure 2.9: Time - distance sketch of the ground control point campaigns. The campaigns
were operated by installing a reference station (Ref1) for a whole day (8h) and measuring
points in the area for 15 minutes each. In the post-processing for 2007 the RENAG-station
CHAM was included as well as two permanent stations at Avignonet (AVP2, CSI1)). For
2006 four stations of the RGP-network of the IGN were included and the coordinates for
Ref1 derived from 2007. See chapter 2.2.3 for details.

of the GPS satellites during the dates of measurements. The influence of the use of
different combinations of permanent stations and precise orbit files on the final solution
of the GCP coordinates is presented in section 4.1.1.

2.3 Aerial Photogrammetry

Aerial photos are a powerful source of information to investigate the evolution of land-
slides in the past decades. Depending on the country, regular acquisition campaigns
may be available by national public services. In France aerial photos are available
since the Second World War approximately every 5-7 years from the IGN at scales
from 1:15 000 to 1:30 000. A typical acquisition scheme is shown in Figure 2.10. Pho-
tographs are vertically shot from a plane flying at 0.7-4.5 km altitude on parallel flight
strips so that the resulting photos are overlapping about 60% in flight direction and 20-
30% between the flight strips. At IGN until recently these photos were acquired with
analog cameras resulting in approximately squared film negatives with a size of 23 cm.
For further digital processing they were scanned with a calibrated photogrammetric
scanner with a resolution of 21µm/pixel for panchromatic images and 28µm/pixel
for coloured images. The digital scale of the final image is therefore between 0.3 and
0.9 m/pixel depending on the analog scale, but the “real” physical resolution is worse
due to atmospheric distortions, optical resolution of the camera and the physical reso-
lution of the film (film grains).

Aerial photos are geometrically distorted with respect to a map projection and need
to be corrected for further quantitative analysis. These geometrical distortions are on
one hand due to alterations of the optical rays inside the camera (interior) and on
the other hand due to the viewing geometry from the camera relative to the terrain
(exterior) (see 2.11). In order to correct these distortions or to get information about
the topography, the interior and exterior orientation of the camera is modelled (see
next sections 2.3.1 and 2.3.2). After simulating the acquisition positions of the camera,
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Figure 2.10: Aerial photo acquisition scheme of the regular french aerial photo acquisitions
from the IGN showing the flight path configuration, a photo print example with a fiducial
mark and the fundamental parameters of the vertical photo shoot. (Figure from Casson
(2004)

DEMs can be computed from overlapping photos covering the same area (Section 2.3.3).
Finally these DEM’s or external DEM’s can be used to produce ortho-photos, that are
corrected photos simulating a parallel view perpendicular to the reference plane of a
map projection (Section 2.3.4) (Paine and Kiser, 2003). In this study the processing
of the aerial photos is done using Geomatica Orthoengine6

2.3.1 Interior orientation

The interior orientation is the reconstruction of a bundle of image rays with respect to
the image center. As part of the interior orientation process the geometric influence of
the lens system is calibrated. The properties of the camera are measured and delivered
with the images in the calibration report (also called calibration certificate). The main
calibrated parameters provided in such report are the focal length, positions of the
fiducial marks, fiducial center, point of autocollimation, point of symmetry and dial
and tangential distortions. An aerial photo has fiducial marks at the borders (crosses,
circles, lines) and/or in the corners. The center of the fiducial marks is the fiducial
center (FC). The principle point of autocollimation (PPA) is the point where the optical

6Geomatica Orthoengine 10.1.3 from PCI Geomatics - www.pcigeomatics.com

www.pcigeomatics.com
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Figure 2.11: Interior and exterior orientation of aerial photos. The rays from the ground
(ABCD) passes the lens L in the camera and hit the film producing a negative (a’b’c’d’).
The interior orientation describes the geometry of the ray traces inside the camera. The ex-
terior orientation describes the camera position and looking direction relative to the ground.
(Figure from http://ralph.swan.ac.uk/glaciology/projects/slices/Photography/)

axis crosses the image plane (point “o” in Figure 2.11). This is usually the origin of
the coordinate system in which all the other positions are given. Sometimes it is just
called the principle point (PP). The image contains distortions coming from the lenses.
As the lenses are made using rotational processes, these distortions are mainly radial.
The point in the image from where the best compensation for these radial distortions
is possible is the principle point of symmetry (PPS). This compensation is done using
a polynomial function defining the radial expansion or contraction circular around the
PPS. This function can be calculated from the radial distortion parameters given in
the calibration report as a table of distances from the PPS and deviation from the
expected distance. The FC, PPA and PPS are usual very close to each other and can
be assumed equal if not available. Other sources of errors are often not taken into
account, like tangential distortions coming from divergences of multiple lenses relative
to the optical axis, undulations of the photo-film or deviations of all the parameters
due to thermal variations during the flight. Some of them will be partly corrected in
the process of finding the exterior orientation (Geomatics, 2003).

2.3.2 Exterior orientation

The exterior orientation describes the location and orientation of the camera in the
object coordinate system. It can be used to eliminate the geometric distortions in the
photo due to the central perspective projection, altitude variations and earth curvature.
The camera position and orientation at time of taking the photo can be reconstructed
by fitting straight lines between several ground control points (GCP) and their accom-
panying image coordinates by crossing the principle point of the lens. This is usually
done in a block adjustment using multiple adjacent overlapping photos to minimise

http://ralph.swan.ac.uk/glaciology/projects/slices/Photography/


2.3. AERIAL PHOTOGRAMMETRY 25

Digital Elevation Model
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Figure 2.12: Geometry of two overlapping epipolar photos (stereo pair) for DEM extraction.
Using matching points in both images (A1 → A2, B1 → B2 the corresponding elevation above
a reference plane for those points (za, zb) on the earth surface can be reconstructed using the
exterior orientation of the cameras when acquiring the photos. See text for details.

relative errors between them. Using this model residuals for all GCPs can be cal-
culated by computing the RMS-difference between the real coordinates of the GCPs
and their coordinates predicted by the model. The overall RMS-value gives a good
approximation of the expected accuracies for the DEM and the ortho-photos using
these registered images. In the ideal case it should be near the image resolution or
GCP accuracy. The collection of GCPs is described in Section 2.2.3. After finding
the exterior orientation a DEM can be extracted using the height information hidden
in the geometric distortions (see next Sec. 2.3.3) or an existing DEM can be used to
deskew the images producing an ortho-photo (Sec. 2.3.4).

2.3.3 DEMs from stereo images

As adjacent aerial photos overlap by 60% (Fig. 2.10), it is assured that every area
is at least seen by two photos from different view angles. Each image holds elevation
information hidden in its geometric distortion, which can be revealed in three steps.
First the image pairs have to be epipolar reprojected so that each row of one image
corresponds to the same row in the other image. Such epipolar images can be used
for stereoscopic views with the help of optical techniques which allow to see only one
image with each eye. It will reveal a 3D view of the terrain. In the second step image
correlation techniques are used to find matching points between the two images. It
basically uses the same technique described in Section 2.6.3. Small windows around the
corresponding pixels between the two images are correlated to find the highest cross-
correlation peak, resulting in corresponding points with known coordinates in both
images. By finding the point of intersection of the two rays from each camera related
to the same point, the elevation can be calculated knowing the exterior orientation of
the camera for each image (Fig. 2.12).

In a third step elevations from different stereo-pairs are combined and reprojected
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in the desired map projection. During the second step a scoring depending on the
quality of the fit between the matching image points is kept for each elevation value,
so that in the last step the elevation with the best associated scoring can be used for
the final DEM.

If the terrain is very mountainous and the angle between the stereo-pair of images
is too high, the matching process can fail due to high perspective distortions of the
matching kernels. In this case the matching algorithm can find wrong matches and
therefore produce artefacts (like spurious peaks) in the final DEM. To reduce the
problem, the match score can be used to remove all elevation points with a score below
a certain threshold. Another problem is the presence of objects like houses, trees and
pylons in the images, which may be appear quite differently from different view angles
and lead to noise in the DEM. As this will be noise with a relative small wavelength,
it can be mitigated by low-pass filtering at the expense of the spatial resolution.

2.3.4 Orthophotos

Ortho-photos are aerial or satellite images reprojected from the centric projection of
the photograph to a geographic projection. For each image the view of the camera is
simulated using its exterior orientation towards the DEM so that for every DEM pixel
the corresponding pixel of one of the two available images can be assigned (Fig. 2.12).
By projecting them on the reference plane the ortho-image is done. As the overlapping
area of one image pair is relatively small, often many ortho-photos have to be joined
by mosaicking. Because the colors between adjacent images , especially the brightness,
can vary a lot, the image can be blended into each other or connected at unobtrusive
break-lines. The final ortho-photo can be used to measure areas, be draped on a DEM
for a 3D view or derive displacement fields by cross-correlation techniques (Sec. 2.6).

2.4 Aerial Lidar

In order to analyse a landslide a high resolution DEM (say, better than 2 m resolu-
tion) can substantially help to understand the geomorphology or be used for modelling
purposes. Conventional techniques to derive DEMs are usually not well suited be-
cause they can not achieve such high resolution (interpolation of altitude-isolines from
topographical maps, stereo-photos from aerial or spaceborne optical sensors, space-
borne Radar) or because of their low spatial coverage and low measurement density
(traditional geodetic methods). If stereo-photogrammetry can potentially reach high
resolution, one of its limitation is to not be able to reveal the earth surface below veg-
etation, which often covers significant parts of landslides. Since about 2000, airborne
Lidar is more and more used to fill these needs, because it is able to deliver DEMs up
to decimetre resolution and precision even in very steep terrains and highly vegetated
areas. The procedure to obtain a DEM from Lidar can be divided in three parts:
Acquisition, the point-cloud classification and gridding, which will be covered by the
following sections.

2.4.1 Acquisition of aerial laser scan

Lidar is an active remote sensing method based on range measurements derived from
the two-way travel time from emitted and then backscattered laser-pulses. In an aerial
laser scan (ALS) this is done from a helicopter or plane flying at heights between
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(a) (b)

Figure 2.13: Aerial Lidar scan acquisition principle showing (a) the aircraft with the
mounted Laserscanner, GPS and INS (Inertial Navigation Unit) and a GPS reference station
on the ground. (Fig. from Weng and Quattrochi (2007)) and (b) the received full wave signal
with its different maxima corresponding to different objects (like the tree and the ground)
in its line of sight. (Fig. from Mather and Koch (2004)), see further details in Sec. 2.4.1.

2 000 m down to 100 m above the ground. In order to obtain the exact position from
where the pulse was backscattered, the position and orientation (pitch, roll and yaw) of
the plane need to be known. Therefore a GPS unit is measuring the absolute position
of the aircraft with a sample frequency of 1-2 Hz by differential GPS (Sec. 2.2.2) with
the help of a fixed ground station located not far (no more than a few km) from the
studied area. Considering the speed of the aircraft and deviations from a linear flight
path the error of positioning between two received GPS signals can be significant. To
overcome this, an INS (Inertial Navigation System) with accelerometers and gyroscopes
measures with a sample frequency of 100-400 Hz accelerations and rotations in 3D from
which the exact flight path and look orientation can be reproduced. A typical aerial
laser-scanner works with wavelengths in near infrared (NIR) with a pulses repetition
frequency of 5-50 Hz and a pulse length of 10 ns (Weng and Quattrochi, 2007). Usually
more than one single pulse is back-scattered from one emitted pulse depending on the
wavelength of the laser and the scatter and absorption properties of the materials in
the line of sight (Fig. 2.13b).

The waveform is evaluated for pulse maxima (on-the-flight or in post-processing)
and the corresponding calculated point positions are kept resulting in a 3D point cloud.
Some systems keep the first or last pulse only, some both or even intermediate pulses
and others the full waveform for further analysis in post-processing. In the optimal
case the last pulse represents the ground, but if the coverage of vegetation is to thick
and the laser pulse can not pass, the last pulse is not the ground. Furthermore, multi-
path problems at corner reflectors can lead to points below the actual earth surface.
Therefore the obtained point-cloud has to be classified and can be filtered to derive
the bare-earth model (see Sec. 2.4.2). The final density of points depends mainly on a
trade off between the flight height, flight velocity, pulse repetition rate and acquisition
time which is directly related to the costs. A typical acquisition by plane at a flight
height of 1 000 m would result in point densities of about one point per square-meter.
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(a)

(b)

Figure 2.14: Example from a subset of the Lidar 2006 point-cloud showing the unfiltered
(a) and filtered point-cloud (b). Whereas the unfiltered raw point-cloud also includes points
resulting from reflections at houses and trees, the filtered point-cloud contains only the points
classified as ground.

For this study helicopter flights were preferred, (1) Low flights (<1000 m) from plane
are not feasible at the study site due to the alpine landscape, (2) higher densities are
necessary to obtain a good coverage of the bare-earth even in higher vegetated areas
and (3) parts of the study site contain very high slopes (the Harmalière headscarp, the
cliff of the compacted alluvial layers) and can be better scanned from aside with a low
flying helicopter equipped with a handheld laser-scanner.

2.4.2 Point-cloud classification

In order to obtain a bare-earth DEM, which will hold the relevant geomorphological
informations of the landslides, every point in the point-cloud has to be classified (e.g.
as ground, building, low/mid/high vegetation). Figure 2.14 shows a typical subset of
the unfiltered and filtered Lidar 2006 point-cloud over the study area.

The aim of the point-cloud classification is to assign a classification tag for ev-
ery point in the point cloud. This tag or classification byte indicates the nature of
the material which reflected the laser-pulse and produced this point. Many papers
have been published about the classification of airborne lidar scans. All classification
methods make assumptions about the structure of bare-earth points in a local neigh-
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bourhood, based on slope/height differences (Sithole and Vosselman, 2001; Roggero,
2001; Whitman et al., 2003; Vosselman, 2000), a buffer zone above a local horizontal
plane (Wack and Wimmer, 2002; Zhang et al., 2003), a buffer zone near a parametric
fitted surface (Axelsson, 2000; Elmqvist, 2002; Pfeifer et al., 2001; Sohn and Dowman,
2002; Wack and Wimmer, 2002) or by clustering/segmentation (Brovelli et al., 2002).
Comparisons between those filter methods applied at different terrain types (e.g. urban
planes, forested mountains) can be found in Sithole and Vosselman (2004) and Zhang
and Whitman (2005). Furthermore Meng et al. (2009), by using a multi-directional
ground filtering algorithm, could achieve better results on the same test-sites used in
the comparison of Sithole and Vosselman (2004). Using a multi-scale curvature algo-
rithm Evans and Hudak (2007) developed a filter especially for mountainous forested
terrain. Most of these methods are working well in flat terrain but show difficulties in
mountainous areas, especially if they have a dense vegetal cover, as it is the case in
the study area of this work. In this study the “Hierarchical robust filtering” method
(Pfeifer et al., 2001; Kraus and Pfeifer, 2001; Briese et al., 2002) is used as it shows
relatively robust results in these kind of problematic terrain. It is implemented in the
commercial software SCOP++7.

As illustrated in Figure 2.15 first this algorithm thin out the point-cloud by choosing
the lowest point in a coarse regular grid (Fig. 2.15a). Then a first approximation of a
surface is computed (red line in Fig. 2.15b). After that a weight is assign to each point
depending on the vertical distance to the derived surface. Points below the surface
are weighted higher than those above. The surface is then recomputed using a linear
prediction (similar to kriging) taking into account the different weights. It means the
surface is magnetized by the low points (black line in Fig. 2.15b). This procedure is
iterated until the surface does not change anymore between two iterations or it exceeds
a certain number of iteration steps. After that all points of the original point-cloud
are classified due to their vertical distance to the interpolated surface (Fig. 2.15c).
Points within a predefined threshold are accepted as bare earth (green points in Fig.
2.15c and subreffig:robustfiltd). Using only these bare earth points a new surface is
computed (green line in Fig. 2.15d) and the points are again iterative weighted due
to their distance to the interpolated surface, until a final stable bare-earth surface is
derived (black line in Fig. 2.15d). In this example only two hierarchical levels are used,
but the procedure can be extended to any number of pyramidical subsets of the points
derived by thinning them out towards a uniform spatial distribution. Also the example
only distinct in ground points and non-ground points, but different classifications (e.g.
low/mid/high vegetation) can be assign to the points due to their vertical distance
to the final interpolated surface. Furthermore other spatial criteria can be used to
recognise houses, power lines etc.

2.4.3 Gridding

In order to further process the classified non-uniform point-cloud for visualization,
morphology analysis and cross-correlation, it needs to be gridded to a regular grid,
because most of these methods are based on matrices. To derive a regular grid from
an irregular point-cloud the height of each regular point has to be estimated by an
interpolation function based on all points or a local subset of points. Commonly used
methods for DEM generation include linear, cubic, polynomial, spline and kriging

7SCOP++ is a Geo-modelling software by inpho (www.inpho.de) co-developed with the Institute
of Photogrammetry and Remote Sensing of the Technical University Vienna

www.inpho.de
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(a) (b)

(c) (d)

Figure 2.15: Sequence of the hierarchic robust interpolation (a) Creation of a data pyramid,
small points: original data, thick points: data pyramid (lowest point in a regular 5m interval).
(b) DEM generation in the coarse level by robust interpolation, the remaining point on the
house is eliminated with an asymmetric and shifted weight function. The surface in the first
(red line) and last iteration (black line) is shown. (c) Coarse DEM with a tolerance band,
all original points within the tolerance band are accepted. (d) DEM generation in the fine
level by robust interpolation using an asymmetric and shifted weight function. Again, the
first (red line) and the last iteration (black line) is shown. (Figure from Briese et al. (2002))

interpolations and derivatives of those. Sometimes triangulated irregular networks
(TIN) are also used prior to gridding algorithms, which would be equivalent to a tri-
linear interpolation method based on the 3 nearest neighbours. TINs are especially
useful for DEMs with high variability of complexity or terrains which can not be well
represented in a 2D view (like vertical cliffs). It is the fundamental basis of almost
every 3D-visualisation of surfaces.

The simplest case of an interpolation function would deliver just the value of the
nearest neighbor (NN in Fig. 2.16). If the grid spacing is near the average point-cloud
spacing or lower, this can lead to substantial bias in the resulting DEM, because if
several points are falling in the borders of one pixel, only the nearest point from the
center of that pixel is representing the whole pixel value. Considering some “noise”
in the point-cloud (acquisition accuracy, miss-classification), the nearest-neighbour in-
terpolation would adopting the noise in the final DEM. By using the average of all
neighbours (AN) inside the pixel, the noise would be smoothed out (Fig. 2.16).

This method is also useful to access other statistical properties of the point cloud on
a pixel basis, for example the point density (also per class) or the minimum, maximum
and deviation of the height or intensity/reflectivity. Pixels which do not cover any
point are defined as NaN (Not a Number) and will turn up as data-holes, which raises
problems in further processes like the computing of slope, aspect and shaded relief or
cross-correlation techniques. Therefore this kind of gridding is only useful to obtain
coarse rasters (relative to the point-cloud density), for example to obtain overviews
of Lidar point-clouds and their density variations, in order to determine a feasible
resolution for a finer gridding.
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Figure 2.16: Sketch of defining the height value of a pixel (or grid-cell) in a regular grid
(DEM) using different properties (min, max, average) of the point-cloud inside the pixel bor-
ders. The point NN is the nearest neighbour of the pixel center. Using the NN-interpolation
would only use one point to assign the height for the whole pixel, which is not representative
for the terrain height in this case. The min and max can be used for example to extract the
vegetation height. (See Sec. 2.4.3 for details)

Such finer gridding can be done using other interpolation methods, like linear, cubic,
spline or kriging. As an example, problems and solutions using spline interpolation for
Lidar data can be found in Mitasova et al. (2005).

This study is using the Gridfit-method for all gridding operations of point-clouds,
except in cases of building coarse rasters using the all neighbours-method. Gridfit uses a
modified ridge estimator to generate a smooth surface which approximates the scattered
data. The gridfit-method is written by John D’Errico (Matlab8-code released in version
2.0 on 23.05.2006) as contribution to the open code-sharing website Matlab Central9 (no
publication available). It is specifically adopted to handle highly heterogenous scattered
and huge datasets. It overcomes artefacts seen in the spline-interpolation (Fig. 2.17)
with close points of large differences and when extrapolating at the borders of grids.
Further more it re-scales data with highly un-isotrop densities before interpolation,
which reduces for example directional bias of the topography due to the scan-direction
from the acquisition. It also handles huge datasets by tiling it in overlapping sub-grids
and calculate them separately. The Gridfit-function allows powerful control about the
smoothness, the internal interpolation function, the regulariser character, the iterative
solver, the tile-size of the sub-grids and their overlapping area. In this study Gridfit
is always used with its default parameters. Further details can be obtained from the
in-function help of that function.

In order to compare different gridding methods, Figure 2.17 shows an example of
a Lidar profile through a small ridge with steep slopes. A random small subset of
points were chosen to interpolate the surfaces (at every meter). The deviation between
the interpolated surface and the original point cloud reveals some weak points of the
methods. The nearest neighbour interpolation introduce strong edgy artifacts in slopes
and the linear interpolation underestimates edges (i.e. at distance 25 m in Fig. 2.17).

8Matlab is a technical computing software by Mathworks - mathworks.com
9Matlab Central is an open file exchange platform operated by Mathworks - mathworks.com/

matlabcentral

mathworks.com
mathworks.com/matlabcentral
mathworks.com/matlabcentral
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Figure 2.17: Comparison of interpolation methods on a Lidar point-cloud profile of a small
ridge with steep cliffs. Small dots representing all points within a swath of 2 m along the
profile. Big dots are a randomly chosen subset (1 out of 50) of all points. The for different
lines showing the interpolated height at every meter by using only the subset of points. The
misalignment of the different methods compared to the original point-cloud illustrate the
problems arising from interpolating heterogenous point-clouds.

On the other hand they are very fast. The spline interpolation, which basically fits
local polynomial functions to the points by keeping the transition “smooth” between
them, can introduce artefacts at close points with relative big height differences (i.e.
at distance 5 m in Fig 2.17) and at the borders of the gridded area (i.e. at distance
> 90 m). Such artefacts can be minimised by smoothing-parameters of the spline
methods.

2.5 Digital Elevation Model analysis

Visualisations of DEM derivatives like slope, aspect, shaded relief, drainage system
and roughness can help to interpret landslides (Glenn et al., 2006; Corsini et al., 2007).
Furthermore they can be used in addition to other spatial data (e.g. optical images,
landuse map) for semi-automatic or automatic detection and classification of landslide
bodies (McKean and Roering, 2004; Van den Eeckhaut et al., 2007) or for susceptibility-
analysis using among others morphological properties (Greco et al., 2007; Ercanoglu,
2005). They can be derived from several sources at various resolutions, e.g., aerial
stereo-photos (>1 m, see Sec. 2.3), Lidar (>0.1 m., see Sec. 2.4), Radar (30-90 m,
SRTM), spaceborne satellite images (20 m, Spot).

The following sections present the basics of the quantitative measurements derived
from DEM used in this study (slope, aspect, shaded relief, drainage system and rough-
ness). For all following operations it is assumed the DEM is available in a raster
format, a matrix of uniformly sampled elevation values derived, e.g., by gridding (see
sec. 2.4.3).
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2.5.1 Slope and aspect

The slope is the amount of inclination of the terrain surface to the horizontal and the
aspect describes in which direction the slope faces. In order to derive the slope and
aspect on a pixel basis in a DEM, first the gradients in x- and y-direction are calculated
by

∇x =
δz

δx
,∇y =

δz

δy
(2.1)

. From these gradients the slope and aspect can be computed by transforming the
cartesian coordinates ∇x and ∇y into polar coordinates θ and slp.

slp =
√
∇x2 +∇y2 (2.2)

θ =



tan−1 ∇y∇x if ∇x > 0

tan−1 ∇y∇x + π if ∇x < 0 and ∇y ≥ 0

tan−1 ∇y∇x − π if ∇x < 0 and ∇y < 0
π
2

if ∇x = 0 and ∇y > 0

−π
2

if ∇x = 0 and ∇y < 0

0 if ∇x = 0 and ∇y = 0

(2.3)

slp is the slope defined as the “absolute” gradient, sometimes expressed in percentage
through multiplication by 100. Often, instead of the slope, the slope angle α is used
derived by

α = tan−1 slp (2.4)

α is always in the interval (0, π
2
) or (0, 90◦). To obtain the aspect β in a geographical

sense (0 to north and increasing clockwise) it is necessary to correct θ by

β = −(θ +
π

2
) (2.5)

In order to analyse pre- and post-failure morphology of a landslide, slope and aspect
maps can help to understand the fundamental morphological properties of a terrain.
In the pre-failure analysis the slope angle often contributes as one of the main factors
influencing the susceptibility of landslides. In post-failure analysis it may help to
distinguish between different morphologies inside a landslide.

Figure 2.18b shows a slope map of a landslide which partly reflects the differences
of the landslide blocks indicated in Figure 2.18a, where the Upper Block (UB) near
the headscarp of the 1937 Landslide shows higher slopes (25◦-45◦) than the Body (B)
(10◦-25◦). The slope map of the head area of the Harmalière landslide (part of the
study area of this work) is another example (Fig. 2.20a) that reveals the scarps as red
strips (steep slopes of 20◦-30◦) inside the overall blue map (gentle slopes of 0◦-15◦).
The aspect (also called orientation) is sometimes useful to reveal preferential failure
orientations (i.e. due to faults or layering of the involved material) or to highlight
back-tilted blocks of a landslide, which are orientated in the opposite direction to the
general slope (e.g. red lineaments inside the green in the south-west quarter of Fig.
2.20b).

Figure 2.19 shows a terrain representation using slope and aspect at the same time
to analyse joint-sets related to rockslides. Here the terrain is colour-coded in the HSV
(hue, saturation, value) colour-scheme by assigning the aspect to the hue and the slope
to the saturation in order to highlight surfaces with similar 3D-orientations in one view.
Slope and aspect maps are also substantial for the shaded relief (Sec. 2.5.2), drainage
network (Sec. 2.5.3) and roughness (2.5.4) computation.
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(a) (b) (c)

Figure 2.18: Shaded relief (a), Slope angle map (b) and roughness map (c) of the Salomon
Falls landslide and the 1938 landslide in the Sinking Canyon area, southern Idaho, USA, from
Glenn et al. (2006). The white outer box in (a) shows the area of (b) and (c). UB=Upper
Block, B=Body, T=Toe. The displayed roughness is the average RMS-deviation over length
scales from approximately 1 m to 5 m.

Figure 2.19: Interpretation of the relief of the rockslide scar at Turtle Mountain using
COLTOP-3D. The upper stereo-net o the right indicates the color scheme of the map based
on the pole of the surface orientation. The lower stereo-net corresponds to the displayed
measures of the left map. (from Jaboyedoff et al. (2009))
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2.5.2 Shaded relief

A shaded relief is a representation of a DEM imitating the illumination from a simulated
sun shining from a predefined azimuth direction ω and zenith φ above the horizon. In
every pixel a greytone is calculated depending on the slope angle α and aspect β
relative to the sun direction. It exists several ways to calculate a shaded relief (or hill-
shade) trying to find a realistic, aesthetic and representative depiction of the terrain, for
instance taking into account a certain degree of diffusion in the atmosphere, different
reflecting properties of the ground or a general slope orientation to locally adjust the
sunlight direction. For this study a relatively simple algorithm from ESRI10 is used
given by

greytone∗ = cosφ cosα + sinφ sinα cos(ω − β) (2.6)

greytone =

{
0 if greytone∗ ≤ 0

greytone∗ if greytone∗ > 0
(2.7)

The resulting greytone is in the interval (0, 1) and the whole matrix can be enhanced
by adjusting image properties like contrast and brightness. Figure 2.20 shows differ-
ent shaded reliefs of the same head area of the Harmalière landslide using different
lightning directions. It illustrates the importance of the lighting direction for geomor-
phological interpretation. In this example some scarps are badly seen in some of the
images due to their relative orientation towards the lightning direction. Therefore a
geomorphological interpretation should always be based on more than one shaded relief
map using different lightning.

A shaded relief map of a landslide DEM (e.g. Fig. 2.18a or Fig. 2.5) is a powerful
tool to visualise the morphology of a landslide and it uncovers landslide features which
are not even visible during field investigations, especially when derived from filtered
laser scans in vegetated areas. It is often the basis of geomorphological interpretations
(accompanied with aerial photo interpretation and evaluation in the field).

2.5.3 Drainage system

The Drainage system of a DEM represents the theoretical accumulation of water in
stream channels resulting from equally distributed rainfall. It is often assumed that
only surface flow occurs with no consideration about the kind of surface, so that there
is only a dependence on the topography. In order to extract the stream channels of an
DTM (digital terrain model), for each pixel the upslope area has to be computed for
each pixel, which is the sum of the whole area which would theoretically drain through
that pixel. A general problem in all the methods are sinks (or pits). It refers to regions
in the DEM which are completely surrounded by higher elevations. It could come from
inaccurate DEMs, lakes or subsurface drainage systems. To overcome that, the DEM
has to be “filled” by a procedure which raises such a region to the next adjacent saddle
point before calculating flow-directions.

In order to calculate flow directions for each grid-cell of the DEM, the first and
easiest approach is to assign the flow from each pixel to one of its eight neighbors (D8-
method) which was introduced by O’callaghan and Mark (1984) and is widely used
in GIS applications. One disadvantage of this method is the discretisation of the flow
only in derivatives of 45◦ (Fig. 2.21A).

10ESRI is a software company for GIS, the algorithm is taken from the online help of their
ArcGIS software package http://edndoc.esri.com/arcobjects/9.2/net/shared/geoprocessing/

http://edndoc.esri.com/arcobjects/9.2/net/shared/geoprocessing/spatial_analyst_tools/how_hillshade_works.htm
http://edndoc.esri.com/arcobjects/9.2/net/shared/geoprocessing/spatial_analyst_tools/how_hillshade_works.htm
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(a) slope in ◦ (b) aspect

(c) azimuth NE, zenith 45◦ (d) azimuth NW, zenith 45◦

(e) azimuth NE, zenith 30◦ (f) azimuth NE, zenith 60◦

Figure 2.20: Some morphological derivatives at the head area of the Harmalière landslide
from the Lidar-DEM 2006. Slope (a) and aspect (b) are draped on a shaded relief, follwed
by different shaded reliefs using different azimuth and zenith angles for the sun. (c) tends to
highlight NW - SE scarp directions. (d) tends to highlight NE - SW scarp directions. (e) is
missing details in steep slopes facing SW because they are too dark, but shows good contrast
for minor undulations on the NW plateau. (f) shows more structure in the steep dark slopes
facing SW, but is too bright on the rest of the image and therefore is lacking of showing the
details.

http://edndoc.esri.com/arcobjects/9.2/net/shared/geoprocessing/spatial_analyst_tools/how_hillshade_works.htm
http://edndoc.esri.com/arcobjects/9.2/net/shared/geoprocessing/spatial_analyst_tools/how_hillshade_works.htm
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Figure 2.21: Comparison of different methods to compute flow on a DEM grid for an
inward cone (black thin lines represent elevation contour lines). Left panel: Upslope area in
grayscale (higher values are more dark). Right panel: Influence map from the circled pixel
as origin (darker = more water is passing that pixel when the flow starts at the origin). A.
D8 method, B. MS method (Quinn et al., 1991), C. Lea’s Method (Lea, 1992), D. DEMON
(Costa-Cabral and Burges, 1994), E. D∞ method.
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Figure 2.22: The geometry of an DEM-pixel with its 8 neighbors and 8 triangular facets
showing the parameters for calculating flow direction and the proportions of flow to the two
pixels defining the edges of the steepest downslope facet. (Figure from Tarboton (1997))

To overcome that Freeman (1991); Quinn et al. (1991) proposed a multi-flow ap-
proach by dividing the flow to all lower neighboring pixel depending on the slope.
The drawback here is that the flow is dispersed over all neighboring pixels with lower
elevation and leads to an uncontrollable spreading with distance (Fig. 2.21B). Lea
(1992) introduced a flow based on an associated aspect for each pixel with the advan-
tage to assign a flow direction continuously in the interval (0, 2π). It avoids a flow
influenced by the grid itself and do not add dispersion (Fig. 2.21C). It was extended
and implemented in a toolset named DEMON11 by Costa-Cabral and Burges (1994)
which includes dispersion on neighbouring pixels without uncontrolled spreading (Fig.
2.21D). The problem in these methods is that only a single plane is specified in each
pixel to determine the aspect and with that the flow direction. This can lead in in-
consistent or counter intuitive flow-paths as shown by Tarboton (1997) for example at
saddle points. He introduced a new technique (D∞) to overcome this problems (Fig.
2.21E) by calculating 8 triangular facets in a 3x3 window centered on the pixel and
computing the flow direction on the facet with the steepest downward slope (see Fig.
2.22). The proportions of the flow given to the two pixels, defining the edges of that
facet, depend on the angles between the flow direction and the directions to that pixels
(Fig. 2.22).

To calculate the upslope-area from the flow-directions Tarboton (1997) use a recursive-
method from Mark (1988). The upslope-area of each pixel is computed as the sum of
its own area and the area of upslope neighboring pixel that drain some fraction into it.
This procedure is called recursively beginning on the outlet pixel of interest. It calls
itself for all pixels that contribute to the upslope area at that outlet. Further details
can be read in Tarboton (1997).

A drainage basin (or watershed) is the extend of all pixels contributing to the flow
of a particular pixel (called the dependence map of that pixel). This pixel is called the

spatial_analyst_tools/how_hillshade_works.htm
11DEMON: Digital elevation model networks
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outlet of the watershed. Usually an outlet is chosen just before a drainage is flowing
into a body of water of the next higher order, like a bigger river, a lake, an ocean or just
the limit of the DEM. The drainage basin can be automatically mapped for a certain
outlet by using the recursive approach for the upslope-area described above resulting in
a matrix where every pixel with a value higher than zero is part of the drainage basin.
Sometimes it can be tricky to choose the right outlet pixels to calculate the watershed
if the drainage in question is flowing into a lake, which is the case of the Avignonet
and Harmalière area. The outlet into the lake can then be found by first calculating
the upslope-area from the outlet of that lake. Then defining the border pixels of that
lake by its lake-level. And finally choosing all border-pixels that have an upslope-area
above a predefined threshold to derive the outlets of significant contributors to the
lake. This procedure allows to identify automatically the outlet of the Harmalière and
the multiple outlets of the Avignonet watershed.

The knowledge of the drainage network can help to estimate surface runoff con-
tributions to the hydrological system of a landslide. Using auto-extracted drainage
networks from high-resolution DEMs could also help identifying preferential flows in-
side the landslides and may allow conclusions to be drawn about their influence on
heterogenous landslide activity. However, runoff models from DEMs are only focusing
on surface flow and do not take into account, e.g., seepage and evapotranspiration in-
volved in the hydrological balance of the landslide. Preferential orientations of derived
stream channels may also allow speculations about lineaments of material or structural
weaknesses of the ground and subsurface.

2.5.4 Roughness

Another derivative of a DEM is the surface roughness, which characterises the degree of
elevation variation across a given area, usually along elevation profiles. Although it is a
visually intuitive parameter in a shaded relief, it is not easy to quantify it. Many ways
to quantify it have been proposed in the literature. A good summary and suggestions
about roughness-parameters are given by Shepard et al. (2001). The main roughness-
parameters are the rms-height, the rms-deviation or slope, the Hurst-exponent and
the breakpoint-scales, if possible associated with their uncertainty. Except for the
rms-height, they are 1D-parameters along profiles and cannot be easily adapted in 2D.

To avoid bias from the overall slope of a profile or 2D-matrix, it is necessary to
detrend the DEM data before further analysis (Shepard et al., 2001). This processing
can be done by subtracting the linear fit in a least square sense from the data. For all
equations presented below, it is assumed that the data have been detrended before, so
that the mean height is zero and the linear fit is horizontal.

The rms-height ξ or standard deviation is defined by

ξ =

[
1

n− 1

n∑
i=1

z(xi)
2

]1/2
, (2.8)

with n being the number of points of the profile and z(xi) the height at point xi.

The rms-deviation or Allan-deviation ν is defined for a given lag, step or scale,
∆x by

ν(∆x) =

{
1

n

n∑
i=1

[z(xi)− z(xi + ∆x)]2
}1/2

. (2.9)
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Figure 2.23: Deviogram (rms-deviation versus lag) of a typical profile (from a surface of
eroded, silty salt) showing a Hurst-exponent from the smallest scale up to a breakpoint where
the Hurst-exponent rapidly changes to a different value. (Figure from Shepard et al. (2001))

This roughness definition is used in Figure 2.18cc which shows a roughness map of
two landslides for wavelengths between 1 and 5 m. It can be seen that the most active
parts show higher roughness with the highest values near the headscarp in the East.
When compared to the slope-map (Fig. 2.18cb), the roughness is positively correlated
with the slope-angle, i.e. the steeper the terrain the higher the roughness.

The rms-slope, srms, is the rms-deviation divided by the lag, ∆x,

srms =
ν(∆x)

∆x
. (2.10)

It is often given as an angle, θrms:

θrms = tan−1 srms. (2.11)

For profiles (1D-geometry) this gives only the slope-deviation in the direction of the
profile. When extending it for the 2D-case of a DEM, assuming a Gaussian-distributed
set of slope surfaces, the roughness-value would be higher by a factor

√
2(Shepard et al.,

2001).
The Hurst-exponent is derived from a deviogram, which is a plot of the rms-

deviation ν versus the lag ∆x in a log-log scale (Fig. 2.23). It usually follows a power-
law from lower scales and ”breaks over” in a different power law. The Hurst-exponents
are the slopes of those two power-laws, while the break-point is the intersection of the
two lines. The used lag-sizes should be limited to less than 10% of the overall profile
length in order to be representative (Shepard et al., 2001).

A last roughness parameter reported in the literature is the standard deviation
of the curvature (Corsini et al., 2008). The curvature in 2D is the maximum radius
of a sphere, which touches the pixel and do not intersect any neighbouring pixel. This
parameter can be extended by considering not the direct neighbour pixel, but the
pixel in a certain distance (lag) around the target pixel. The curvature is a standard
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Figure 2.24: Map of standard deviations of the curvature derived from a 0.5 m LiDAR
dataset of 2007 at Trafoi Landslide, South Tyrol, Italy. The entire area of reactivation is
outlined. The main scarp in the crown and the area characterised by earth flows is clearly
distinguishable. Three profiles illustrate the changing curvature in the surface of unfailed
slope, the crown and the track zones of the landslide. (Figure from Corsini et al. (2008))

morphometric derivative of DEMs in GIS (Geographical Information System)12. Figure
2.24 shows a map of this standard deviation for a zone encompassing a reactivated
landslide, which illustrate the potential of the parameter to differentiate between active
and non-active landslide bodies.

As the roughness is usually anisotropic, a way to extend the roughness from 1D-
profiles to 2D-DEMs is to compute the roughness at pixel scale along small profiles
with two perpendicular directions, i.e. North-South and East-West or along and per-
pendicular to the slope. The latter case is further elaborated in Section 3.2.7.

2.6 Displacements from multi-temporal images

Comparison of images or DEMs acquired at different times over a landslide can give
information about the displacements that occurred between the different dates. This
analysis can be done visually by an expert to spot some evolutions, but also by auto-
matic image analysis to derive more quantitative results (e.g. a surface velocity map,
Fig. 2.1). In this section we focus on the sub-pixel correlation technique, which has
been applied on our studied area. In order to measure changes between two images
or DEMs, a first requirement is that the displacement need to be high enough with
respect to the ground resolution of the images. By using sub-pixel correlation tech-
niques, a rule of thumb is that measurable displacements can be approximately as low
as one tenth of the image resolution, depending on its quality. Second, the matching
kernel (i.e. the small pixel window around the feature to track) need to be unique in
its neighbourhood to avoid false-matching. Unsuitable cases would be a flat area in

12The curvature can e.g. calculated in Grass-Gis (an open source GIS - grass.itc.it) with the
function r.param.scale.

grass.itc.it
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a DEM or a waterbody in an aerial photo. Third, the matching kernel need to stay
identifiable between the images, e.g., a stable block of a transitional landslide can be
tracked, but a rotational landslide which collapsed into a fast mudflow can not, due to
the chaotic change of the matrix. Moreover, if the movement of the kernel is affected
by significant rotational (in the horizontal plane) or scale variations, more advanced
tracking techniques are needed.

In this Section will be described the basic techniques for image cross-correlation
(Sec. 2.6.1) and the displacement extraction principle using searching windows (Sec.
2.6.2), which can be similarly used with optical images, DEMs or derivatives (e.g.
slope maps, filtered images, etc.). Finally Sections 2.6.3 and 2.6.4 outline the specific
problems when applying these methods to aerial photos and DEMs derived by aerial
laser scans (ALS).

2.6.1 Image cross-correlation

Given two signals s1 and s2, which could be elevation, shaded relief, slope or radiometric
values, it is possible to compute by a measure expressing how much they are related to
each other, that is their similarity. An usual way to do it is to compute the covariance,
which is defined as

cov(s1, s2) = (s1s2)− s̄1s̄2, (2.12)

with the overline symbolizing the average operator. The covariance is high if s1 and s2
similar and small if not.

To standardise the covariance in an interval (−1, 1), with 0 for uncorrelated, 1 for
completely correlated and −1 for completely inverse correlated, the covariance can be
divided by the product of the standard deviations of the two signals. This is called the
correlation-coefficient, ρ12, given by

ρ12 =
cov(s1, s2)

σ1σ2
. (2.13)

The cross-correlation (or cross-covariance), (s1 ? s2), is the sliding dot product of
the two non-complex signals s1 and s2, given by

(s1 ? s2)(∆x) =
∑
x

s1(x)s2(∆x+ x). (2.14)

It is basically the covariance computed for every shift ∆x of the signal s2 relative to
signal s1. ∆x at the maximum of the cross-correlation function (s1 ? s2) is then the
best estimated shift between these signals, assuming their are similar enough. This
principle can be extended for 2D-signals (or images) by

(s1 ? s2)(∆x,∆y) =
∑
x,y

s1(x, y)s2(∆x+ x,∆y + y) (2.15)

in order to get the shift in ∆x and ∆y at the maximum of the correlation-matrix
(s1 ? s2).

The processing of the 2D-cross-correlation is rather time-consuming. To speed up
the computing the cross-correlation can be computed with the help of the Discrete
Fourier Transformation (DFT). The DFT, S(u, v), for two-dimensional non-complex
signals, s(x, y), of size M ×N is given by

S(u, v) = Fs =
1

MN

M−1∑
x=0

N−1∑
y=0

s(x, y)e−i2π(ux/M+vy/N). (2.16)
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This results in a matrix S of complex numbers with the same size M ×N . Simply said
the amplitudes and phases of these complex numbers describe the sinusoidal compo-
nents of the input signal s. The inverse discrete Fourier transformation (DFT) is given
by

s(x, y) = F−1S =
1

MN

M−1∑
x=0

N−1∑
y=0

S(u, v)ei2π(ux/M+vy/N). (2.17)

The circular convolution theorem states that multiplication in the frequency-domain
(or Fourier-space) is the same as the convolution in the spatial domain. Convolution
is the same as cross-correlation, but with an transposed second signal (compare with
eq. 2.15). It is given by

(s1 ∗ s2)(∆x,∆y) =
∑
x,y

s1(x, y)s2(∆x− x,∆y − y) (2.18)

This leads to the cross-correlation theorem, which states that the cross-correlation can
be expressed in the Fourier-space as the multiplication of the Fourier-transforms with
one of them conjugated (∗):

(s1 ? s2) = F−1
(
F(s1)

∗ F(s2)
)
. (2.19)

This speeds up the computation and allows to use the DFT-registration algorithm of
Guizar-Sicairos et al. (2008) to obtain the shifts also with sub-pixel accuracy. Sub-
pixel shifts can be derived by up-sampling the original images with a sampling rate of
the desired accuracy. This would result in large memory usage and computation time.
It can be avoided by obtaining a maximum peak in the correlation-matrix using the
original resolution and then only producing an up-sampled correlation-matrix around
this first estimate (Guizar-Sicairos et al., 2008) by using the Fourier-transforms of the
signals. This is more accurate than to only up-sampling the first correlation matrix,
because the whole information of the original images is directly used (Guizar-Sicairos
et al., 2008).

One drawback by using the DFT for cross-correlation is that the DFT produces
always circular convolution. To overcome that, sequences have to be zero-padded so
that circular wrap-around always wraps over zeros to avoid mis-matching. Another
problem using the DFT is the not normalised cross-correlation matrix, because the
normalised form of the cross-correlation does not have a simple frequency domain
expression (Lewis, 1995). It has no influence when finding the best shifts by choosing
the maximum correlation-coefficient, but does not allow to compare this correlation-
coefficient with those obtained from other correlation matrices. This could be overcome
using precomputing integrals of the image and image2 over the search window (Lewis,
1995), but is not implemented in the procedures of this study.

2.6.2 Displacement extraction

In order to derive a displacement map, every pixel in the reference image (usually
chosen to be the older image) is assessed in a loop. Figure 2.25 illustrates such a
neighbourhood around one pixel. First, the reference kernel and the search kernel are
extracted from the reference image and the search image (the image with displacements
relative to the reference image). The reference kernel is than zero-padded to match the
size of the search kernel and the sub-pixel displacement (dx, dy) is obtained finding
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Figure 2.25: Geometry of the image displacement detection at a single point. The reference
kernel extracted with the window radius (wrad) around the center pixel from the reference
image is used to search for the best fit inside the search kernel extracted from the search image
with the search kernel radius (srad) around the center pixel. The displacement in East-West
(dx) and North-South (dy) direction is derived from the DFT sub-pixel image registration
(see text for details). The maximum displacement (in dx, dy) detectable is limited by the
search radius smax (= srad− wrad).

the maximum value in the correlation-matrix of the DFT-registration algorithm (see
Sec. 2.6.1).

This procedure works best with a small search radius as the chance of finding false
matches is limited. In order to obtain large displacements without introducing false
matches a pyramidical approach is applied. Therefore, the original image is resampled
with a coarse resolution and a first estimate of displacements are obtained. Then
these displacements are used to define the initial center pixel of the search kernel
when obtaining the displacements from the high resolution images. The number of
intermediate levels can be adapted to the complexity and the a priori knowledge of the
landslide’s displacements.

2.6.3 Displacements from Aerial photos

Special problems arise when using multi-temporal images for displacement extraction
acquired by mobile platforms (i.e., satellites, planes, helicopters or drones). The aerial
images processing steps usually include the co-registration of multiple images acquired
at one time to obtain ortho-photo mosaics at every time-step. For more accurate
displacement detections, the multiple ortho-photos need also to be co-registered, to
minimize errors not compensated during the ortho-photo processing. Or better, all
photos of all time-steps are co-registered in one model to avoid decrease of detail due
to multiple interpolation steps as introduced by (Leprince, 2008) and implemented in
the software Cosi-Corr13. In this study the accuracy of the obtained ortho-photos were

13http://www.tectonics.caltech.edu/slip_history/spot_coseis/index.html

http://www.tectonics.caltech.edu/slip_history/spot_coseis/index.html
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not high enough (up to tenth of meters) to obtain displacements with respect to the
expected order of magnitude (meters).

One difficulty in the registration steps arises from the use of recently obtained
ground control points for the registration of old aerial photos as they could have moved
meanwhile. This can be avoided by only using GCPs outside of the landslides, which
leads on the other hand to lower accuracies inside the landslides. This is even more chal-
lenging with old photos due to incomplete camera calibration reports and the overall
lower technical precision of the equipment. Another problem is the landcover changes
between different time-steps, e.g. the agricultural fields due to their changing seasonal
cultivation status can completely change in brightness on aerial photos. Therefore dif-
ferent image filters could be used to homogenise the colours, but maintain structural
shapes, e.g. an absolute gradient filter.

2.6.4 Displacements from aerial Lidar DEMs

When applying the subpixel image correlation technique to get displacements from
multiple laser scans, several factors can influence the quality of the correlation process.
First of all the number of points used to grid the area of the reference and search
kernel effect the qualities of the DEMs (Fig. 2.26(a)(b)). If the number of points is
not high enough to significantly represent the terrain in both DEMs at that location,
the kernels will correlate at a somehow random displacement. The number of points
is mainly determined by the Lidar acquisition velocity and repetition near that area,
but is also decreased by filtering out some point classes (e.g. buildings, vegetation).
If the (normalised) DEMs of both kernels are relatively flat, the correlation will be
very high, but insignificant. To have a more robust correlation the variance of the
normalised DEM need to be high. In flat areas this can be achieved by not only using
the bare earth model, but including other classes like high vegetation and buildings.
The drawback is that especially trees can appeal quite different in two DEMs, due to
their growing in time or to different scan angles.

Another problem arises when using gridded DEMs resampled at too high resolu-
tions, especially in flat terrain. The Figures 2.26(c)-(h) show the shaded relief of a flat
field of the 2006 and 2009 Lidar scans gridded at resolutions of 1 m, 0.5 m and 0.25 m.
As (c) and (d) seem to be quite similar and therefore are expected to give a correct
match. The grids (e)-(h) exhibit linear undulation artifacts coming from systematic
height bias between overlapping parts of different flight-paths during the acquisition.
If these lineaments are orientated in similar directions in both DEMs, positive amplifi-
cations in the convolution during the correlation-process at certain displacements can
lead to false matching.

To overcome some of these drawbacks, several parameters determining the quality
of the correlation matrix are kept for every derived displacement, for instance the
number of original points used to grid the DEM in each kernel, error of the DFT-
registration process, variance of the reference kernel and different parameters describing
the quality of the correlation-matrix. For DEMs, once the horizontal displacement
(dx, dy) is successfully extracted, the vertical displacement can be derived using the
difference between the average elevation of the point-clouds inside the matched kernel
and the reference kernel (Fig. 2.25). Due to the sub-pixel precision of the horizontal
displacement, this can not be achieved using the already gridded kernels, as the grid
at the matched kernel is not directly computed during the DFT-registration.

In this study a specific strategy for a reliable displacement extraction from multiple
Lidar DEMs has been developed and is detailed in Section 4.2.
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(a) 2006, 0.1 m (b) 2009, 0.1 m

(c) 2006, 1 m (d) 2009, 1 m

(e) 2006, 0.5 m (f) 2009, 0.5 m

(g) 2006, 0.25 m (h) 2009, 0.25 m

Figure 2.26: Shaded relief Lidar grid samples illustrating gridding artifacts which are prob-
lematic in the displacement extraction process. The acquisition year and grid resolution is
given under each subfigure.
(a) and (b) representing the same location in the two Lidar sets of 2006 and 2009 with dif-
ferent point cloud densities (black dots), resulting in different gridded DEMs.
Subfigure (c) to (h) are illustrating the influence of different grid resolutions on the smooth-
ness of the DEMs on a flat field. At higher resolutions linear undulations are visible due to
different bias between swath-paths of the Lidar acquisition.
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2.7 Spaceborne SAR interferometry

As illustrated in Section 2.1.2, SAR interferometry can be used to derive velocities
of slow moving landslides by different approaches. This section focuses only on the
data and the methods selected for the Trièves landslides application. That is ERS-
1 and ERS-2 satellite images acquired by a Synthetic Aperture Radar (SAR) from
1992 to 2008 in full resolution stripmap mode and processed through a Permanent
Scatterer time-series approach. The spatial extent of the selected images is about
100 x 100 km, which is more than necessary to cover the study area. The images cover
the whole Trièves area but also its surrounding area including Grenoble city (see Figure
2.27). However, as the processing chain is starting from the raw data (Level 0) to keep
control on all the images parameters, it is, in practice, easier to get the default raw
data size that corresponds to the full swath of the instrument (100 km). Furthermore,
the study could benefit from the presence of the Grenoble urban area as a test-site for
the standard processing chain. The raw ERS radar data have a poor kilometric spatial
resolution, but the SAR instrument acquired the data in such a way that, through the
processing step called focalisation, the image resolution can be dramatically improved
to about 20 m x 5 m on flat terrain. The data acquisition, geometry, and SAR processing
are further explained in Section 2.7.1.

Deriving information about the ground displacement from SAR images is not a
straightforward process. It can be done by combining amplitude and phase information
of two SAR images acquired at different time, and also orbital and topography data.
This is called satellite differential SAR interferometry (InSAR), whose principles are
given in Section 2.7.2. However, although conventional InSAR analysis can potentially
achieve centimetric to millimetric accuracy of displacement measurement, this approach
can be severely limited under certain conditions. For instance, in the case of rural
and vegetated area, not all the pixels can be used because of the rapid temporal

N20km

ERS-coverage

Grenoble

Avi + Har

Figure 2.27: Image extent (about 100 x 100 km) of the ERS1/2 SAR images (descending
track number 65), the sub-frame of the Grenoble study case and the subframe used for the
analysis of the Avignonet and Harmalière landslide (Avi + Har).
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decorrelation of the signal (as fast as a few days for C-band ERS data), that can
affect a significant amount of the pixels making their measurements not reliable. Other
problems can arise from an insufficient temporal sampling with respect to the ground
deformation rate. This is because InSAR measurement of one pixel is not absolute,
but relative to the other pixels, and also is only known modulo half the wavelength
(see Sec. 2.7.2), that is 2.8 cm for ERS data. In practice, if during 35 days (the typical
time interval between two successive ERS images) the finite displacement of one pixel
with respect to the closest reliable pixels exceeds 2.8 cm, there will be an ambiguity of
the measurement.

To overcome these limitations, which both occur in the study area, a time-series
approach rather than single pairs of images analysis is needed. As explained in Section
2.7.2 the Permanent Scatterers (PS) approach has been chosen and is implemented
through the Gamma software14 processing chain. A short introduction to the Per-
manent Scatterers concept is given in Section 2.7.3. The number of points with dis-
placement information in the final PS result is a subset of pixels from the SAR images
and its density depends on the availability of permanent scatterers in the target area.
The standard Gamma Interferometric Point Target Analysis (IPTA) processing is il-
lustrated on the Grenoble subsidence case (Sec. 2.7.4) using the same dataset. The
Grenoble case has been used as a test-case to master and adjust the procedure for
this set of SAR-images. It is an “easy case”, because of its urban environment, which
offer a good density of PS, and because the subsidence phenomena show globally a
low deformation rate (a few mm/year across the city). In Chapter 4.3, results from
the application to the more difficult case of the Avignonet and Harmalière landslides
are shown, and advanced methods are also proposed and applied to improve the re-
sults. Further details about SAR and Insar processing can be obtained, among others,
from Simons and Rosen (2007); Hein (2004); Franceschetti and Lanari (1999), about
PS-analysis from Simons and Rosen (2007); Kampes (2005); Usai (2001) and about
their applications on landslides from Colesanti and Wasowski (2006); Fruneau et al.
(1996). Studies using the IPTA module of the Gamma-software are given by Strozzi
et al. (2005); Wegmüller et al. (2004); Werner et al. (2003).

2.7.1 Synthetic Aperture Radar (SAR) images

In order to understand the results, their significance and the applicability of the SAR-
based methods, some basic principles and terms about SAR imagery need to be ex-
plained, setting the focus on the ERS SAR instruments and their operability in moun-
tainous terrain. The similar SAR instruments on board the two ERS satellites have
been operational from 1992 - 2000 on ERS-1 and 1995-2011 on ERS-2.

Both satellite followed a sun-synchronous near-circular polar orbit with an incli-
nation of 98◦ (with respect to the equatorial plane) at an altitude of about 780 km a
repeat cycle of 35 days (for almost all its lifetime, except a few months with a repeat
time of 3 days and 168 days that are excluded from the dataset). Consequently, as the
Earth rotates under its orbit, each satellite flights half of its cycle either roughly (with
an deviation angle of about 10◦) from North to South (descending pass) or from South
to North (ascending pass) during an image acquisition. Because the SAR instrument
is right-looking (with respect to the flight direction, see acquisition geometry in Figure
2.28a), the looking direction is respectively westwards for descending orbits and east-

14Gamma is a SAR processing software by Gamma Remote Sensing http://www.gamma-rs.ch/

http://www.gamma-rs.ch/
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Figure 2.28: Real aperture acquisition geometry. (a) Typical imaging scenario for a SAR
system. The platform carrying the SAR instrument flights along azimuth direction. The
radar antenna points to the right-side covering an ellipsoidal footprint in the range direction
with one pulse. With multiple pulses emitted and received along the track, the full swath is
recorded. (b) The pulse of length ∆ρ emitted by the Radar antenna is backscattered from
the terrain. After image formation, the radar return is resolved into an image in range-
azimuth coordinates. The profile is shortened at slopes towards the antenna and extended
at slopes away from the antenna. Too steep slopes towards the antenna produce layover
(multiple returns at the same time from different locations) and too steep slopes away from
the antenna produce shadow (out of the line of sight and therefore no return). Figure from
Simons and Rosen (2007, p.393).

wards for ascending orbits. In this study, it is focused on the descending data as this
archive was more important than the ascending archive.

The Radar antenna, mounted on the satellite, is moving along the satellite flight
track (called azimuth direction)sending pulses in the direction perpendicular to the
flight path and looking to the right (called range direction). The angle from the vector
normal to the earth surface and the incident ray is the incidence angle, which is for
ERS-1/2 between 20◦ at near range and 26◦ at far range (23◦ at mid swath). Each
emitted pulse is sweeping across the swath illuminating an ellipsoidal footprint from
which the baclscattered signal is recorded on board (Fig. 2.28a). The received return
signal is correlated with the sent signal, and intensity (brightness) and phase is stored
sorted by arrival time. Figure 2.28b illustrates the effect of foreshortening, layover and
shadow due to the acquisition geometry. Gentle slopes of the terrain in range direction
(lower than the incident angle) will lead into foreshortening in the SAR image, which
results in brighter pixels with spatial shortening at slopes towards the antenna and
darker pixels with spatial stretching at slopes away from the antenna respectively. If
a slope towards the antenna exceeds the incidence angle, multiple returns are received
at the same time, resulting in layover with very bright and spatial distorted areas. If
a slope away from the antenna exceeds the incidence angle, it can not be reached by
the pulse and therefore gives no return, resulting in dark shadow in the SAR image.

To achieve a resolution in range of 8 m (that corresponds to a cell resolution of 20 m
on flat terrain for ERS taking into account the 23◦ incidence angle), the length (∆ρ)
of an emitted pulse (Fig. 2.28b), should be about 60 ns. As it is technically difficult to
emit the necessary energy for a proper return in such a short time, a longer frequency-
modulated signal (chirp) is used and lasts 37µs. The higher temporal resolution, and
therefore higher resolution in range, is then achieved by demodulation of the return
signal. The synthetic derived “compressed” pulse length (e.g. 64 ns at ERS-1), leads
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Figure 2.29: The Doppler effect in SAR processing. (a) The Doppler-history of the point
Q is obtained by receiving the return from different angles in azimuth direction during the
flight-over of the satellite. (b) The footprint of the antenna at one pulse. Lines of equidistance
connect terrain-points which have the same distance to the satellite. Lines of equi-Doppler
connect terrain-points showing the same Doppler-effect, meaning they have the same velocity
relative to the satellite. Figure from Usai (2001, p.10)

to the range resolution of 20 m.

With the ERS-satellite velocity of 7.5 km/s and a pulse repetition frequency (PRF)
of about 1.7 kHz, a pulse is emitted approximately every 4 m resulting in widely over-
lapping footprints. This implies on the other hand, that a point on the ground is
“seen” by multiple pulses (several hundreds) resulting in blurring along the azimuth
direction in the raw data. As the pulses are received from different angles at one point
on the ground (Fig. 2.29a), the relative velocity between the antenna and that point
varies during the flyover. This leads to different frequency-shifts of the returned pulses
due to the Doppler effect (Fig. 2.29a). The Doppler-effect also slightly changes in
range direction due to the different distances from the flight path. Finally, every point
on the ground has its unique Doppler-history (Doppler-frequency vs. time). Figure
2.29b illustrates the lines of equal Doppler-frequencies on the ground relative to the
satellite position. The Doppler-history is then used to separate and stack the pixels at
one location from the raw data, which synthetical increases the sharpness in azimuth
direction.

The processing of the raw-SAR data by compression (or focalisation) in range and
azimuth direction, results in the SLC image (Single Look Complex), which represents
a spatial image with complex numbers in each pixel, holding the intensity and phase
information of the corresponding location on the earth surface (ground resolution-cell).

Due to the different pixel dimensions in azimuth (4 m) and range (20 m), the SLC is
five times elongated in azimuth direction. In order to compute a nearly equally scaled
image and minimise the high frequency brightness variation (called speckle), the SLC
image can be resampled by averaging each 5 pixels in azimuth, into an image called 5x1
multi-look image (MLI) (see e.g. Fig. 2.34 and Fig. 4.29). Sometimes smaller MLIs
are calculated averaging in azimuth and range by 10:2, 15:3 etc., to further smoothing
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the images. In the case of a descending orbit (westward look) the image need to be
flipped in E-W-direction for a “natural” representation, because the first arrival (near
range) is returned from the East-most ground, but is stored in the first (left-most)
column of the image.

2.7.2 Interferometric SAR (Insar)

The obtained phase in each pixel of an SLC image (see previous section) is related to the
distance between the sensor and the corresponding ground resolution-cell. Considering
that the emitted electromagnetic wave on its two-way travel from the antenna and
the ground has covered a large but integer number of oscillations. Assuming a second
measurement with similar conditions except a slightly longer distance along the travel
path (the range change being smaller than the wavelength λ), the pulse will have to
travel slightly more, resulting in an additional fraction of the next oscillation. The
phase difference between the two signals φ is then directly related to a change of the
distance along range (between the antenna and the terrain) ∆r by

φ =
4π

λ
∆r (2.20)

The wavelength λ is 5.6 cm for ERS-1/2. The image representation of the phase dif-
ferences calculated for each pixel of two SAR images is called interferogram. Since
the phase differences can only be measured in the interval [0, 2π], the interferogram is
characterised by patterns of fringes (as seen in the upper left in Fig. 2.36). Each fringe
is representing one phase cycle (Fig. 2.30), which is after Eqn. 2.20 the half of the
wavelength λ (2.8 cm in the case of ERS-1/2).

Starting from 2 single look complex (SLC) images, the following steps are necessary
to obtain displacements from InSAR:

• Precise co-registration of the two SLC images. It can be done in four steps: (1)
rough offset estimate, (2) precise offset estimate, (3) deformation model using
using polynomial estimation, (4) resampling of one image in the geometry of the
other.

• Complex multiplication of the two SLC coregistered images and generation of the
interferogram

• Correction of the interferogram for different distortions due to the slant radar
geometry, topography (need a DEM and orbital data) and correction from atmo-
spheric effects (if necessary and possible)

• phase unwrapping (see Fig. 2.30) to transfer interferometric patterns into dis-
placements

The Co-registration is starts by using a rough estimate of matching the two SLCs.
To estimate the rough offsets in azimuth and range direction between the two images,
either tie-points in both images are used or precise orbits15 by determining the positions
of the satellite using the start and end time of the images. In order to derive phase
differences the SLCs need to be superimposed at a sub-pixel level near an accuracy of

15Post-processed precise orbit calculations for ERS-1/2 and Envisat are among others available
from the Department of Earth Observation and Space Systems of the TU-Delft, Netherlands - http:
//www.deos.tudelft.nl/ers/precorbs/orbits/

http://www.deos.tudelft.nl/ers/precorbs/orbits/
http://www.deos.tudelft.nl/ers/precorbs/orbits/
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Figure 2.30: Principle of measuring and unwrapping an interferometric phase from/to a
ground displacement in the Radar line of sight (LOS). E. Pathier (unpublished)

1/8th of a pixel (Geudtner, 1995). Therefore, first, a precise linear offset is calculated
using cross-correlation (see Sec. 2.6) of the intensity images or a coherence based
method. However, if the perpendicular baseline between the two images is near the
critical baseline (1100 m for ERS (Usai, 2001)), the latter method will fail due to
baseline-decorrelation (Wegmüller et al., 2003). After deriving the precise linear offset,
a polynomial function is estimated using least-squares registration (Wegmüller et al.,
2003). Finally the polynomial function is used to resample the co-registered SLC (slave)
into the geometry of the reference SLC (master).

After the co-registration of the two SLCs each pair of corresponding pixels, contains
the complex signals S1 and S2 which can be expressed as

S1 = |S1|eiφ1 S2 = |S2|eiφ2 , (2.21)

S1 and S2 are then complex multiplied

I = S1S
∗
2 = |S1||S2|ei(φ1−φ2) = |I0|eiφ (2.22)

I corresponds to the complex interferometric pixel-value. The interferometric phase
(φ = φ1 − φ2) is the actual interferogram which is the sum of different contributions,
one of them being the displacement between the two dates of acquisition (see Fig.
2.32).

If the satellite does not pass exactly at the same position during the two acquisition,
which can be quantified by the perpendicular baseline between the two orbit passes (see
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Figure 2.31: Interferometry of two SAR images to derive a DEM or ground displacements.
(a) A point of the terrain P is seen by two images (1, 2), separated by the perpendicular
baseline B⊥, from slightly different angles, which causes a path difference ∆r. As ∆r is
directly connect with the phase difference φ, relative elevations ∆r can be determined using
interferometric patterns. (b) The phase difference φ between two images acquired at different
times (T1, T2) from the same position can used to obtain the share of the whole displacement
∆H in the line of sight (LOS)-direction ∆r.Figures from Usai (2001, p.20, 22).

Fig. 2.31a), the interferogram contains phase variations only due to the topography
φt. This effect can be used to extract a DEM from the interferogram using the known
perpendicular baseline. On the other way around, this effect of the topography in the
interferogram, due to non-zero baselines, can be modelled using an external DEM and
precise orbits and then removed from the interferogram to form a so-called differential
interferogram.

Figure 2.32 illustrates the remaining contributions to the interferogram phase, i.e.
the actual displacements φd, the spatial variability of the atmosphere φa, the residual
phase due to error on the orbits φo or error on the DEM and geometric and tempo-
ral phase decorrelation as well as noise (thermal noise affecting phase measurement,
coregistration error).

The orbital (or flat earth) residual fringes can be modelled at 10 - 50 km-scale by
a linear one-directional gradient throughout the image. If the deformation signal is of
smaller extent, as it is the case for most of the landslide, this gradient can be estimated
from the interferogram itself and then removed from the interferogram.

The atmospheric perturbation, due to change of atmospheric condition between the
two acquisition dates, are more difficult to eliminate. Because atmospheric perturba-
tion are correlated in space at kilometric scale, they are less critical for landslides with
smaller extent. Some strategies can be applied to mitigate them for instance by mod-
elling them using atmospheric models (Webley et al., 2002; Li et al., 2006). Besides,
DEM errors can also affect differential interferograms. One way to detect them when
having several interferograms is that DEM errors are proportional to the perpendicu-
lar baseline. Apart from other minor noises coming, e.g., from the SAR sending and
receiving unit, or SLC misregistration, another important factor is the decorrelation
(Fig. 2.32).

Decorrelation can have several origins. One is the already mentioned baseline-
decorrelation. The higher the perpendicular baseline, the higher the decorrelation.
The phase recorded in one pixel is the sum of the returns from several individual
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Figure 2.32: Contributions to phase of a differential interferogram, illustrated by the case
of a simulated earthquake causing vertical ground deformation localised around a fault (top
profile and image). The interferogram in the lower right corner can be seen as the sum of
different contributions to the phase signal. DVR: ground displacement, Atm: atmospheric
effects, EOrb: orbital error, Emnt: DEM error, Cons: temporal or geometric decorrelation,
ESar: instrumental error, Erec: misregistration error. The transects on the left show the
unambiguous unwrapped phase along an horizontal profile. The central column figures show
the same signal but modulo 2pi (wrapped phase). The right column show examples of
combinations of different contributions. Figure from Pathier (2003, p.71).
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scatterer inside that corresponding ground resolution cell. If the local incidence an-
gle slightly changes, the returns of the individual scatterer may changes, but also the
way they are summing together that is the construction phase. When the phase has
been measured exactly from the same point of view, when doing the phase difference
the construction phase of each pixel cancel out, and only the phase change due to
the displacement of the resolution-cell remains. However, when the image are taken
from a even slighty different point of view the construction phases do not cancel out
anymore introducing decorrelation noise. The theoretical critical baseline leading to a
total decorrelation for ERS is 1100 m, but in practice this geometric decorrelation noise
already starts to be significant from baselines above 300 m (Usai, 2001). Another big
factor causing decorrelation is a change of the earth surface between two acquisition
times (temporal decorrelation). A good example are water surfaces, since they are
varying within seconds due to waves (even very small ones). But the major problem,
especially with respect to the relatively small extents of homogeneous displacements on
landslides, is coming from vegetation. The movement of leaves, the seasonal growing
and dying of plants or agricultural activities, change the signature of the land surface
quite rapidly, sometimes even between a Tandem-acquisition of ERS-1/2 within one
day. This temporal decorrelation may not affect all the pixel of a given area. However,
if one reliable pixel is surrounded by noisy pixel, it is impossible from a single interfer-
ogram to detect it. A method to overcome this problem by enabling the detection of
permanent scatterers is explained in the following Section 2.7.3.

2.7.3 Persistent Scatterer Insar (PSI)

As described in the previous section, one of the major error sources in a single Insar
image is spatial and temporal decorrelation. Figure 2.33 illustrates that problem. The
sketch on the right shows a tree backscattering the Radar pulse from the satellite. All
the leaves of that tree reflect the Radar signal and the satellite receives the sum of all
scattering elements leading to a complex value in the final SAR-image pixel. Row (a)
shows the complex plane of the pixel at two different times (T1 and T2). In this plot
a dot is a complex value. The image intensity is the distance to the origin and the
phase is the angle between the abscises axis and the line from the origine to the dot.
Because all the different contributions are small and random, the final value is also of
low intensity and contains a random phase. At T2 the leaves (or water, grass, sand etc.)
have naturally moved or the orbit of the satellite has slightly changed, which leads to an
altered geometry of all sub-reflectors and therefore to a completely different phase and
intensity value. This means the pixel is temporally decorrelated. If the neighbouring
pixels are random as well the pixels are also spatial decorrelated.

In the case (b) the reflected signal contains random contributions as well, but
also one or several dominant reflectors, which are consistent (also called persistent
or permanent) over time and are relatively robust to small geometrical changes of
the satellite orbit, which tends to be the case for punctual target and corner-reflector
targets in opposition to extended targets. The corner reflectors are more often found at
buildings, street or exposed hardrocks. Therefore the sum of all the single sub-reflectors
contribution do not change much over time and the pixel shows temporal coherence.

The principle of Persistent Scatterers Interferometry (PSI) is to identify and only
use the PS because they are the most reliable points for displacement measurements. It
should be noted that the perfect isolated corner-reflector and the numerous randomly
distributed small targets are two end-members and that in most of the cases pixel
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Figure 2.33: Principle of the contribution of a permanent scatterer to the complex SAR
image pixel. Multiple scatterers contribute to a single complex SAR image pixel. Here they
are represented in the complex plane (intensity=distance to the origin, phase=angle from
the x-axis). The individual scatterers inside one pixel (dotted lines) sum together into the
backscattered complex value (solid arrow) that will be measured by the SAR instrument. (a)
the top row illustrates the case of a resolution cell without dominant scatterers (like a tree
covered by leaves): left and central plots shows the same pixel from two different acquisitions
at time T1 and T2 and affected by some temporal or geometrical decorrelation. The resulting
intensity (length of the arrow) and phase (orientation of the arrow) of the overall pixel can
be very different. (b) bottom row illustrates the same situation but including a permanent
scatterer (solid line) that dominates the other distributed scatterers. The resulting intensity
and phase of the overall pixel remains similar between the two acquisition because of the
strong contribution of the dominant scatterer.

lie in between. Consequently threshold value has to be decided at some point in the
processing.

How to know if a pixel corresponds to a permanent scatterer, as even if its phase is
only a little affected by decorrelation it can also be significantly affected by atmospheric
perturbations, orbital and DEM error? Another point is that the differential phase of
an interferogram pixel has no absolute meaning, instead it has to be computed against
a reference pixel.

The most used PS strategy has been designed by Ferretti et al. (2000). It consists
of the analysis of phase differences between pairs of close pixels both in time and with
respect to the perpendicular baseline. To perform this analysis all the SLC images
are coregistred to one master image, then it is possible to get the interferometric
phase with respect to the master date for each date with an associated perpendicular
baseline value. The idea is that atmospheric and orbital error show slow variation
across an interferogram, so that the difference of their phase contribution between
a pair of close pixels is small. Consequently if the pixels of the pair correspond to
permanent scatterers, their phase difference should mostly depend on their relative
displacement and their difference in DEM errors. But without any further assumption
it is still difficult to distinguish permanent scatterers from other pixels just based on
their phase.

In order to correct the phase between two points from the DEM error the elevation
difference between those points needs to be accurately determined. If the pixel pair
had no relative displacement, this height difference can be extracted from the phases
itself by using multiple images and finding a linear dependency between the differential
phase and the perpendicular baseline per pixel. From that the height can be corrected
and the DEM error contribution to the phase can be subtracted from the differential
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phase.
On the other hand, if the pixel pair had no relative DEM error, how to know if

the pixels are permanent scatterers? If the two pixels had completely independent
and significant displacements, their phase difference evolution with time may not be
distinguished from the one of a pair of non-permanent scatterers pixels having no
relative displacement but just temporal decorrelation. At that point, it is necessary
to restrict the identification of the permanent scatterers only to those that fulfilled an
additional condition: there is a spatial correlation of the displacement between pairs of
close pixels. For instance, in Ferretti et al. (2000) the selection is restricted to pairs of
permanent scatterers for which relative displacement evolution is linear with time. In
this case the relative displacement rate can be detected from the phase-values itself by
using multiple images and finding a linear dependency between the differential phase
and time per pair of pixel.

In practice relative DEM error and linear displacements can be present, which leads
to the necessity of finding the height-correction and linear deformation rate at the same
time, which is done by a 2D-linear regression analysis using the differential phases of
a stack of co-registered SAR-images. In this thesis the processing follows mainly the
IPTA-approach implemented in the Gamma-software16. This processing is outlined in
more detail in the following section using the city Grenoble as a test case.

2.7.4 Subsidence in Grenoble as a test case

This section details the “standard” Gamma IPTA processing illustrated through the
case study of the subsidence of the Grenoble city which is starting from the same
dataset of raw images than for the landslides studied in Trièves.

2.7.4.1 From raw-data to SLCs

As a first step the 26 ERS1- and 124 ERS2-images covering 100 x 100 km (see Fig.
2.27) are processed into SLC (Single Look Complex) and MLI (Multi Look Image)
using the MSP (Modular SAR Processor) module of the Gamma-Software. For that,
the accuracy of the position and velocity (state vectors) of the satellites is increased
by using precise orbits calculated by DEOS17. For the following 4 ERS1-images precise
orbit files are not available: 01.08.1997, 10.10.1997, 19.03.1999 and 28.05.1999. During
the processing missing lines and decorrelated lines are counted. Decorrelated lines are
lines exceptional dissimilar to their neighbouring lines, indicating erroneous data. A
full SLC image has a dimension of 4912 samples and 28075 lines in azimuth. About half
of the images (ERS2) after Feb 2001 contain an increased amount of decorrelated lines
(without missing lines). Before the only problematic image is the one of 13.06.1998 with
12269 missing lines, which is nearly half of the image. Figure 2.34 shows a detail of that
erroneous image together with a successfully processed one. The problematic image
is excluded from the data-base. Two images contain minor errors, the ERS2 image of
04.01.1997 is missing 232 lines and the ERS1 image of 14.04.1995 is missing 14 lines.
Three images miss less than 10 lines and 8 images contain less than 30 decorrelated
lines. All the images with these minor problems are kept in the data-base. All other
images (before Feb 2001) do not show any errors.

16IPTA - Interferometric Point Target Analysis is the PSI module of the software Gamma by
Gamma Remote Sensing AG - www.gamma-rs.ch

17DEOS - Delft Institute for Earth-Oriented Space Science - http://www.deos.tudelft.nl/ers/
precorbs/orbits/

www.gamma-rs.ch
http://www.deos.tudelft.nl/ers/precorbs/orbits/
http://www.deos.tudelft.nl/ers/precorbs/orbits/
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(a) MLI (b) MLI

Figure 2.34: Details of two ERS2-MLIs (1:5) showing Grenoble and the South of it. a) is
from 13.06.1998 and is missing 12269 lines during the processing of the SLC, leading to a
highly compressed representation in azimuth. b) is from one month later (18.07.1998) and
was processed without errors.

In order to successfully calculate interferometric properties between images, the
Doppler centroid needs to be similar. Figure 2.35 shows the first Doppler polynomial
of all images. Due to instrument failures on the ERS2-satellite the ERS2 data after Feb
2000 are more difficult to use for interferometry especially within the standard Gamma
approach. Therefore all images after Feb 2000 are removed from the data-base, leaving
65 images between 1992 and 2000 for further processing.

2.7.4.2 co-registration of SLCs

In order to calculate interferograms of SAR images, they need to be co-registered with
sub-pixel accuracy. Therefore a master-image (MI) is chosen and all other images are
recalculated (RSLC) to match the master. In order to minimize the differences between
all images and the master-image, it should match certain criteria (from GAMMA-
userguide):

1. The Doppler centroid of the MI is near the average Doppler centroid. As the
Doppler frequency is nearly constant for all (leftover) images from the data-base,
this is true for all images. But the Doppler-frequency is slightly different for
ERS1 and ERS2 and the data-base contains more images from ERS2, so the MI
should be an ERS2 image.

2. The orbit of the MI should be near the geometric center of the orbital tube
spanned by all available SAR images. This is sufficiently accurate by choosing a
MI with a perpendicular baseline near the average. The chosen MI is 46 m from
that average.
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Figure 2.35: First Doppler polynomial of SAR database. Images with constant Doppler
polynomial are available from ERS1 and ERS2 between 1992 and 2000. Due to instrument
failure onboard of ERS2 in Feb 2000, the Doppler polynomial is highly variable since then.
ENVIsat images are available since 2003 with Doppler frequencies near to ERS2. The Doppler
Frequency between ERS1 and ERS2 differs by about 200 Hz.

3. The MI should be near the temporal average of all images, which is Feb 1996.
The chosen MI is from one year after.

4. The MI should be based on precise orbit files and not reveal errors during the
SLC-processing, which is true for the chosen MI.

5. The MI should not contain high atmospheric distortions. This is checked by calcu-
lating a single interferogram with the next temporal neighbor (08.02.1997 ERS2)
and looking manually for suspicious pattern of fringes. Figure 2.36 shows that
single interferogram. Only the valleys with higher building density show identi-
fiable fringes. The fringes seem to be relatively monotonic and do not suggest
the presence of higher atmospheric disturbances, however a proper judgement is
impossible at that stage. But the presence of atmospheric distortions would be
revealed in the further processing, which is not the case.

For the Grenoble area the master-image is cropped to an area of 800 pixel in range
and 3400 lines in azimuth. The area includes some parts of the surrounding mountains
in order to be able to proper co-register the DEM later on. The co-registration of
the SLCs is done by first estimating the global shift using the orbital information of
the images, refining the global shift by cross-correlation of the MLIs (1:1), building
an offset model using small patches of the whole image and finally resample the SLC
using that model. For the Grenoble area the offsets are obtained at 1024 equally
distributed points (32x32 grid). The patch size is 64x128 pixel (oversampled by a
factor of 2) and the correlation threshold is 7 (signal-noise ratio). In every image for
about half of the points proper offsets are obtained (529 to 646 from 1024). The mean
accuracy (standard deviation from model fit) is 0.04 pixel in range (0.03-0.06) and 0.08
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a

b

Figure 2.36: Single ERS2 interferogram using the images of 02.08.1997 and 15.03.1997
(colors). The greyscale background is the MLI (intensity). The extent is about 100x100km.
Grenoble is in the center of the Y-shaped valley with good identifiable fringes due to the
higher building density. (a) Excerpt for the Grenoble study case (b) Excerpt for the Avi-
gnonet and Harmalière landslide study
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in azimuth (0.04-0.12), which is below 0.2 pixel as suggested by the software’s user-
guide. The co-registration of the image from 04.01.1997 failed (11 successful offsets
from 1024 and accuracies above 10 pixel). This image is recalculated using only the 1:5
MLI and 12 from 35 offsets leading to an accuracy of 0.1 pixel in range and azimuth.

2.7.4.3 Co-registration of DEM

For the calculation of interferometric phases a DEM in SAR-geometry is needed. There-
fore the IGN50-DEM (see App. A.4) was bi-linear oversampled to 20 m and converted
from Lambert93 into geographical coordinates (map geometry). In order to derive
pixel-accurate height information the DEM needs to be co-registered to the master-
image similar to other SAR-images. First a simulated SAR-image based on the DEM
is calculated and then co-registered to the master-image by establishing a lookup-table
to convert coordinates from map-geometry into SAR-geometry. This lookup-table is
then used to transfer the DEM from map-geometry into SAR-geometry.

2.7.4.4 Derive point candidates

For the IPTA processing suitable points of the images are obtained using two ap-
proaches. First by using spectral properties of single SLCs and second by stable inten-
sities over time.

For each SLC a spectral correlation (cc) image and a mean/sigma ratio (msr) image
is calculated and afterwards averaged. As point candidates all points are defined from
those images (cc and msr) which show a spectral correlation higher than 0.35 and a
mean/sigma ratio above 1.0. 33477 points match those criteria, which are about 1.2 %
of all points.

For the second approach, all points which are stable over time (mean/sigma ratio of
the intensity higher than 1.4) and showing 0.5 higher intensities as the image average
are selected. Together with the points of the first approach, 46598 point candidates
are obtained, which are about 1.7 % of all points.

2.7.4.5 Subsidence in Grenoble

From these point candidates a reference point near the Bastille in the North of Grenoble
is chosen, because this area outcrops bedrock, which can assumed to be not effected by
subsidence. From this reference point a linear regression analysis is calculated to all the
other point candidates. The regression analysis searches for a height correction between
two pixel and a linear displacement rate which best explains the phase values of the
SAR-image stack. The search limits are chosen to be 30 m for the height correction
(expected difference from the DEM due to heights of buildings) and 2 cm/a for the
linear displacement rates (based on reported geodetic measurements).

The regression analysis results in unwrapped linear deformation rates in LOS (line
of sight) for all 46598 points relative to the reference point (Fig. 2.37). The principles
of the regression analysis are explained in Section 4.3.2. The obtained deformation
rates are between 2 and -8 mm/a. In order to derived subsidence rates in a vertical
direction, the value needs to be multiplied by about 1.09 due to the incidence angle of
the ERS-satellites of 23◦ in average. In general the subsidence increases towards the
center of the valley with some maxima along the Drac River in the west and along the
highway in the south. The obtained subsidences rates has been used to investigate the
possible relationship between subsidence, basin sedimentary deposits (thickness and
subsurface lithology) and resonance periods. This work was used in two collaborative
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Figure 2.37: PSI deformation rate of Grenoble as processed by Gamma from ERS images
between 1992-2000. The deformation rates are in LOS direction towards the satellite, so that
negative values pointing into the ground.

communications ((Fruneau et al., 2010; Michel et al., 2010)). The abstracts of these
are attached in Appendix



CHAPTER 3
Geomorphology and Geological

Structure

This chapter is dedicated to the analysis of the geology and morphology at the present
state using single-temporal data, whereas the next chapter 4 is all about the kinematics
using multi-temporal data. The section 3.1 is an earlier longer version of a collaborative
article later accepted from the journal ”Geomorphology” in a shorten extent (Bievre
et al. (2011)). It proposes a control of the activity of the Avignonet and Harmalière
landslides by the morphology of the underlying substratum. My main contribution to
this article is subsection 3.1.3 about the geomorpholgy and history of the two landslides.
Second part of this chapter is section 3.2 about the analysis of the DTM, which results
are also contribute to the general discussion about the kinematics at the end of the
kinematics chapter.

3.1 Combined use of remote-sensing and ground

geophysical techniques to investigate

geological control on landslides (Trièves area,

Western Alps, France)

3.1.1 Introduction

This paper presents a study combining remote sensing and seismic prospecting for
investigating two clayey landslides (Avignonet and Harmalière) located in the Trièves
area (Western Alps; Fig. 3.2).

Although affecting similar slopes made of similar clay layer under the same me-
teorological conditions, these two adjacent landslides exhibit, since the 1980s, major
differences in morphology, displacement rate magnitudes and motion directions. These
observations suggest the control of at least one additional internal factor on the land-
slide characteristics. Such control by lithological variations, hydrogeological drainage
or structural features have been regularly depicted in clay slides (Bonci et al., 2004;
Lapenna et al., 2005; Eilertsen et al., 2008; Bozzano et al., 2008). This study aims
to explain the significant differences in geometry and kinematics observed between the
landslides of Avignonet and Harmalière. Combination of geological mapping, airborne
light detection and ranging (Lidar) data, aerial photographs, global positioning system
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Figure 3.2: Location of the area and palaeo-
geographical map at the end of the Würm age
(adapted from Monjuvent, 1973). Coordinates
are kilometric and expressd in the French sys-
tem Lambert-93. The black thick box shows
the location of the study area and the extent
of Fig. 2. 1: Laminated clay deposits in the
Trièves area; 2: glaciofluvial deposits; 3: ex-
tension of the Isère Glacier at the end of the
Würm age; 4: present-day topography; L.T.:
lake Trièves.
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(GPS) and seismic noise measurements allows characterizing the landslide morphology
and the thickness of the soft layer down to the seismic substratum, providing a 3D
view of the soft layer bottom. This reveals the palaeotopography upon which settled
the clays and helps to assess the geological control on the two landslides behaviour.

In the last two decades, remote sensing techniques and geophysical prospecting meth-
ods have been increasingly used to image landslide structures at the surface and at
depth, respectively. Remote sensing techniques, such as radar interferometry, high-
resolution optical images correlation and multi-temporal laser scanning, allow the sur-
face displacement field to be measured, which is a key parameter to understand the
landslide mechanics (for a review, see Metternicht et al., 2005; Delacourt et al., 2007).
In complement to conventional ground-based geodetic techniques and GPS surveys
that provide only a limited number of discrete measurements, multi-temporal remote
sensing imagery has the potential to measure nearly continuous displacement rate field
over landslides (among others, Fruneau et al., 1996; Rott et al., 1999; Kimura and Ya-
maguchi, 2000; Squarzoni et al., 2003; Metternicht et al., 2005; Strozzi et al., 2005;
Corsini et al., 2007). Nonetheless, performances of the remote sensing techniques
strongly depend on the site conditions (slope steepness and orientation, vegetation,
size, slide velocity) and on weather conditions. These techniques that can be borne on
various platforms (space, aerial or ground) and combined together, can achieve deci-
metric to centimetric resolution and accuracy in favorable conditions (Delacourt et al.,
2007). In the last few years, both airborne and ground Lidar techniques have been
increasingly applied for mass movement studies, particularly in steep and rugged ter-
rain (e.g. Thoma et al., 2005; Abellan et al., 2006; Corsini et al., 2007; Deparis et al.,
2008; Oppikofer et al., 2008). Recently, airborne Lidar images were successfully used
to map recent and historical landslides in gentle slope areas (Schulz, 2007; Van den
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Eeckhaut et al., 2007). Major advantages of Lidar technique are the flexibility and the
quickness of the acquisition as well as the relatively simple data processing, allowing
multi-temporal Digital Elevation Models (DEM (digital elevation model)s) to be gen-
erated (McKean and Roering, 2004; Rosser et al., 2005; Thoma et al., 2005; Oppikofer
et al., 2008).

In parallel, shallow geophysics has also considerably evolved with the emergence of
2D and 3D spatial imaging, allowing the study of the spatial and temporal variations
inside landslides (for a recent review, see Jongmans and Garambois, 2007). Geophys-
ical imaging has the major advantages to give continuous information on the studied
body and to be non-invasive. However, resolution generally decreases with depth.
Geophysical prospecting applied to landslides encompasses a large number of tech-
niques: seismic reflection, seismic refraction, electrical resistivity tomography (ERT),
seismic noise measurements, spontaneous potentials, electromagnetic, ground penetrat-
ing Radar (GPR) and gravimetry. Flexible and quick to deploy, these techniques have
been applied on various types of landslides for slope varying from a few degrees (earth
slide) to vertical (rock fall), with a penetration depth of the surveys ranging from 3 m
to 400 m (Green et al., 2007; Heincke et al., 2006; Jongmans and Garambois, 2007).

Although remote sensing and geophysical techniques are complementary for landslide
imaging purposes, they have been rarely associated. Roch et al. (2006) and Deparis
et al. (2008) combined remote and ground imaging techniques for determining the ge-
ometry and the 3D fracture pattern of potentially unstable cliff sites. A dense digital
surface model of the rock face was measured from laser scanning (Lidar) and/or pho-
togrammetry, while the GPR performed on the cliff allowed the discontinuity pattern
inside rock mass to be obtained. On low slope made of clay-rich sediments, Perrone
et al. (2006) presented a joint analysis of synthetic aperture Radar (SAR) interferome-
try and ERT surveys for investigating and understanding complex ground deformation
of different origin. Bruckl et al. (2006) utilized photogrammetric, GPS and seismic data
to derive the kinematics of the Gradenbach deep-seated landslide (Austria) affecting
crystalline rocks.

In the following, the geological setting of the study area is first assessed. Then, the
use of Lidar data, aerial photos and GPS measurements will lead to better constrain
the two landslides activity and extent as well as their kinematics. The easy-to-deploy
and fast H/V prospecting will allow to estimate the soft layer thickness. The original
combination and integration of these techniques will help to build a 3D view of the soft
layer and assess a possible geological control on the landslides.

3.1.2 Geological structure and mapping

The Trièves area is located 40 km south of the city of Grenoble in the external French
Alps (Fig. 3.2). This plateau region with a maximum altitude of 800 m above sea level
(asl) corresponds to a large depression of about 300 km2 drained by the Drac river
and its tributaries. It is bordered, to the West and to the South by the Vercors and
Dévoluy carbonate massifs, respectively. To the East, it is limited by the southern
end of the crystalline Belledonne range (Fig. 3.2). This area is the main outcrop of
quaternary glaciolacustrine clays. Many landslides affect this zone among which 15 %
are supposed to be sliding (Lorier and Desvarreux, 2004). These slides might affect
surfaces as large as 1 km2. They can develop over several slip surfaces ranging from
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Figure 3.4: Geological map (location in
Fig. 3.2) modified from Debelmas (1967) and
Lambert and Monjuvent (1968). Screes and
morainic colluvium have not been reported.
Black stars refer to pictures in figure 3.6. Po-
sition of cross-section AA’ of figure 3.5 is indi-
cated. A: Avignonet landslide. H: Harmalière
landslide. MD : Monteynard dam.
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superficial (5 m to 15 m) to rather deep (down to 50 m; Blanchet, 1988; Jongmans et al.,
2009). Slide velocities are generally low (a few cm/year) but can reach several m/year
in certain places. In some cases, generally after a long wet period accompanied by
quick snowmelt, the slides can evolve into a mudflow and velocities can reach several
m/h. This lead to dramatic events in Harmalière in 1981 (Moulin and Robert, 2004)
and in La-Salle-en-Beaumont in 1994 (Moulin and Chapeau, 2004). This important
gravitational instability is mainly related to the Quaternary geological history of the
region. It was controlled by several glacier fluctuations, which resulted in alternating
deposition and erosion phases. The particular geometrical setting and the sediments
recorded these major climatic fluctuations.

The substratum on which rely the quaternary formations is made of early Jurassic
carbonate strata which were folded and faulted during the alpine orogenesis. Ancient
glacial (Riss) and interglacial phases (Riss-Würm) carved the substratum and gener-
ated valleys partly filled with Riss-Würm alluvial deposits. This lead to an irregular
shape of the basement prior to the last glacial phase (Würm; -80 to -12ky BP). Dur-
ing the last glacial maximum (LGM) extension (LGM, Würm period, -22 to -18 ky
BP; Clark et al., 2009), the Isère glacier, coming from the North, blocked downstream
the torrential flows from the Drac river and its tributaries, generating an ice-dammed
lake (lake Trièves, Fig. 3.2; Monjuvent, 1973). This lake was progressively filled during
thousands of years mainly by millimetric to decimetric rythmic alternations of clay and
silt layers originating from nearby Mesozoic marls and crystalline massifs (Huff, 1974).
These laminated clays rest either on carbonate or alluvial, locally cemented, compact
layers from the interglacial Riss-Würm period. The irregular shape of the basement
induces strong lateral thickness variations of the palaeolake infill, from 0 to more than
250 m (see Figs. 3.4 and 3.5; Monjuvent, 1973; Antoine et al., 1981).

The top of the clay is generally found at an elevation of about 750 m asl (Antoine
et al., 1981). Morainic deposits which cap the clays are found as far as the south of
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Figure 3.5: Geological cross section (location in Fig. 3.5). Screes and morainic colluvium
have not been reported. v1: first palaeovalley (”Drac de Cros”). v2: second palaeovalley
(”Drac de Sinard”). Initial level of laminated clays has been reported (750 m asl). Dashed
line within clays depicts the lower limit of the Avignonet landslide, deduced from inclinometer
data. See text for details.

the village of Sinard, indicating the southward limit of the würmian glacier extension
(Figs. 3.2 and 3.4). Also, these moraines are not present in the downslope parts of
landslides, where clays outcrop (Fig. 3.4). At the study site, their thickness evolves,
around Sinard, from 50 m to the West to a few meters to the East. At the end of the
LGM in Europe, the Isère glacier withdrew, allowing the rivers to cut deeply into the
formations. This last erosion phase created the actual Drac river valley. This favoured
the conditions for landslide development in the clay with a general Eastward motion
in the study area (Fig. 3.4; Brocard et al., 2003; Jongmans et al., 2009).

The geological map and the cross-section of figures 3.4 and 3.5, respectively, show
the geometrical arrangement of the geological formations in presence. Two palaeo-
valleys, labelled v1 and v2 on figure 3.5, depict previous interglacial incision phases.
Palaeovalley v1 is the oldest one (Monjuvent, 1973; Brocard et al., 2003). Both palaeo-
valleys are filled with locally cemented alluvial layers. They have been recognized by
field observations and, under the clay cover, by geophysical investigations conducted in
the 1950s for the construction of the Monteynard dam (location in Fig. 3.4; Crosnier-
Leconte et al., 1953; Monjuvent, 1973). In the study area (Fig. 3.2), these erosion and
deposition phases resulted in an irregularly shaped substratum top (Fig. 3.5). The
last erosion phase, at the end of the LGM, resulted in the actual Drac river valley. A
general view from the opposite side of the lake is presented on figure 3.6a. Jurassic
bedrock, quaternary alluvial layers and laminated clays are shown on outcroup pictures
of figures 3.6b, 3.6c and 3.6d, respectively.

3.1.3 Landslide geomorphology and history

3.1.3.1 Techniques

In this part we will focus on the comparison between the Avignonet and Harmalière
landslides. Three techniques have been used to analyze and compare the geomorphol-
ogy and kinematics differences of these slides. To obtain a DEM for geomorphological
interpretation a Lidar laser scan, covering the two landslides, was performed. Aerial
photographs and GPS measurements were used to analyze the kinematics back to 1948.
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Figure 3.6: Outcrop pictures. a) General view of the Avignonet landslide from the op-
posite bank of lake Monteynard (picture taken from location 4a in Fig. 3.4); b) Jurassic
bedrock overlain by compact, locally cemented alluvial layers constituted by hetermetric and
heterogenic gravels. Present-day Drac river is at the forefront; c) Compact alluvial layers;
d) laminated clays. Location of the pictures is detailed on Fig. 3.4
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The Lidar scan was performed in November 2006 using the handheld airborne map-
ping system Helimap R© (Vallet and Skaloud, 2004) mounted on a helicopter flying about
300 m above the terrain. The landscape is characterized by forest, agriculture and grass-
land. There are no artificial structures on Harmalière but a few small roads, 3 piles of
an electric landline and 54 buildings on the Avignonet landslide. The time for the ac-
quisition was chosen to be in November, so that the leaf coverage has already decreased
and snowfall has not started yet. The system has recorded 36 million last pulses of the
surface reflection resulting in an average of 6 points per m2 with an accuracy of 10 cm
in vertical and horizontal directions. In order to derive the bare earth model excluding
trees and houses the point cloud was filtered and interpolated to a 2 m raster grid with
the software SCOP++ R© (IPF, 2004) using the robust interpolation method (Briese
et al., 2002). The number of points classified as ground reflections and therefore used
for the griding of the DEM is 21 million, which is equivalent to an average of 3 points
per m2. The resulting shaded DEM is shown in figure 3.7.

Shaded representations with different light angles were used for geomorphologic
interpretation.

GPS campaign measurements have been performed biannually (April and November)
since 1995 by RTM (Restauration des Terrains en Montagne, a french public survey)
at 25 points on the Avignonet landslide (Fig. 3.7), relatively to several reference points
located on nearby stable bed-rock. The average standard deviation for all measured
points is 6 mm. No GPS measurements have been done so far inside the Harmalière
landslide, because of the quick surface evolution making benchmark installation diffi-
cult. Average horizontal velocity vectors are shown in figure 3.7. No clear temporal
pattern of velocity changes emerges from the data certainly due to the low temporal
sampling.

To analyze the kinematics further in the past, digital photogrammetric scans of
aerial photographs from the Institut Géographique National, France (IGN) of the years
1948, 1956, 1978, 1985, 1993, 2001 and 2003 at scales between 1:20 000 and 1:30 000
covering the two landslides have been used. The photos were orthorectified with the
software Geomatica R© using the DEM BD-ALTI R© from IGN with a resolution of 50 m
(the Lidar DEM was not covering a large enough area to be used), the calibration
certificates of the utilized cameras and 56 ground control points measured on the field
with differential GPS. The ortho-photos have been analyzed to investigate the landslide
activity through time. The mapping of the denuded area and of the headscarps was
found to be useful indicators of landslide activity.

In the studied area, bare soil (mostly clays) can be observed in several places, over
significantly large surface (from about 250 m2 to more than 50000 m2 in Harmalière).
Where field observation has been done, it turns out that these bare soil surfaces result
from erosion and weathering processes in relation to superficial landslide activities. In
the following the term denuded area is used to refer to these surfaces. To quantify the
spatial and temporal distribution of denuded area over the whole studied area, aerial
photos have been used.

When comparing field observations at Harmalière and Avignonet landslides with
ortho-photos, denuded area appears as very bright pixels in aerial photography com-
pared to the surrounding forested or agricultural landscape except for some field crops,
the river and some human constructions (road, buildings) that can also be bright (see
Fig. 3.8, top).
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Figure 3.7: Lidar DEM and elevation profiles of the study area. a) Shaded Lidar DEM
(light direction is from NW, horizontal resolution of 2 m) covering the Avignonet (North)
and Harmalière (South) landslides. Dotted lines indicate the landslide limits. White areas
indicate data holes in the Lidar coverage. The white circles show the position of the GPS
points, and the thin straight lines represent the 11-years average horizontal velocity measured
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Figure 3.8: Top: Orthorectified aerial photos of the years 1956, 1985 and 2003. The scales
of the original photos are 1:25 000, 1:30 000 and 1:25 000. Bottom: Interpretation of the
corresponding aerial photo showing the denuded areas related to landslide activity. White
areas are not covered by the images. In 1962 the Drac River was damed up creating the lake
Monteynard shown in the photos from 1985 and 2003.



72 CHAPTER 3. GEOMORPHOLOGY AND GEOLOGICAL STRUCTURE

Consequently, for each ortho-photo, pixels have been classified as denuded area,
using as reference the level of brightness of areas where bare soil has been observed
in the field, and excluding the river (or the lac), bright fields, roads and buildings
identifiable by their characteristic geometric shapes (see Fig. 3.8, bottom).

3.1.3.2 Analysis

Using the three sets of data, as described in the previous section, several features can
be analyzed to highlight the difference in kinematics between the Avignonet and Har-
malière landslides: the general orientation of the landslide, surface velocity, denuded
area, headscarp evolution and surface roughness.

The clay area affected by sliding is larger on Avignonet (1.8 km2) than on Harmalière
(1.2 km2). The headscarps of Harmalière and Avignonet mapped from the 1956 aerial
photo (before the construction of the Monteynard Dam), show that the maximum dis-
tance between the headscarps and the Drac Valley is about 1.5 km in both cases. Both
headscarps follow a curve that have a symetry axis oriented NNW-SSE, perpendicular
to the Drac Valley, as it is expected in a homogeneous clay mass deeply cutted by
a valley (see Fig. 3.8 on the bottom left). In Avignonet, the global sliding direction
follows this axis as expressed by the fan-shape pattern of the GPS velocity vectors and
of the slope directions of the main scarps. The 11-years average velocity vectors from
GPS on the Avignonet landslide are oriented from N 70◦ E to N 130◦ E (Fig. 3.7),
with a global N 100◦ E movement.

However, in Harmalière, according to the evolution of denuded area, the most active
areas of the landslide develop along a NNW-SSE axis (Fig. 3.8) making a 30◦ angle
with the Avignonet global sliding direction. The percentage of denuded surface is much
larger in Harmalière than in Avignonet since the first photos in 1948 (13 % versus 5 %
in 1948, 20 % versus 3 % in 1984 and 19 % versus 3 % in 2003). Only a very small active
area in the south of Avignonet can be identified. The higher activity of Harmalière
certainly goes back, at least, to the end of the 19th century: at that time, according
to Moulin and Robert (2004), because of intense gully erosion occurring on the NW
part of the Harmalière slide, a significant reforestation work has been implemented by
the state authorities. Since the catastrophic Harmalière event in 1981, denuded area
are more concentrated in the eastern part of the Harmalière landslide and has grown
up-slope since then. Morphological changes due to the 1981 event can be seen in the
1985 sketch of figure 3.8 forming a NNW-SSE elongated body of denuded areas and
also in figure 3.7 where, at the same place, a roughness contrast with the surroundin
terrain can be noticed. The body itself can be divided into a steeper upstream part
where erosion dominates and a smoother lower part corresponding to an accumulation
zone, which has been conquered by trees again since the 1981 event (Fig. 3.8 on the
right). It is noteworthy that the recent up-slope evolution is not directed straight to
the NW, but has rotated clockwise to the N-NE toward the Avignonet landslide.

The main headscarp of Harmalière, which has developed since the catastrophic event
of March 1981, has mainly regressed through several brutal events (biggest events were
in 1988, 1996 and 2001; Moulin and Robert, 2004). This evolution is traceable from
aerial photos analysis, providing a mean regression rate of about 10 m/year between
1981 and 2003. These values are in agreement with ground observations (Moulin and
Robert, 2004). Since 2001, the headscarp regression has started to affect the southern
limit of the Avignonet landslide. A GPS measurement on the crest between Harmalière
and Avignonet indicates mass displacement towards the Southwest, which is consistent
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with a faster regression of the Harmalière scarp toward the Northeast (Fig. 3.8) relative
to Avignonet. To the North of Harmalière the limits with another landslide show a
convexity toward the south (Fig. 3.7 and 3.8). On the Lidar DEM, in the northern part
of Avignonet slide, the four uppermost major scarps (spaced by about one hundred of
meter) seems to be cut by the northern limit. This suggests that the northern landslide
has been the last to be the most active with respect to the Avignonet one.

Surface roughness is also an indicator for landslide activity (Glenn et al., 2006).
Analysis of surface roughness from the shaded Lidar DEM (Fig. 3.7) shows differences
between the Harmalière and Avignonet landslides in terms of wavelengths and ampli-
tudes along the slope direction. In Harmalière, a characteristic small-scale roughness
with wavelengths of 5-15 m and amplitudes of 0.5-5 m can be observed, as well as
roughness at a larger scale with wavelengths of 80-200 m and amplitudes of 5-20 m.
Two representative elevation profiles along the slope direction are shown in Fig. 3.7b.
They are divided into an upper and a lower part according to the presence of signifi-
cant changes of slope angle and roughness. On these profiles, the roughness has been
estimated using the root-mean-square deviations as described by Shepard et al. (2001)
with step-sizes of 10 m and 100 m along with the mean slope angles (see table 3.1)
corresponding small-scale roughness and large-scale roughness at the wavelengths of
10 m and 100 m respectively.

577 247 874 624
9.8 16.3 11.6 6.9

1.1 1.6 1.6 1

4.4 4.4* 5.4 2

A1-A2 upper
Avignonet

A2-A3 lower
Avignonet

H1-H2 upper
Harmalière

H2-H3 lower
Harmalière

Profile length (m)
Mean slope angle (°)
RMS deviation (m) small
scale (10 m)
RMS deviation (m) large
scale (100 m)

Table 3.1: Root-mean-square deviations from the elevation profiles seen in Figure 3.7b for
2 different wavelengths (step sizes) representing the roughness at different scales. See text
for details. * This value is not reliable due to the short profile length.

In Avignonet the roughness is higher at the toe (1.6 m) than in the upper part
(1.1 m) for the small-scale roughness, which can be explained by the higher activity
down-slope, as suggested by the GPS, associated to a higher slope angle and may be
a higher erosion rate. In Harmalière, the roughness is lower in the lower part than
in the upper part for both wavelengths. Indeed, since 1981, Harmalière has shown
intense activity in its upper part including collapsing at the headscarp and several
minor scarps below, that are responsible in a higher large-scale roughness (5.4 m). In
the lower part, it evolves into a more fluent mudslide (large-scale roughness at 2 m)
related to the development of an accumulation zone which presents a lower slope angle.
Similar large-scale roughness values are found for the upper parts of Avignonet and
Harmalière. Assuming that features related to large-scale roughness are more robust
through time that the small-scale one, this observation suggests that Avignonet and
Harmalière have experienced similar landslide processes in the past. It must be stated
that using roughness as an indicator of landslide activity can be biased by several factors
that should be discussed. First of all the density of data points after filtering when
building the DEM can influences the roughness. Data density decreased in forested
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area because of the filtering and could lead into lower roughness. In figure 3.7, the
constructed DEM is resampled at 2 m resolution: beside a few exceptions and after
filtering the forest, the laser points were still dense enough to avoid smoothing effects
due to interpolation. For instance, the south-western part of the Harmalière landslide,
which is largely forested, show a higher small-scale roughness than the farming area
of the Avignonet slide. On the other hand the effect of farming altering the surface
roughness should also be considered. On a very small scale farming can decrease the
surface roughness in a very short time, but also high scale roughness could be decreased
by farming over decades. On the other hand if the activity of the landslide and with
that the roughness is too high, the field will become abandoned and the roughness will
be not further decreased. Therefore it can be said that farming amplifies the trend:
smooth areas will be more smoothed and rough areas will stay rough above a certain
threshold. If there are other causes to abandon a field then the landslide activity,
the interpretation of roughness can be misleading. In the case of Harmalière, it can
be observed from the aerial photos that a lot of fields become abandoned after being
affected by the past 1981 events. Today farming is completely stopped on Harmalière.
Also the active part in the south of Avignonet was partly farmland in the past and
become abandoned recently.

Taking into account these limitations, the roughness comparison between the Avi-
gnonet and Harmalière slide still suggests a significant difference of the recent sliding
activity: the Avignonet slide do not show major recent active movements in agreement
with GPS data and aerial photographs analysis, in contrast to the Harmalière slide.
Only some areas in the lower part and in the South of Avignonet exhibit small-scale
roughness similar to Harmalière. This is consistent with the location of denuded area
in the most recent aerial photos, which are correlated to a higher landslide activity.

Regarding slide velocity, values measured by GPS at the surface of the Avignonet
landslide (Fig. 3.7) increase from less than 20 mm/year at the top to more than
130 mm/year in the most active parts at the toe. The aerial photos show no ma-
jor signs of activity in Avignonet for the last 60 years with no significant evolution of
the headscarp and very small denuded areas. In Harmalière no GPS measurements
are available but, by tracking morphological features through different dates in the
aerial photos, one can get a rough estimate of the average velocity of several meters
per year for some parts of the main landslide body, which is significantly higher than
in Avignonet.

Comparison of the two landslides by Lidar scan, GPS data and aerial photos has
shown that the recent and former landslide kinematics are highly different for the two
earth slides. Harmalière seems to be much more active than Avignonet, today and in
the past 60 years. A major factor for this could be the underlying bedrock topography.
This possible influence parameter is investigated in the following section.

3.1.4 Geophysical investigation

The objective of the geophysical investigation is to map the thickness of the soft
layer over the two landslides. This thickness ranges from 0 to more than 250 m from
the East to the West, respectively (Antoine et al., 1981). The site to be characterized
encompasses a surface of 5 km2. Geological investigations conducted in the 1950s for
the study of the Monteynard dam (location in Fig. 3.4) were limited to the Avignonet
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area. No information is available about the geological setting of the Harmalière area.
Furthermore, geophysical campaigns which aimed to characterize the geological setting
in the immediate vicinity of the dam were not published and only synthetic data are
available. This poses the problem of the reliability of the established model of figure 3.5.

Recent works (Jongmans et al., 2009) have shown the existence of a strong shear
wave (S-wave) velocity contrast (more than 3 on average) between the soft upper layers
(clays and moraines; 250 m/s < Vs < 600 m/s) and the substratum made of compact
cemented alluvial layers (Vs = 1250 m/s) and Jurassic limestone (Vs = 2000 m/s).
With such characteristics, microtremor processing (H/V technique) has been proven
to be one of the most robust and easy exploration tool for mapping the thickness of
alluvial or lacustrine sediments (Ibs-von Seht and Wohlenberg, 1999; Delgado et al.,
2000; Guéguen et al., 2007; Méric et al., 2007; Le Roux et al., 2008) including the
Trièves area (Jongmans et al., 2009).

3.1.4.1 Method

The H/V technique is a single station method consisting in calculating the horizontal
to vertical spectral ratios (H/V) of seismic noise records. For a single homogeneous
soft horizontal layer (1D geometry) overlying the bedrock, the H/V curve exhibits a
peak at a frequency fHV that is the shear-wave resonance frequency f0 of the soft layer
(Bard, 1998). This theoretical resonance frequency is given by (Haskell, 1960):

f0 =
Vs
4T

(3.1)

where Vs is the soft layer S-wave velocity (in m/s) and T is the layer thickness
(in m). The resonance frequency decreases with a decrease of Vs and an increase of
thickness. If Vs is known, this equation allows the layer thickness to be determined.
For a layered medium overlying a halfspace, the resonance frequency can be computed
from the thickness and the dynamic characteristics of each soil layer (Haskell, 1960)
and the total thickness of the soil layers can be deduced if the vertical velocity profile
is known. When the seismic impedance contrast Z between the soft layer and the
bedrock is high enough (Z > 4), the H/V peak was shown to result from a change
in the ellipticity of the fundamental mode of the Rayleigh waves (Bonnefoy-Claudet
et al., 2006). The corresponding ellipticity frequency fell is then equal to the resonance
frequency f0.

Measurements were made with a single three-component 5 s sensor giving a flat
response between 0.2 and 50 Hz and connected to a light seismic acquisition system
(Chatelain et al., 2000). Seismic noise was recorded during 15 minutes with a 200 Hz
sampling frequency. Data were processed with the Sesarray package www.geopsy.org

(Wathelet et al., 2004). Microtremor records were cut into 30 s time windows, for which
Fourier spectra were computed and smoothed using the technique proposed by Konno
and Ohmachi (1998). H/V spectral ratios were computed for all time windows and the
mean H/V curve is given with standard deviations at each site.

The H/V method offers the advantages of being easy to deploy (one station-one
people) and quick (about 10 sites per day), depending on field conditions. Limits are
weather conditions, likely to influence the H/V curve (Koller et al., 2004), and the
assumption of horizontally layered medium, which cannot be valid in case of strong
lateral seismic contrasts (Uebayashi, 2003). In the study site conditions, the 5 km2 area
was covered within a two weeks delay by a single operator.

www.geopsy.org
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3.1.4.2 H/V data

H/V measurements were performed at 104 sites (Fig. 3.9) and were located with a GPS
with a horizontal accuracy ranging from one to a few meters under forest.
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Figure 3.9: H/V measurements. a) H/V curves at points S1 and S2 (location on Fig. 3.9c).
b) Location of the 104 measurement points with the landslides limits (dashed line); A:
Avignonet landslide; H: Harmalière landslide. c) Resonance frequency map.

Elevation values were extracted from the Lidar DEM. H/V curves (spectral ratio
versus frequency) at two sites (S1 and S2) are presented in figure 3.9a. Both curves
exhibit a peak with amplitude over 8 at 0.58 Hz for S1 and at a 3.63 Hz for S2, corre-
sponding to the resonance frequency of the site. At S2, a second peak appears at 20 Hz,
which could correspond to the resonance of a superficial layer or to a higher resonance
mode. The great majority of the 104 measured H/V curves fit the criteria proposed
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in the SESAME guideline (Koller et al., 2004) for a 1D resonance phenomenon, with
well-individualized peaks and H/V amplitudes greater than 2. For some measurements,
located in the southeastern part of the Harmalière landslide (location in Fig. 3.9b),
however, curves exhibit a plateau-like shape, suggesting 2D or 3D effects. This point
will be discussed below.

The frequency field was gridded with a kriging algorithm (Kitanidis, 1997), using
an exponential variogram model with a N-S anisotropy for the search radius. The
gridded surface fits the experimental data with an absolute error of 3 %. The results
are presented on figure 3.9c.

To the West, the frequency map (Fig. 3.9c) reveals a NNE-SSW 500 m wide elongated
low-frequency zone, with values ranging from 0.4 to 1 Hz. To the East, frequencies
increase rapidly with distance, from 1 to 4 Hz. This eastward evolution of the resonance
frequency is consistent with the thinning of the clay layer and the corresponding rise
of stiff layers shown in previous works (Fig. 3.5; Crosnier-Leconte et al., 1953; Lambert
and Monjuvent, 1968; Blanchet, 1988; Jongmans et al., 2009). Applying equation 3.1
with a mean S-wave velocity of 600 m/s in the clay layer (Méneroud et al., 1995) yields
a clay thickness between 375 m to the west and 37 m to the east. These thickness
values are however approximate, owing to the vertical S-wave velocity variation in the
clay layer. This results from the effects of compactness and landslide activity. The
dynamic characteristics (P-wave and S-wave velocities, density) within the different
layers (from top to bottom: morainic colluvium, moraine, disturbed clays, undisturbed
clays, alluvium and bedrock) were obtained from previous seismic studies (Méneroud
et al., 1995; Renalier et al., 2007; Jongmans et al., 2009) and are presented in table 3.2.

Table 3.2: Dynamic characteristics (compressional wave velocity Vp, shear wave velocity
Vs and density) used for the calculation of the theoretical resonance frequency. See text for
details.

Vs (m/s)
5 500 250 1.9

Moraines 0-50 1850 150-450 2
0-45 1850 150-450 2

0-250 1850 600-650 2
0-100 2350 1250 2

3000 2000 2.6

Geological unit Thickness (m) Vp (m/s) Density
Morainic colluvium

Disturbed clays
Unidisturbed clays
Compact alluvium
Carbonate bedrock Halfspace

Thickness values in the layers were estimated at each station from the available geo-
physical and geotechnical data (Monjuvent, 1973; Antoine et al., 1981; Blanchet, 1988;
Lorier and Desvarreux, 2004; Jongmans et al., 2009). Then, the only free parameter
left is the thickness of the undisturbed clay layer.

Preliminary theoretical sensitivity tests were conducted using the Sesarray package
(Wathelet et al., 2004). They have shown that the clay thickness is the main parameter
controlling the resonance frequency. Furthermore, these tests also showed that the
impedance contrast, using the parameters of Table 3.2, between clays and cemented
alluvial layers was sufficient enough to generate a peak corresponding to the resonance
frequency. It implies that the measured frequency corresponds in each case to the base
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of the clays. No change in the f0 value has been found when passing the landslide
headscarp (cf. Fig. 3.9c). Furthermore, within the slide, no high-frequency peak that
could sign a shear plane has been recorded nor computed. These results support the
use of resonance frequency measurements for determining the base of the clays. On
an other hand, they indicate that this technique might not be suitable for detecting
and mapping the slide itself (on the contrary of Méric et al., 2007). This could be
due to an insufficient seismic impedance contrast between the disturbed clays and the
undisturbed laminated clays (cf. Table 3.2).

The soft layer thickness was computed at each station by fitting the theoretical
resonance frequency to the measured one using a trial and error method. The plot of
computed thicknesses versus experimental resonance periods (inverse of the frequency)
for the whole data set shows a good correlation (Fig. 3.10a), corroborating the deter-
mined velocities in the layers.
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Figure 3.10: Frequency to thickness calibration for H/V profile P1 (location on Figs. 3.9b
and 3.9c). a) Computed thickness as a function of the measured resonance period (inverse of
the frequency) for the 104 stations. Linear regression (black dashed line) gives a determina-
tion coefficient r2 equals to 0.95. b) Comparison of the geometry of the top of the Jurassic
bedrock (Blanchet, 1988) and the bottom of the laminated clays after H/V measurements
along profile P1 (location in Fig. 3.9c). Dashed line depicts the lower limit of the Avignonet
landslide deduced from inclinometer data.

The H/V deduced geometry of the seismic bedrock top is compared to the sec-
tion previously established from a long refraction profile conducted for the study of
the Monteynard dam (profile P1, location in Fig. 3.9c; Blanchet, 1988) which depicts
the top of the Jurassic bedrock. A general good agreement is observed between the
two sections (Fig. 3.10b) in terms of relative way of the palaeotopography. Observed
discrepancies range from a very few m to the East to some 40 m to the West. These
disparities may come from strong changes in layer velocities which are not known.
This also may come from the reference geological model, established from a refraction
study and which reliability is not known. This prevents this H/V mapping from being
exhaustive but allows the relative palaeotopography to be estimated and analyzed in
terms of geometry. Errors may also arise from 2D and/or 3D effects as well as from
varying cementation of the alluvial layers, as observed at outcrop. These points will
be discussed further.
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The thickness values obtained over the whole area were then kriged with an expo-
nential variogram model to produce a map depicting the distribution of the thickness
of the soft layer (moraines, morainic colluvium and clays) over the seismic substratum
(alluvial compact layers and Jurassic bedrock; Fig. 3.11a).
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Figure 3.11: Soft layer thickness maps. a) Soft layer thickness map. The absolute error
between computed and interpolated thicknesses is 5.29 %. b) Lake Trièves palaeotopography
in the study area. The absolute error between computed and interpolated palaeotopography
is 0.98 %. Dots refer to seismic measurements and crosses to field observations; dashed lines
stand for Avignonet and Harmalière landslides limits.

Outcrops of stiff alluvium and carbonate bedrock (0 m of soft cover thickness) were
added in order to better constrain the interpolation. The thickness map is in agreement
with the frequency map of Figure 3.9, showing a significant westward increase of the
clay thickness from 0 m on the valley flank to more than 300 m below the village of
Sinard. These values are consistent with field observations and the outcropping of the
alluvial layers to the East (Fig. 3.5). This is also consistent with previous estimations
(Monjuvent, 1973; Antoine et al., 1981) that give a soft layer thickness from 0 to 300 m
on the West (moraines and clays; see Table 3.2).

Thickness values were subtracted from elevation values given by the Lidar DEM
at each measurement point. These points were again spatially interpolated using a
kriging method with an exponential variogram model. The relief of the bottom of the
clay layer is given in Figure 3.11b. The palaeotopography upon which clays have been
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deposited is very irregular, with elevation variations of more than 150 m. The major
feature is the presence of a depression striking NNE-SSW, which is bordered to the
East by a N-S ridge culminating at an elevation of about 600 to 620 m (cross-section
AB on Fig. 3.12).
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Figure 3.12: Cross-sections of the paleolake basement (location in Fig. 3.11b).

This depression probably coincides with palaeovalley v2 of the palaeodrac river, as
suggested by the presence of alluvial outcrops along the lake (Figs. 3.4 and 3.5) and
by previous works (Crosnier-Leconte et al., 1953; Monjuvent, 1973). The N-S ridge
appearing to the east and shown on cross-section AB corresponds to the presence of
carbonate bedrock irregularly covered with compact alluvial layers and sporadically
outcropping along the lakeshore. To the South, this ridge disappears (cross-sections
AC and AD; Fig. 3.12). In figure 3.11 are superimposed the limits of the landslides
of Avignonet and Harmalière. Below the southern part of the Avignonet slide, on
its eastern side, the ridge of compact layers continuously extends perpendicularly to
the global slide motion and could act as a buttress. On the contrary, the Harmalière
landslide clearly developed over the lower elevation zone (Fig. 3.11b) and its motion
can be explained by its orientation which changes from N-S to NW-SE in the South.

3.1.5 Discussion

Geophysical investigation with ambient noise measurements allows to compute a
frequency map (Fig. 3.9c) that can be turned into a soft sediments thickness map
which is used to derive a paleotopography map (Fig. 3.11). Considering the thicknesses
that have been computed, one may argue that 2D and/or 3D effects are present and
that measured fHV might be biased. The presence of non-1D cases is highlighted by
strong lateral variations observed on the frequency map (Fig. 3.9a). Consequently,
calibration based on the ellipticity of the fundamental mode of Rayleigh waves may
be irrelevant and cannot provide the correct thickness for the soft layers. Some of
these effects have been noticed on the signals located in the southeastern part of the
Harmalière landslide (Fig. 3.9b) by plateau-like signals. By picking the frequency at
the plateau cut-off, the resonance frequency tends to be overestimated (Guillier et al.,
2006). Similar side effects have already been reported by studies conducted within
small-apex valleys (Uebayashi, 2003; Koller et al., 2004; Guéguen et al., 2007; Le Roux
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et al., 2008). This is illustrated on cross-section AC of figure 3.11. Between abscissa 800
and 850 m, a bulge of substratum is visible. It corresponds to a zone with pleatau-like
H/V curves. This strong side effect tends to provide an overestimated measured fHV
and, thus, a lowered clay thickness. As a consequence, the observed bulge on cross-
section AC is likely to result from side effects and not to represent a real structure.

Another problem arising from calibrations is the eventual presence of lateral Vs
variations in the soft sediments. Vertical and W-E variations are known to be present
within clays (Renalier et al., 2007; Jongmans et al., 2009) and were taken into account
for the frequency to thickness computations. On an other hand, since the Würm glacier
extension was limited to the village of Sinard (Figs. 3.2 and 3.4), the presence of such
an ice-cap and of the 50 m thick moraines may influence the compactness and, then, the
S-wave velocity of the clays across this boundary. Nevertheless, N-S velocity variations
within the soft layer have not been reported hitherto and were not eventually integrated
to this work.

As a consequence of these uncertainties, the soft layer thickness map computed from
H/V data may contain more or less important error bars. These errors are estimated
to a few meters to the East (were soft layer thickness is of a few tens of meters) to
some 40 m to the West, were the soft layer reaches 300 m. These uncertainties do not
question the reliability of the first order of observations since the aim of this work is
to map the relative variations of the seismic substratum. The basement of the former
Trièves lake on which were deposited the glaciolacustrine laminated clays is irregularly
shaped and shows strong lateral variations. At most, this introduces an uncertainty in
the exhaustive mapping of the clay thickness.

There is a N-S ridge to the East of the investigated area, culminating at about 620 m,
which disappears to the south. Cross-sections AC and AD on figure 3.12 illustrate the
progressive vanishing of this hard ridge marking a depression to the South at about
460 m, which continues toward the North-East and then runs along the west side of
the ridge. This depression allowed the deposition of 300 m of clays and moraines over
a seismic substratum located at an elevation less than 520 m asl. Over the ridge only a
very few tens of meters of clay remain because of a lower thickness of sediment and of
erosion. This analysis confirms previous works done by other geophysical methods on
Avignonet (Crosnier-Leconte et al., 1953; Blanchet, 1988), and also extents consistently
the knowledge of the palaeotopography to the south up to Harmalière. The new map
also confirms the geological observations and interpretation inferring that several glacial
and interglacial erosion phases, that took place during the Quaternary (Monjuvent,
1973; Brocard et al., 2003), created a palaeotopography marked by the incision of at
least two paleovalleys of the Drac, called ”Drac de Sinard” and ”Drac de Cros”, filled
with alluvium and running below the laminated clay of the Sinard plateau, notably
below Harmalière and Avignonet (Lambert and Monjuvent, 1968; Monjuvent, 1973).
However, Lambert and Monjuvent (1968) and Monjuvent (1973) indicate that the top
of the ”Drac de Sinard” alluvium is at about 500-520 m asl in the Harmalière-Avignonet
area, and that its bottom is at about 410 m asl, whereas our results show, west to the
ridge, intermediate values ranging between 440 and 500 m asl. This could suggest
that the method used is not sensible to the contrast between alluvial deposits and
clay. Preliminary theoretical sensitivity tests revealed that the impendance contrast
between the clays and the compact, cemented, alluvial layers was large enough to
generate a resonance frequency peak. On an other hand, field observations, along
with previous works (e.g. Monjuvent, 1973) indicate that these alluvial layers are only
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locally cemented. Where they are not, their mechanical parameters, especially Vs,
would dramatically decrease and approach values within clays (for Vs values within
alluvial sediments, see for example, Pugin et al., 2009). In such cases, the measured
resonance frequency and, consequently, the base of the soft layer, would correspond to
the interface between the base of non-cemented alluvial layers and the top of cemented
alluvial layers and/or the Jurassic bedrock. Here again, this aspect is pointless since the
aim of this work is to map the seismic substratum. Furthermore, it could partly explain
the important discrepancies between the computed thicknesses and the reference cross-
section (Fig. 3.10).

The other palaeovalley, called ”Drac de Cros”, recognized by geophysics and geology
(Crosnier-Leconte et al., 1953; Lambert and Monjuvent, 1968; Monjuvent, 1973) is
supposed to run east to the ridge, below the North-Eastern part of the Avignonet
landslide. The top of its alluvial deposits is expected to be at about 600 m asl. The
location of this palaeovalley is not clear on our map. Geological observations suggest
that this palaeovalley is narrower with steeper flanks than the ”Drac de Sinard” one,
which could explain the difficulty to see it. Here again, our estimations of the clay
basement give a substratum at 530-560 m asl at the location of the expected ”Drac
de Cros”, that is lower that geological estimate (600 m). This bias could again be
explained by the fact that, the alluvial deposits are not always cemented (Monjuvent,
1973), leading to a localization of the basement that is intermediate between the top
of the alluvial deposits and the top of the Jurassic bedrock. One can also notice a
small East-West depression across the ridge in the middle of the Avignonet landslide
that has not been reported before. However, because of the possible uncertainties of
the map mentioned here before, we do not try to interpret it as a paleomorphological
feature. In the following, we will retain only the robust features of our geophysical
investigations, that are the N-S ridge and the depression related to the paleovalley of
the ”Drac de Sinard”.

Beside the geophysical maps of soft layer thickness and of paleotopography, a com-
parison of the Harmalière and Avignonet landslides kinematics has been done based
on GPS, aerial photo and Lidar DEM analysis. It turns out that two main differences
between the two landslides are observed for the recent time: the orientation of the
main sliding direction, and the level of sliding activity. Regarding the orientation it
has been shown in section 3 that the Harmalière landslide is developing since 1948
along a NW-SE direction, which is significantly oblique with the expected NNW-SSE
direction toward the Drac valley (before the lake filling) that can be observed, for in-
stance, in Avignonet. The NW-SE axis also corresponds to the orientation of the ”Drac
de Sinard” paleovalley below the Harmalière slide, suggesting that the orientation of
the Harmalière landslide might be controlled by the paleotopography. Regarding the
level of sliding activity, a first observation is that the northern part of the Harmalière
headscarp is moving to the North starting to erode the southern flank of the Avignonet
slide. Secondly, GPS measurements and analysis of digital photographs, back to 1948,
reveal that Harmalièréıs main slide body is far more active than the Avignonet one:
there are regression of the headscarp of several m per year being accompanied by rapid
evolution of the denuded area (that are not observed on Avignonet since 60 years) and
sliding velocity than can exceed 1 m/year, whereas, in Avignonet, the 11 years GPS
data do not show velocity exceeding 15cm/year. These observations are consistent with
the morphology of the landslides, especially the roughness, shown by the Lidar DEM
which reflects more long-term activity. In Avignonet there is a gradient of displacement
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from the uppermost sliding clays, showing displacements of about 1-2cm/year, up to
the toe of the clay mass with 10-13cm/year where the clay thickness are less than a
few tens of meters (around 30m). Downward, outcrops of alluvial layer or of Jurassic
bedrock do not show sliding processes. On a W-E profile along the Avignonet slide,
Jongmans et al. (2009) have observed a negative correlation between the sliding veloc-
ity and the Vs values of the first 5 m suggesting a downward increasing deformation
state of this clay material. They also found evidence for a slip surface at about 40 m
depth within the clay confirming previous hypothesis done from inclinometric data
(Blanchet, 1988; Lorier and Desvarreux, 2004). When comparing these observations
with the position of the ridge in the paleotopography, one can be inclined to think
that, here also, there is a palaeotopographic control over the kinematics: the ridge of
hard layers along the eastern part of the Avignonet landslide acts as a buttress that
could mechanically prevent the slide from rapid evolution as observed in Harmalière
(Fig. 3.7).

However, the hypothesis of a paleotopography control over the landslide kinematics
has to be discussed taking into account a longer time interval than the last 60 years
of observation on which it is based. This perspective arises several questions: is the
present-day kinematics, in progress since at least 1948, representative of the long term
evolution of the two landslides (i.e. over several thousands of years)? If the pale-
otopography controls the kinematics, what is its long term impact on the landslide
morphology? One may argue that each landslide has its own evolution that consists
in successive phases of slow movement (like in Avignonet today), followed by rapid
events (like in Harmalière today). In this case, the present-day situation could have
been the reverse at some periods in the past: an active Avignonet slide and a quiet
Harmalière slide. Then, the supposed relationships between kinematics and paleoto-
pography would be just a coincidence or negligible.

To address this issue, morphological parameters can be considered that may reflect
the relative long term level of activity of the two landslides. The area of the Avignonet
landslide is larger than in Harmalière. However, as noticed in section 2, the maximum
distance to the Drac river is similar. This suggests a similar average speed of regression
of the headscarps, if we do the reasonable hypothesis that erosion processes start at
the same time for the two nearby landslides, when the Drac started to incise into the
glaciolacustrine deposits.

Note that, in this discussion, we will not try to use absolute time to estimate
incision or erosion rates, because the timing of the beginning of the Drac incision is
still debated. Some authors favor a last Würm maximum at 50-40 Ka (Monjuvent,
1973; Nicoud et al., 2002) and others at 30-20 Ka coincident with the LGM (Brocard,
2003; Brocard et al., 2003). The volume of eroded clays can be also considered. As
described in section 2, it can be assumed that, at the end of the last Würm maximum,
the glacio-lacustrine clay material formed a flat plateau culminating at about 750 m
asl on top of which were deposited an additional 50 m of moraines as far as the south
of the village of Sinard (Figs. 3.2 and 3.4; Monjuvent, 1973; Antoine et al., 1981). The
eroded volume of material can be calculated by subtracting the Lidar DEM from this
800 m asl surface over the area below which clay are present for each landslide. This
gives about 436 million of m3 for Avignonet and 340 million of m3 for Harmalière (for
comparison, during the 1981 main Harmalière mudflow, 250000 m3 went into the lake
(Blanchet, 1988) but more materials were mobilized that accumulated at the bottom
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of the slide above the lake). If we divide theses values by the landslide area, it gives an
average of 157 m of eroded clay material per m2 for Avignonet and 195 m per m2 for
Harmalière, suggesting a higher average long-term activity for Harmalière. However,
one cannot say if, for instance, these values correspond to very large events closely
related in a short period of time (with the rest of the time a lower activity of the slide)
or, in contrast, if they are representative of continuous evolution of the slides. The
DEM morphology analysis has shown that there is a contrast in roughness between the
two landslides that suggests (with the mapping of the evolution of the denuded area)
that the Harmalière slide is more active than the Avignonet one. However it can be
observed within the Harmalière slide that a short term event like the 1981 mudflow and
its subsequent events can change the small-scale roughness and vegetation cover of the
slopes: the 1981 active body shows a visible roughness contrast with the surrounding
areas of the slide. Regarding the Harmalière headscarp regression over the Avignonet
slide, it seems to reflect only a recent evolution because it does not significantly modify
the regular headscarp curve of the Avignonet slide. Furthermore, the observed speed of
the Harmalière’s headscarp regression since 1981, at about 10m/year, is not sustainable
over the long term. In brief, all these morphological criteria do not seem very reliable
for reflecting significant differences in kinematics of the long term (thousands of years)
evolution of the slides.

Physical mechanisms responsible of the laminated clays instability, has also to be
taken into account in the analysis. It has been shown by several authors that, for the
Trièves laminated clays, natural slope become instable when exceeding 6 to 8◦ (Antoine
et al., 1981, 1991; Giraud et al., 1991). According to Antoine et al. (1981), three main
types of sliding are frequently observed: 1) sliding of the vegetative cover (thickness
less than 0.5 m) over the clays; 2) creeping of a whole top clay layer (thickness 0-6 m)
associated with localized and superficial mudflow; 3) sliding of mass of clay over a slip
surface (thickness up to 50 m), than can evolve into a mudflow like in Harmalìre in
1981 with velocities that can reach several m/h.

According to these processes, the palaeotopography should have an effect onto land-
slide activity when the clays thickness is lower than 50 m except if the material of the
substratum has a significant impact on the hydrogeological conditions, for instance by
draining water and influencing the water table. In Avignonet, analysis of piezometric
data done so far, do not provide evidence of such an effect. Considering 1) the present
day topographic profile along the main slope direction of the Avignonet slide, 2) the
position of the ridge at about 700 m west to the Drac valley with a highest point at
about 620m and 3) the initial level surface, at around 800m asl, in which the Drac
started to incise, one can say that the possible effects of the palaeotopography on the
landslide activity did not start at the beginning of the slide’s life and may be relatively
recent in the slide histories. That could explain why there is no clear evidence of long
term difference of activities between the two landslides. When the deep slip surfaces
started to reach the clay basement, the development of new deeper slip surface has
been influenced because the basement prevents them to go deeper, as it has been ex-
pected if no ridge were present. This certainly causes a slowing of their evolution. In
Avignonet, Blanchet (1988) and Jongmans et al. (2009) proposed several hypotheses
about the geometry of a deep slip surface at about 50m identified from inclinometric
data. These geometries are influenced by the basement in their lowest part, suggest-
ing that the Avignonet landslide activity may have been recently slow down by the



3.1. GEOLOGICAL CONTROL ON LANDSLIDES 85

palaeotopography. The fact that the GPS velocities are the highest in the lowest part
near the ridge is interpreted as being due to more intensive superficial creep at the
toe of the slide. In the Harmalière slide, no inclinometric data are available. However,
applying similar reasoning, one can say that the situation where the deep slip surfaces
reach the clay basement has not started on the NW-SE profiles along which the slide
is developing (Fig. 3.11). If, instead, we consider an E-W profile in the middle of the
Harmalière slide, the situation looks more similar to the Avignonet case. This could
explain why the Harmalière slide is developing along an NW-SE direction and why it
has recently shown a highest activity than in Avignonet.

Consequently, we propose that paleotopography is a significant controlling factor of
the Harmalière and Avignonet landslide evolutions, acting as a mechanical buttress
against the development of slip surfaces in the clays. Paleotopography may also have
another impact (not investigated in this study), that is an influence on the drainage
condition of the two landslides because paleotopography is responsible of large perme-
ability heterogeneities due to the presence of alluvial deposits in the paleovalleys.

3.1.6 Conclusion

The two adjacent landslides of Avignonet and Harmalière have been studied following
an original multidisciplinary approach based on geodetic (GPS, digital photographs),
remote sensing (Lidar), and ground geophysics (ambient noise measurements). The
aim was to understand the differential kinematics, motion directions and morphology
that characterize these landslides located in the same geotechnical setting.

GPS measurements and digital photographs reveal that the difference in kinematics
between the two earthslides can be tracked back to 60 years ago at least. The Avignonet
slide is mainly directed towards the East (N 100◦ E) while Harmalière is mainly oriented
towards SE. The Lidar scan map illustrates this differential motion and morphology
between the two slides and highlights that the Harmalière slide is still presently much
more active than the Avignonet one.

A ground geophysical prospecting based on ambient noise measurements allowed
to record the resonance frequencies at different locations. These measured resonance
frequencies where turned into soft sediments thicknesses. Finally, a map depicting
the base of the clays was computed. It indicates that the basement is very irregularly
shaped with strong lateral E-W variations over 150 m. This map confirms previous field
and geophysical observations that revealed a westward thickening of the clays. This
map also reveals the presence of a N-S ridge of hard sediments (Jurassic bedrock and/or
compact alluvial layers) on the eastern side of the Avignonet landslide. This ridge
disappears when approaching the Harmalière landslide and makes place to what can be
interpreted like a NW-SE oriented palaeovalley of the river Drac. It is proposed that the
ridge could act as a butress which could mechanically prevent the Avignonet landslide
from evolving as fast as the Harmalière one. Furthermore the NW-SE palaeovalley
located under the Harmalière landslide corresponds to the motion direction of the slide.
It is then finally proposed that the slides different behaviours are partly controlled by
the palaeotopographic setting of lake Trièves.

This approach reveals to be a quick and relatively low-cost way to characterize the
geomorphological setting of this sedimentary basin over an important area of 5 km2

by building a geometrical framework for lanslide characterization within fine-grained
soft-sediments.



86 CHAPTER 3. GEOMORPHOLOGY AND GEOLOGICAL STRUCTURE

3.2 DTM analysis

This section presents the results of the Lidar-DTM generation, the extraction of quanti-
tative morphological parameters and its interpretation concerning activity and history
of the two landslides. It is divided in the acquisition (Sec. 3.2.1), the DTM genera-
tion (Sec. 3.2.2), the geomorphological interpretation of the shaded relief map (Sec.
3.2.4), the slope characterization (Sec. 3.2.3), the drainage network (Sec. 3.2.6) and
the roughness (Sec. 3.2.7). The focus is on showing differences between the two land-
slides, Avignonet and Harmalière, in order to explain their different behavior in the
past and hazard potential for the future. The limits of the methods are discussed in
Section 3.2.8. Some aspects presented in this chapter are also included in the general
discussion of the landslide evolutions at the end of the next chapter (Sec. 4.4).

3.2.1 Lidar Acqusition

The area of the two landslides was scanned in 2006 and 2009 by Helimap1 using a
handheld helicopter based system described and evaluated in Vallet and Skaloud (2004).
The reported accuracy is 10 cm in horizontal and 14 cm in vertical direction. The
delivered unfiltered point-clouds contain 36 · 106 points for 2006 and 26 · 106 points
for 2009 using the last pulse only. Further details about the datasets are given in
Appendix A.2 and A.3. Acquisitions took place in November (2006) and April (2009)
in order to avoid dense canopies and snow coverage. Figure 3.13 shows the point-cloud
densities for both acquisitions before and after the non-ground filtering. The 2006
acquisition is more inhomogenous due to unstable weather conditions at the acquisition
date resulting in inconsistent flight paths. The density map of the 2009 acquisition is
more homogeneous with a higher point density at the headscarp of Harmalière (yellow-
red area in the center of Figure 3.13b). A higher resolution was asked for this area
exhibiting the highest landslide activity. For both scans a minimum density of about
4-6 pts/m2 could be achieved.

In order to illustrate some properties of the scan concerning vegetation, Figure 3.14
shows a zoomed view on the headscarp of Harmalière. The aerial photo (a) shows 3
major vegetation zones: agricultural fields (yellow-brown colour), forest (dark green
colour) and bare-earth outcrops of clay (white-grey colour). The unfiltered shaded
relief map (b) of the same area exhibit distinctive morphological features for the areas,
including the head-scarp of Harmalière with the downward slope to the South, as well
as the forested areas with their bumpy anisotropic morphology. The reflectivity map
(c) shows the average strength of the backscattered laser-signal of all points of the
scan. It seems to be positively correlated with the vegetation density. This can be
explained by the wavelength in the NIR-spectrum (near infra-red) of the operating
laser, which is more reflective at vegetation relative to dry and wet soils. Additionally
the maximum height difference was computed between all Lidar-points within each
2 m by 2 m grid-cell (d). Assuming that at least one point in each cell was reflected
at the ground surface and one at the top of the vegetation, this parameter could be
used to discriminate the areas. The distribution map (Fig. 3.14d) shows that the
maximum vegetation height is lower in the agricultural field and bare-earth areas (<
0.6 cm) and higher in forested areas. These results suggest that both, reflectivity and

1Helimap System SA is a Swiss mapping company - helimap.ch

helimap.ch
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Figure 3.13: Densities of the point-clouds before for the two Lidar acquisitions of Nov
2006 (a and c) and Apr 2009 (b and d), draped on the shaded relief. (a) and (b): raw data
(last pulse). (c) and (d): data filtered to remove the non-ground reflections generated by
the vegetation. The raster resolution is 2 m and voids (white) are areas without any point.
Coordinates in Lambert93.
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(a) (b)

(c) (d)

Figure 3.14: Vegetation zoning from the aerial photo and on the lidar scan on a region
of 900x600 m at the Harmalière headscarp (a) on an aerial photo, (b) the unfiltered shade
DEM with elevations, (c) the reflectivity and (d) the maximum height difference between all
points per 2mx2m grid cell as representative of the vegetation height.

maximum height difference could then be used to make a simple classification leading
to a land-use map, but this issue is not further investigated.

3.2.2 Bare-earth DEM generation

In order to derive a DEM for further morphological analysis the Lidar-data is filtered
with the objective to remove the effect of the vegetation and buildings. This is done by
classifying and filtering the Lidar point-cloud using the ”Hierarchical robust filtering”
of the software SCOP++ (see Sec. 2.4.2). At this step the original point-cloud was
reduced to 21 Mpoints (58 %) for 2006 and to 18 Mpoints (67 %) for 2009. The average
density for both scans is therefore about 3 pts/m2. The comparison of the point cloud
densities before and after the filtering (Figure 3.13) shows that the decrease is more
significant at the Harmalière landslide in the South, as it is more vegetated than the
northern Avignonet landslide. At Harmalière in 2006 the point distribution remains
mainly homogeneous with an average point density of about 2.3 pts/m2. On the con-
trary, the 2009 acquisition at Harmalière shows larger areas without points due to
the lower point-density before filtering. Notably, a too low point-density before the
filtering is problematic for the filtering step itself, because the algorithm needs to fit
a surface through the bare-earth points in order to sort out the vegetation-points. If
there are no or very few reflections from the bare-earth, the algorithm fails. The 2006-
acquisition can be seen as the lower edge of the minimum point-densities necessary for
a proper filtering in highly vegetated areas. This should be kept in mind especially for
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Test area 1 Test area 2

Morphology mountainous minor slope
Landuse dense forest suburban

Area 100x100 m 100x100 m
Min. difference -3.21 m -2.41 m
Max. difference 2.82 m 1.01 m
Mean difference -0.85 m -0.34 m

Standard deviation 0.70 m 0.37 m

Table 3.3: Characterisation and statistical values for two test-areas from the Lidar dataset.
Differences are given between gridded DEMs derived from automatic and manual filtered
point clouds of 2006. The manual obtained DEM is considered to be of better quality and
serves as the reference DEM.

the DEM-displacement calculations in Section 4.2.

In order to evaluate the quality of the filtering, two test-areas of 100 x 100 m in
difficult terrain (rugged surface, highly vegetated, buildings) are filtered manually using
a 3D-Viewer for point clouds with advanced point selection tools (Point Cloud Mapper
(PCM) developed at ITC (Netherlands)). The manual obtained DEM is considered to
be of better quality and serves as the reference DEM. Figure 3.15 shows a part of the
unfiltered (a) and filtered (b) DEM with the location of the two test-areas. The aerial
photos of the two areas are shown in Figure 3.15(c and d). Test-area 1 is situated in
dense forest with steep slopes (> 25◦) including a drainage channel, while the second
test-area is located in a village on just a gentle slope (< 10◦) including some houses
and trees. The manual filtered point-cloud and the automatic filtered point-cloud are
gridded (2x2 m) and the difference between them are shown in Figure 3.15(e and f).
Some characteristics of the two test-areas and statistics of the difference two test-areas
are presented in Table 3.3.

The automatic filtering seems to throw out too much points of the bare-earth as
the DEM is too low in average (-0.85 m). The maximal errors are about ± 3 m and
the standard deviation of 0.70 m shows a quite high variation. The second test-area
is located in a village on just a minor slope (< 10 ◦) including some houses and trees.
The results from the automatic filtering are better than for test-area 1, but still below
the reference in average (-0.34 m). The standard deviation of 0.37 m indicates that the
maximal errors of -2.41 m and 1.01 m are mainly outliers. The DEM difference maps
of the two areas (Fig. 3.15(e and f)) show that the main difficulties are connected
with lineaments, the drainage channel in test-area 1 and tree/bush-chains in test-
area 2. This could be due to the detection of too less bare-earth points under dense
vegetation, which gives less stable support for the interpolated surface over which
points are considered as vegetation. Isolated houses or trees are filtered with less
errors. It should be pointed out that the two test-areas are ”worst-case” scenarios,
because in other areas with a more smooth surface, less vegetation and no buildings
the interpolated surface, which is the base of the classification, can be fitted more
robust to the real bare-earth surface. The overall quality of the filtering appears to
be better, but nevertheless it shows the major difficulties of automatic point cloud
classification.
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Figure 3.15: Evaluation of the filter quality for the two 100 x 100 m test-areas by comparing
the automatic and manual filtered DEMs. (a and b) Example of the shaded relief from the
unfiltered (a) and filtered (b) DEM with the location of the two test-areas. Aerial photos
(c and d) and difference between manual and automatic filtered DEMs (e and f) of the two
test-areas. The automatic filtering is done with the software SCOP++ (see Sec. 2.4.2).
Manual filtering is done using the cloud editing software Point Cloud Mapper (PCM) from
ITC (Netherlands) (including a 3D-Viewer with advanced point selection tools).
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After filtering, the point-cloud is gridded to a raster with a resolution of 2 m using the
”gridfit”-algorithm (see Sec. 2.4.3). The final grid was then cropped to the core area of
the Lidar scans in order to avoid large extrapolated areas at the borders which would
not represent the actual landscape. This DTM is used for the following morphological
analysis.

Because the covered area is too small to include the whole watershed for the calcu-
lation of the surface drainage system (Sec. 3.2.6), it was extended using the IGN DEM
with a source resolution of 50 m. Details about this dataset are given in Section A.4.
The two datasets are merged by converting the IGN DEM raster into a point-cloud,
sorting-out all points which are already covered by the Lidar DEM and re-gridding
the joined point-cloud of both datasets with the 2 m resolution. Due to the different
resolutions of the source, small artefacts can be seen at the transition between the
Lidar DEM and IGN DEM. This is especially true at the western lake-shore (seen in
Fig. 3.22), where the lake level is given by the IGN DEM, while the west lake-shore
topography is defined by the Lidar DEM. As the lake-level is slightly lower in the
Lidar-DEM, the west lake-shore is a little lower than the rest of the lake. Overall this
artefact is expected to have no major influence in the following analysis.

3.2.3 Slope angle and aspect

In order to characterise the slope of the two landslides, maps showing the slope-angle
and aspect are generated from the 2 m-Lidar-DEM as described in Section 2.5.1. The
map of slope-angles is shown in Figure 3.16 and reveals some fundamental character-
istics of the morphology. The map allows for distinguishing four major zones: (1) the
upper plateau in the NW (dark-blue) with slope angles less than 3◦, (2) the sliding
areas of the Avignonet and Harmalière landslide exhibiting major and minor scarps
with angles about 20-25◦ (green-yellow) and flat zones in between with angles below
10◦ (blue), (3) the area of steep terrain in the East with slope-angles above 25◦ up to
40◦ (yellow-red) and (4) the flat toe of the Harmalière landslide in the SE with gentle
slope below 10◦.

The sliding zones of the Avignonet and Harmalière landslide exhibit similar slope
angles. However, the slope-angles between scarps and blocks at the Avignonet landslide
are more clearly separated and smooth than at the Harmalière landslide, where the
ground surface is more disturbed with numerous close minor scarps. The NW of the
Avignonet landslide exhibits a flat area (blue colour) spreading relatively far to the
East, which is not connected to the lake, contrary to the toe of Harmalière.

Figure 3.17 shows the slope aspect map of the area. Slopes of the Avignonet and
Harmalière landslides are oriented SE to NE (green-yellow-orange colours) and SW
to NE (blue-green-yellow colours) respectively. It results that the half moon shaped
Avignonet landslide is generally oriented to the East while the U-shaped Harmalière
landslide moves to the South-east. Furthermore, the Harmalière landslide exhibits
numerous local counter-slopes dipping to the NW (purple colour), which are just locally
observed in Avignonet. To the NW of the headscarp of, one can also observe three
channel-like N-S lineaments with Westward aspects, which are in opposite to the general
dipping of the plateau towards the East.

In order to further compare the slope characteristics of the Avignonet and Har-
malière landslides, two representative profiles are extracted along the general direction
of movement and shown in Figure 3.18. Their locations are shown in Figure 3.18a and
the raw extracted elevations are presented in Figure 3.18b without exaggeration. To
outline the differences in Figure 3.18c the two profiles are aligned at their headscarps
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Figure 3.16: Slope-angles of the Lidar 2006 DTM draped on the shaded relief map.
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Figure 3.17: Aspect of the Lidar 2006 DTM draped on the shaded relief map.
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and the vertical scale is exaggerated by a factor 2. It can be observed: (1) the total
lengths of the moving zones are different, about 900 m at the Avignonet landslide vs.
1500 m at the Harmalière landslide, (2) the slope at the Harmalière landslide can be
divided in 2 parts, the upper depletion-zone with its major and minor scarps (zone
2 concerning the slope-angles) and the lower more flatter accumulation-zone (zone 4
concerning the slope-angles), (3) Avignonet only shows the depletion zone, but do not
have a flat accumulation zone, (4) the depletion zone is more convex at Avignonet and
more concave at Harmalière, (5) the height of the depletion zone is similar for both
landslides (about 175 m).
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a

b

c

Figure 3.18: Longitudinal topographical profiles through the Avignonet and Harmalière
landslides. (a) Location of the profiles on the 2006 Lidar DEM with a marker dividing them
in an upper and lower part. (b) Extracted raw profiles with the upper/lower mark. (c)
Profiles aligned at the top of the headscarp (2 times vertical exaggerated).
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3.2.4 Shaded relief

Shaded relief maps are produced for morphological interpretation and the geolocated
visualisation of other datasets. The shading is realised using the ESRI-algorithm (see
Sec. 2.5.2). As morphological lineaments parallel to the illuminating directions are
poorly seen, steep slopes towards or away from that direction can result in overall too
dark or too light areas. Consequently, four different illuminating directions (NE, NW,
SE, SW) are used for the morphological interpretation. The zenith is always 45◦ above
the horizon. Shaded relief maps with colour-coded elevation are presented from the
NE direction for the two Lidar acquisitions in Figure 3.19. The morphology of the two
landslides is well evidenced, including the headscarps of the two landslides, major and
minor scarps at different scales, bumpy earth-flow areas, drainage flow-paths, roads etc..
The major outcome of this process is the clear view on the bare-earth morphology in
vegetated areas, which is hidden in the aerial photos and even difficult to access in the
field. Secondly the comparison between the 2006 and 2009 datasets show no observable
difference. Therefore the analysis of the slope, aspect, drainage system and roughness
is only made with the DEM of 2006. Detailed quantitative differences between the two
datasets are assessed in Section 4.2 using image correlation techniques.

Figure 3.20 shows the shaded relief map of 2006 with colour-coded slope aspects.
The combination of these two maps exhibit the structures of the landslides in full detail,
which can not be seen in aerial photos (e.g. Fig. A.7).

(a) 2006 (b) 2009

Figure 3.19: Shaded Lidar DTMs of 2006 and 2009 with color-coded elevations. Illumina-
tion from NE and 45◦ above the horizon. The morphology of the bare-earth is clearly visible,
but no differences can qualitatively obtained between the two dates.
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Figure 3.20: Shaded bare-earth Lidar DEM with colour-coded slope aspect. Data-holes in
white. Lake Monteynard in grey in the East.
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3.2.5 Geomorphological map

Figure 3.21 shows a qualitative basic geomorphological map derived from the inter-
pretation of the shaded relief maps and some field observations. The morphological
features are classified in major and minor scarps, screes and areas of mud-flow. The
map shows that, in case of the Harmalière landslide, the upper limit corresponds to a
succession of scarps drawing an U-shape opening towards SE. It is also characterised by
a central zone, orientated more N-S and about 400 m wide, which corresponds to a large
movement leading into a mudflow about half-way to the lake (corresponds to the upper
and lower part of the profile in Fig. 3.18). The eastern flank of that sliding channel
shows some linear scarps in opposite to the curved scarps everywhere else. The eastern
side of the mudslide is bordered by a cliff with scree-slopes of higher angles suggesting
the absence of clays. Near the confluence of the mudslide into the lake two small valley
join from west and east, while the western one exhibits landslide morphology.

In the case of the Avignonet landslide, the upper limit is much more continues
and the concavity is orientated towards the East, perpendicular to the lake. Also, the
Avignonet landslide does not show an accumulation zone of the landslide materials, in-
stead the lower limit is characterised by a continuous cliff with scree-slopes. The scarps
appear to be increasingly small-structured towards the toe of the landslide and towards
the South. The northern limit is defined by the next adjacent landslide retreating into
the Avignonet landslide.

Except the most southern part of Avignonet, the surface of Harmalière seems to be
more rough at small scales than the relatively smooth scarps of Avignonet. Therefore
the roughness is quantitatively assessed in Section 3.2.7.
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Figure 3.21: Geomorphological map interpreted from the shaded Lidar DEM and field-
observation.

3.2.6 Drainage system

The accumulated rainfall has usually a major influence on the activity of landslides.
The drainage network is then computed from the DEM to determine the catchment
characteristics of both landslides. The processing is described in Section 2.5.3. The
Lidar-DEM was extended using the 50 m-IGN DEM (see Section 3.2.2). Figure 3.22
shows the drainage-system of Avignonet and Harmalière draped on a shaded relief
map. The colour-intensity reflects the log of the upslope-area. The Harmalière and
Avignonet watersheds are coloured in green and red, respectively, while the adjacent
watersheds are in blue.

The most important watersheds of the plateau are draining to the North and the
South. The flows are in directions parallel to the morphology determined by the Juras-
sic limestone. The rainfall on the plateau is preferentially directed towards SSE or
NNE. This drainage network is only partly captured by the Avignonet landslide, whose
watershed (red) covers an area of 2.0 km2 (only 25 % larger than the landslide itself),
with a drainage system generally oriented perpendicular to the lake. On the contrary
the watershed of the Harmalière landslide (green) is smaller with 1.7 km2 (70 % larger
than the landslide itself), but has a geometry elongated parallel to the adjacent flows
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Figure 3.22: Drainage system of the Avignonet and Harmalière watersheds. Derived using
the upslope area computation after Tarboton (1997) and colouring the watersheds of Avi-
gnonet (red) and Harmalière (green). All other watersheds are blue. The colour intensity
reflects log of the upslope-area.

of the plateau.

On a smaller scale, due to the roads crossing the Avignonet landslides, the automatic
drainage is partly not representing the natural flow. Bridges (or water-tubes) below
the roads are not considered in the flow calculation and therefore the water is often
kept on the hill-side of the road for long distances until it can cross the road. This does
not seem to have any influence on the overall watersheds, but should be considered
when using such maps as input for landslide modelling.

If the morphology at different times would be more drastically changed, the cap-
turing of adjacent drainage basins could massively influence the activity of a landslide.
Drainage maps can help to detect such risks by identifying larger streams of neighbour-
ing watersheds near the headscarp of a landslide, which could be captured by further
sliding events. At the Harmalière and Avignonet landslide there is no evidence for that
in the near future.
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Figure 3.23: Deviogram (RMS-deviation) of two representative profiles from Harmalière
and Avignonet. The location and height-profiles are shown in Figure 3.18 and 3.7.

3.2.7 Roughness

If not mentioned differently, in the following ”roughness” will refer to the RMS-
deviation along a profile as defined in Sec. 2.5.4. In order to highlight the differ-
ences between Avignonet and Harmalière the roughness is already discussed in Sec-
tion 3.1.3.2. There, the roughness is computed along two representative profiles at
Avignonet and Harmalière, which are subdivided in an upper and lower part. The
location and height-profiles are shown in Figure 3.7 and with higher detail in Figure
3.18. Along these four sub-profiles the roughness is calculated with lags (= step size,
wavelength or scale) of 2 – 200 m, shown in Figure 3.23. All curves following a general
upwards trend, which comes from the naturally larger height-differences when com-
paring points with larger distances from each other. That means that the roughness
is only directly comparable when using the same step-size. The range of step-size is
limited to the sample resolution at the lower end and the profile-length at the higher
end. Step-sizes near the profile-length are not statistically significant, which leads to
the irregular characteristics at higher step-sizes. For the discussion in the journal-paper
the roughnesses at step-size 10 m for small-scale and 100 m for large-scale are extracted
and listed together with the profile-length and average slope angles in Table 3.1. The
main statements are here that Avignonet is ”more rough” in the lower part than in
the upper part whereas in Harmalière it is the opposite and the large-scale roughness
is similar in all sub-profiles but the lower part of Harmalière. The relation between
roughness and short-term and long-term evolution of the landslides based on those
profiles is further analysed and discussed in the paper (Sec. 3.1.3.2 and 3.1.5).

In order to analyze the spatial distribution of the roughness, it is calculated at
profiles every 10 m covering the whole area at small-scale (SSc) and large-scale (LSc).
The calculation is based on the 2006-Lidar DTM with a resolution of 2 m. At each
location the average slope-orientation is taken from its vicinity (SSc: 20x20 m, LSc:
200x200 m). Then two height-profiles of the same length (SSc: 20 m, LSc: 200 m) are
extracted, one along the downhill direction (UD = up-down) and another perpendicular
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to the first one, parallel to the slope (LR = left-right) each with a resolution of 2 m.
After that the roughness (RMS-deviation) is calculated at the profiles with the a step-
size of 2 m at small-scale and 20 m at large-scale. The results of those four maps are
presented in Figure 3.24.

The idea is to reveal areas of higher roughness in general, but also to divide roughness
due to landslides and roughness due to gullying (erosion). Therefore it is assumed that
terrain affected by landslides is showing higher UD-roughness due to the major and
minor-scarps and terrain mainly affected by erosion is showing higher LR-roughness
due to the absence of scarps and drainage paths in downhill direction. Figure 3.24a)
and (b) show the small-scale roughness in UD- and LR-direction. The UD-roughness
is low at the plateau (dark blue) and higher in Harmalière, the lower part of Avignonet
and the terrain E of Avignonet and Harmalière along the lake. The LR-roughness is low
everywhere but the terrain along the lake. In order to distinct between the landslide-
and erosion-milieu the difference of the UD- and LR-roughness (directional roughness)
is shown in (c) and reveals yellow-red areas with predominant UD-roughness and blue
areas with predominant LR-roughness (green shows balanced areas). The intensity of
the colors is varied by the sum of both roughnesses to hide areas with a low insignificant
roughness in either direction. At a first glance this map can be divided in three parts,
(1) the plateau and upper part of Avignonet with low roughness, (2) Harmalière and
lower parts of Avignonet with UD-dominated roughness and (3) the terrain below the
Avignonet landslide and E of Harmalière along the lake with LR-dominated roughness.
The directional roughness seems to be a good indicator for landslide activity. By
looking more in detail, several parts of Harmalière and regions along the lake reveal
more balanced (green) directional roughness and are not easily dividable.

The same maps are presented for the large-scale roughness (20 m) in the lower row
(d-f). These maps are less noisy due to the averaging effect of the large profiles (200 m)
relative to the grid-spacing of 10 m. Overall the large-scale maps show the same trend
as the small-scale maps with some differences. The elevated UD-roughness in (e)
includes larger areas of the upper part of Avignonet in opposite to the small-scale case.
This seems to match the lower activity in the upper part of Avignonet which leads to
undulated morphology with longer wavelengths and therefore shows only up at larger
scale. In addition, the directional roughness (f) shows LR-dominated (blue) areas along
the ridges between the landslides (N Avignonet, between Avignonet and Harmalière,
SW-Harmalière). This is most likely due to the determination of the profile directions,
which are depended on the slope-direction. As the slope-direction is in the large-scale
case the average of an area of 200x200 m, the slope-orientations of both sides of a
ridge annihilate each other leading to an averaged orientation along the ridges, which
causes a rotation of the profile directions at those points and finally an inversion of
the directional roughness. To minimize this effect the size of the area to determine the
average slope could be reduced, or better, the orientation of the profiles should not
be determined by the omni-directional orientation (0 – 360◦) but the linear-orientation
(0 – 180◦), which would be more stable during the averaging.

Conclusively the directional roughness seems to be a good parameter to classify
morphology, especially for the localization of landslides, but larger test-areas would
be needed to test this. Further investigation in this direction could include the use
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Figure 3.24: Small-scale (a-c) and large-scale (d-f) directional roughness calculated at
locations equally distributed at every 10 m. The roughness is shown in downhill direction (a,
d) and parallel to the slope (b, e). c and f present the difference between the downhill (UD)
and slope-parallel (LR) roughnesses, meaning red areas are more rough downhill than slope-
parallel and vice versa. The intensity of the colours in c, f is the sum of the downhill and
slope-parallel roughness (general roughness) in order to highlight areas with higher roughness
(independent of the direction). The roughness is computed as RMS-deviation. For small-
scales the profile length is 20 m and the lag is 2 m. For large-scales the profile-length is 200 m
and the lag is 20 m. See Section 3.2.7 for details. The colour-bars do not represent the whole
spectrum of values. They are limited to the a representative range of values to highlight the
spatial differences.

of different roughness definitions to calculate the directional roughness or combining
roughnesses of different scales.

In order to support the findings from the roughness of the single profiles of Har-
malière and Avignonet used for the journal-paper, histograms of the UD-roughness of
Avignonet and Harmalière are compared in Figure 3.25. At small-scale (left histograms)
in Avignonet the majority of roughness-values are lower with a peak at 0.05 m than in
Harmalière, where the maximum is at 0.25 m. Interestingly this does not apply for the
large-scale case (right histograms), where the peak is at 0.2 m for Avignonet as well
as Harmalière. This supports the statement that Harmalière is “more rough” than
Avignonet at small-scale, but not that differently shaped at large-scale.
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Figure 3.25: Small-scale and Large-scale roughness histograms of downhill profiles at Har-
malière and Avignonet. See Figure 3.24 and Section 3.2.7 for details.

3.2.8 Conclusions and recommondations

The following conclusions can be drawn from the results of the DTM-analysis:

1. As the point-cloud density should be simply near or higher than the desired
resolution of the final DTM, for a proper filtering of the vegetation a minimum
point-density of 5 pts/m2 is recommended depending on the vegetation density.
The loss of points during the filtering is about 20 % in low-vegetated areas and
up to 50 % in higher vegetated areas. As the acquisition from a helicopter is more
inhomogenous than e.g. from a plane, the average point cloud density should be
chosen higher than theoretically needed to have a good coverage in all areas.

2. Automatic filtering of vegetation works sufficient also in mountainous areas, but
decreases the accuracy due to classification difficulties between bare earth and
low vegetation, especially near scarps and cliffs.

3. In addition to field-mapping, slope, aspect and shaded relief maps are essential in
developing a geomorphological map, especially in forested and hardly accessible
areas.

4. The computation of drainage networks is a quick tool to assess the superficial
hydrological system and watershed of a landslide. In case of the presence of
man-made structures, special attention is necessary concerning sub-terrain flows
(bridges, tubes). Using DTMs of lower resolution can minimise such problems.

5. Roughness, especially directional roughness, can be a good indicator for landslide
activity and is able to distinguish between gullying and landsliding milieu. It
needs to be refined and tested at larger areas and different kind of landslides.
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6. All the DEM-derivatives could be useful for an automatic classification of land-
slides, especially the directional roughness, slope-angles and slope-aspects. How-
ever, the scale dependancy should be further investigated.

Some results of the DEM analysis (like slope angles, slope aspects and drainage
system) are used as supporting arguments for the interpretation of the short- and
long-term evolution of the Avignonet and Harmalière landslide in Section 4.4.





CHAPTER 4
Kinematics

This chapter deals with the extraction of information using multi-temporal data. At
first, the results of the computation of DEMs and ortho-rectified images from aerial
photos are presented and discussed in section 4.1, starting with a short excursion
into the quality of the measured ground control points. After that, the displacements
extracted from the Lidar-sets are presented and discussed in section 4.2, which is
the main subject of the thesis. The third section 4.3 covers the outcomes from the
Insar analysis starting with the test case of Grenoble identifying subduction velocities,
followed by the focus on the Avignonet and Harmalière landslides. At last the kinematic
informations from all three methods are summarized and discussed in section 4.4,
including the short- and longterm evolution of the landslides, influencing factors and
implications for the future development.

4.1 Aerial Photogrammetry

Aerial photos of different years are available to evaluate the evolution of the Avignonet
and Harmalière landslides. As these are raw photos, they need to be ortho-rectified
using the interior and exterior orientation of the camera in order to be comparable
to other georeferenced data-sets. Also the stereo properties of the photo-sets are used
to generate DEMs. For the exterior orientation, ground control points are measured
in the area with differential GPS in order to determine geographical coordinates of
identifiable features in the photos. The absolute accuracy of the resulting ortho-photos
can not be better than the ground control point accuracy. Section 4.1.1 goes into the
details of the GCP accuracy including some advice for future GPS campaigns . Section
4.1.2 shows the results of the DEM generation from the photos and the comparison
of those relative to the Lidar DEM. The computed ortho-photos are compared with
focus on the landslide activity and potential influence factors in Section 4.1.3. Finally
the shortcomings of the method and its implications for future works are discussed in
Section 4.1.4.

4.1.1 Ground control point accuracy

The ground control points (GCPs) are measured using a differential GPS from Ashtech.
Solutions from the raw data are computed with “Ashtech Solutions”. The method is
described in Section 2.2.3 and Figure 2.9 illustrates the GPS-network which is used

107
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to calculate the coordinates of the GCPs. The accuracy of the derived GCP-locations
depends on the reference stations used to calculate the solution. To estimate the influ-
ence of the used reference stations, different solutions are compared using an increased
amount of reference stations. Figure 4.1 gives an overview of these solutions. Focussing
on the chart (a) in that figure, it can be observed that (1) using differential GPS in-
creases the accuracy at least one magnitude by comparing the raw positions with the
solutions using reference stations (column 2, 3). This is why differential GPS is used in
the first place. (2) The vertical precision (c) is about 5 times lower than the horizontal
(a). But this seems to be true even when using the local permanent GPS-station (3rd
column). (3) Even when reaching decimetric average accuracy (3rd column in (a) and
(c)), outliers can still be erroneous by 2 m (3rd column in (b) and (d)). (4) Calculating
the same solution with and without precise orbit files (POF), which is not shown in
the figure here, the accuracy increased only by about 14 %.

Overall it should be stated that this accuracy assess only gives an idea of the increase
in accuracy using different reference stations. Due to missing direct measurements
of precisely known positions or repeated measurements of the same points (e.g. on
different days) the absolute accuracy is inaccessible. It should be part of every GPS
campaign in order to assess the accuracy. Also greater attention should be given to
the local reference station (here REF1). It should have a more than usual good free
view to the sky as it needs not to see only as much satellites as possible, but also the
exact same satellites as the rover station is seeing during its measurement. During the
calculation it took out that even permanent GPS stations far away (>100 km) are still
good to increase accuracy of the absolute coordinates and should be included in the
solutions. If the local reference station is fine, one permanent station with precisely
known coordinates seems to be enough. On the other hand precise orbit files (POF)
do not increase the accuracy a lot and can be ignored when looking for decimetric
precision.

4.1.2 DEMs from stereo photos

In order to quantify the removal of material through time, 2 DEMs are calculated from
the overlapping aerial photos of 1970 and 2003 for the headscarp area of Harmalière.
The date 2003 is chosen, because it is the nearest available photo-set for the comparison
with the Lidar data of 2006. The photo-set of 1970 reveals the best quality concerning
resolution, sharpness and contrast before the collapse of Harmalière in 1981. The DEMs
of the aerial photos are computed using the software Geomatica Orthoengine in version
10.1.3. Figure 4.2 (top) shows the shaded relief representations of the three DEMs. The
Lidar DEM is the vegetation-filtered DTM of section 3.2.2. Besides the vegetation the
shaded DEM of 2003 (b) does not show morphological differences to the Lidar DTM of
2006 (a). In contrast, the 1970 DEM shows some major artifacts of the processing and
the absolute quality is questionable. However, it shows the still existent landslide body
in place before the collapse of 1981 along the main mud-slide channel at Harmalière.
Interestingly, the left and right flanks of that channel are already foreshadowed as
vague linears in the DEM of 1970. The artifacts are due to false-matching between the
stereo pairs, which leads to positive and negative peaks in the DEM. The difference
between the 2003 DEM and the 2006 Lidar DTM (d) is dominated by the appearance of
vegetation (blue). This is unavoidable due to the principle of stereo-photogrammetry
which always includes the vegetation. In areas without vegetation the difference is
below 0.5 m (light green). The difference between the 1970 DEM and the 2006 Lidar
DTM (e) shows the huge loss of material from the headscarp all the way down to the
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Figure 4.1: Ground control point accuracies of different differential GPS solutions. Each
chart contains 4 columns. The 4th column represents the solution using all available GPS-
reference stations and is considered to be the best. The charts show the distance relative
to this “best” solution. So it is always zero for the best solution itself in the 4th column.
The 1st column represents the raw positions without being processed. The 2nd column is
the solution if only the local temporal reference station (REF1) is used which was installed
8 hours parallel to the GCP measurements. The 3rd column shows the solution using in
addition a local permanent GPS-station (CREF) and precise orbit files (POF). For the 4th
case another local permanent station and a permanent station from the RENAG-network
are added to the solution. See Section 2.2.3 for details.
The comparison is divided in horizontal (xy) and vertical (z) directions. The left charts (a,
c) show the average distance of the GCP-positions from the “best” position. The right charts
(b, d) show the maximum distance, which is in fact the worst case of all GCPs. The charts
are discussed in greater detail in Section 4.1.1.

south along the main mudslide channel. But, beside the small artifacts for example
seen in the lower left corner as small cones in (c) and as red dots in (e), an even larger
systematic error appears. The ridge at the top of the figure (e) should be more or
less the same between 1970 and 2006 but shows positive difference up to 30 m. The
cause for this huge error could not be identified, but is probably due to a wrong (or
imperfect) calibration report or an insufficient set of GCPs. Due to those gross errors
a reliable mass-balance can not be calculated.

Figure 4.2 shows the extracted DEMs and their difference to the Lidar 2006 DEM

4.1.3 Ortho-photo comparison

All photo sets from 1948 up to 2003 are orthorectified using the IGN50-DEM (A.4)
with its relative low resolution of 50 m. Full page prints of the ortho-photos can be
found in the appendix in Section A.1. A summary of the landslide activity in the
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Figure 4.2: Shaded relief maps of the headscarp from Harmalière derived from (a) the
Lidar (2006) as reference, (b) aerial photos of 2003 and (c) aerial photos of 1970. Below the
differences between the Lidar DTM and the DEMs of the aerial photos, (d) for 2003 and (e)
for 1970. Negative values in the differences should be related to loss of material and positive
values to accumulation of material.

last decades is already given in Section 3.1.3 including Figure 3.8, which quantifies
landslide parts of higher activity based on the classification of denuded areas in the
ortho-photos. The main statement here is the higher activity of Harmalière in contrast
to Avignonet in the last decades. Harmalière shows activity in 13 - 20 % of its area on
all photos from 1948 to 2003 and Avignonet only about 3 %. Additionally the ortho-
photos are qualitatively analyzed with regard to landslide activity and landuse change
and the main observations from every photo are listed in Table 4.1. The findings will
be included in the discussion about the landslide kinematics at the end of this chapter
in section 4.4. A direct extraction of displacements using cross-correlation techniques
could not be done due to insufficient accuracies of the computed ortho-photos. The
numerous reasons are presented and discussed in the following section.

4.1.4 Discussion

Aerial photos with stereo-coverage are processed to obtain DEMs and Ortho-photos
for the years 1948, 1956, 1970, 1978, 1985, 2001 and 2003. The DEM from 2003 is
fairly accurate, but DEMs from older photos contain major errors and are only use-
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between landslide activity landuse change

1948 - 1956 activity in lower Harmalière urbanizing in N Avignonet
1956 - 1970 increased activity in S Avignonet deforested channel in Harmalière

filling of Monteynard lake
1970 - 1978 activated scarps in upper Harmalière urbanizing in S Avignonet

increased activity in S Harmalière
1978 - 1985 major event in 1981 at Harmalière further urbanizing in S Avignonet
1985 - 2001 Harmalière headscarp reaches Avignonet

continues activity in Harmalière
2001 - 2003 two small landslides E and W

of the main lower Harmalière flowpath

Table 4.1: Summary of observations derived from the aerial ortho-photos between 1948 and
2003.

ful for a coarse qualitative analysis. Ortho-photos are produced using a DEM with
50 m resolution. The final resolution of the photos is about 0.5 m as its best, but
the positional accuracy varies by several meters and therefore is inadequate for direct
displacement measurements. In order to obtain an overview about the activity over
the last decades and environmental changes like land-use change or constructions the
described method of deriving ortho-photos using a general DEM is fast and sufficient.
Also photos without a proper calibration-report are treatable at this level accuracy.
Landslide features like scarps, larger cracks and exposed soils can be mapped from the
ortho-photos or with the help of manual stereo-views using stereoscopes or equivalent
computer-software. However, the initial objective of extracting displacements directly
from the ortho-photos using cross-correlation techniques could not be reached, because
the positional errors are too large of the derived ortho-photos in relation to the ex-
pected displacements. The following problems are identified in the processing chain
and improvement strategies are proposed for each:

1. Missing or incomplete calibration reports leading to higher inaccuracies due to
distortions of the images coming from the camera and lens construction. This
problem is amplified by the fact, that older photos usually contain higher distor-
tions, due to more imprecise manufacturing techniques in the past, and are more
often missing proper calibration reports. A strategy to derive satisfying calibra-
tion parameters could be to use photos of the same acquisition-flight (using the
same camera and lens) which cover stable areas. By using a high-resolution DEM
of that area and a well distributed set of control points (coming from a recent
georeferenced ortho-photo or GPS measurements in the field) the calibration pa-
rameters could be estimated. This would also deliver a good estimation of the
expected accuracy in the target region.

2. At the step of the DEM generation from the stereo-photos, accurate ground
control points (GCPs) are needed. The distribution of those ground control points
should include points from the whole elevation range inside the images. This is
challenging in the region of Avignonet and Harmalière, because the majority
of areas below the plateau are potentially unstable and stable points on the
bedrock near the lake are hard to identify on the photos due to the filling of the
Monteynard lake and followed lake-level fluctuations. However, by starting the
computation of DEMs and ortho-photos with the most recent ones and continuing
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step by step to the next older ones, additional or different GCPs can be extracted
from a set of photos and used in the next older set. This would not need to
measure recent GCPs in the field which are recognizable on older photos, but
would add the positional error of every step in between.

3. It should be highlighted that sharing a DEM or GCPs between different dates
inside potentially unstable areas is necessary to avoid, as otherwise the displace-
ments would be already computationally eliminated or amplified in the ortho-
rectification process. However, tie-points between the individual photos of the
stereo-pair from one date should cover the whole area and especially the unstable
areas. As one can see, this already exposes a methodical weakness, because of
the lack of a direct positional control inside the unstable areas in the past.

4. Another unavoidable shortcoming is the presence of vegetation in the photos.
First simply because of the highly changed texture when looking from different
angles on trees. This leads to mis-matching of corresponding points in the stereo-
pairs and therefore to errors in the DEM and causes mis-matching again in the
displacement extraction from the ortho-photos. And secondly, even if the match
in the stereo-pairs is correct, the measured height will be the top of the vegetation
(or buildings) and lead to high distortions at that point during the ortho-photo
generation. This could be minimized by filtering the DEM from small peaks or
should at least be masked out in the final map of displacements as those points
will be inaccurate. This problem only applies if the displacements to be measured
are at the same scale or shorter than the height of such obstacles (up to 10 m for
trees and houses), which is the case in the actual study area.

5. The next issue when extracting displacements from aerial photos are the change
of textures due to seasons and landuse change. For example some agricultural
fields are completely changing colors (or brightness) due to changing cultivation
(e.g. type of crop, state of harvesting). Therefore it would be more suitable to
use derivatives of the images instead of the original ortho-photos. This could
be for example the absolute gradient of brightness, which would highlight the
edges of objects and be more independent of the actual colors. Or even more
consequently the shapes could be extracted as abstract vectorized objects and
the changes analyzed between the objects extracted from different dates.

A good starting point for further improvements of displacement extractions could
be the software Cosi-Corr1 and the related paper (Ayoub et al., 2009) which deals with
displacement extractions from aerial photos.

1http://www.tectonics.caltech.edu/slip_history/spot_coseis/index.html

http://www.tectonics.caltech.edu/slip_history/spot_coseis/index.html
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4.2 Lidar DTM comparison

In opposite to Section 3.2 which describes the static view of the DTM, this section is all
about the information extracted from two DTMs of different dates. In Section 4.2.1 a
basic comparison is done by looking at the height differences between the DTMs. This
already gives an overview of the overall activity of the landslides and the most active
regions. But it can not determine block movements, especially if they are parallel to the
slope showing only minimal height differences. Therefore the two DTMs are accessed
by cross-correlation techniques to extract surface movements. For that, first some
parameters are determined by some statistical tests in section 4.2.2 before calculating
the displacements on the whole area and focussing on key-regions of the landslides in
section 4.2.3. Finally the advantages and limitations of the method are discussed in
section 4.2.4.

4.2.1 Height difference

In order to calculate the height differences, the Lidar DTMs of 2006 and 2009 with a
resolution of 2 m (from Sec. 3.2.2, see Fig. 3.19) are limited to their overlapping area
and then the older one is subtracted from the younger, so that loss of material will give
negative results (blue) and accumulation of material will be positive (red). The map
of the height difference is given in Figure 4.3. From that difference map the following
observations can be made:

1. There is no significant vertical offset between the two Lidar datasets. The differ-
ence is basically everywhere about zero.

2. There seems to be a dependency of the slope orientation. N-facing slopes are a
few decimeter lower than S-facing slopes. It seems to be due to a small global
offset in N-S direction and will be better determined in the next section using
cross-correlation techniques.

3. Some higher positive and negative artifacts are shown along the borders of the
data coming from interpolation effects of low density areas and different lake
levels of the artificial Monteynard lake at the times of acquisition.

4. Three larger movements in Harmalière (a, b, c) and one in Avignonet (d) charac-
terized by pairs of adjacent blue (material loss) and red (material accumulation)
spots. The maximum height differences are no more than about 2 m.

5. A larger spot of negative difference appears on the plateau at the coordinates N
6430700 E 910200 due to the data-hole in the 2006-Lidar dataset at this area,
which can be seen in the point-density map on Figure 3.13.

6. There are some small areas with high differences along the steep cliff, which is
the E limit of the compacted alluvial layers. It could be due to real loss of
material (for the blue parts), filtering difficulties of vegetation along the edges or
shadow-effects from the measurements.

Conclusively, the interesting outcome of the map are the non-zeros areas inside the
landslides. These spots (a-d) are shown at larger scale in Figure 4.4 together with
representative cross-sections parallel to the slope.
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Figure 4.3: Height difference between the 2006 and 2009 Lidar DEM
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Figure 4.4: Height difference between the 2006 and 2009 Lidar DEM at the zoomed region
indicated in Fig. 4.3 and a representative profile for each region parallel to the slope from
the top (T) to the bottom (B).
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R1 contains the largest sign of activity of both landslides affecting an area of about
100x150 m in the upper part of Harmalière near the headscarp. It is characterized
by an upper part of material deficit and a lower part of material accumulation.
The profiles from both DEMs are very similar suggesting an almost horizontal
block movement of about 2 m in SE direction. This makes that area most suitable
to be analyzed by cross-correlation techniques of the next section, which will give
a better spatial characterization of the movement of that block.

R2 contains a small area of about 40x40 m inside Harmalière near the headscarp. It
shows a spatially narrowed upper area of material loss with an adjacent slightly
larger area of deposition downslope. The profiles of both DEMs are very different
and therefore can not be mainly related to a block movement. A simple collapse
of a part from a scarp with its directly deposition below seems more likely. The
transportation distance is about 30 m.

R3 in the SW of Harmalière is situated at the headscarp of a sub-slide inside Har-
malière facing E. This sub-slide is about 500 m long before reaching the main
track of Harmalière and about 100 m wide. The dissimilarity between the pro-
files of the DEMs suggests also a fail at the edge of this scarp with a direct
deposition at the scarps foot. However, the N-S elongated shapes of the blue and
red spots indicate multiple smaller events along the headscarp of this sub-slide.

R4 is the only area in the Avignonet landslide showing some major height differences.
It is situated in the S of Avignonet half way between headscarp and toe facing
towards NE. It shows loss of material along a scarp of 150 m length (blue at “T”)
and gain of material near the drainage channel 150 m downwards the scarp (red
at “B”). In the middle of the profile, parallel to the scarp is a little ridge of 3 m
height. Unlike the former cases (a)-(c), the flow of material here is not obvious.
Either the material of the scarp is transported and spread superficially towards
the drainage channel or there is an underlying block-movement which can not be
seen as height differences. The small ridge could be a highly eroded back-tilted
block like the ones near the most active Harmalière headscarp.

As the height-difference is a quite limited tool to assess the full kinematics of the
landslides from DEMs, further details about movement directions in the 3D-space are
obtained by cross-correlation techniques described in the following section.

4.2.2 Parameter tests for Lidar displacements

The quality or even the ability of getting displacements from multi-temporal DTMs
by feature-matching techniques depends highly on several parameters like grid resolu-
tion, kernel size, search area, point density, terrain type etc.. In order to choose the
best parameters and estimate the accuracies of the results, a few tests are made and
described in the following sections before coming to the results of the whole study site.
First, the meaning of point-overlapping is defined and examined together with the in-
fluence of the grid resolution on the quality of results in section 4.2.2.1. At next the
dependency on kernel size and search distance is assessed in section 4.2.2.2 followed by
a view on sub-pixel precisions in relation to upscaling factors in section 4.2.2.3. At last
the dependency on terrain types and in the computation included point cloud classes
are explored in section 4.2.2.4.
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(a) 2006 (b) 2009 (c) overlap

Figure 4.5: Example of calculating the point overlap. (a) and (b) represent two small areas
of 20x20 m from the two Lidar sets. The small black dots show the locations of the available
points from the Lidar-point cloud. The shading shows the interpolated surface through this
points on a regular grid with 0.5 m resolution. At the grey pixels the kernel is well defined,
the white areas are only interpolated. (c) represents the overlay of (a) and (b), showing the
pixels which are well defined in both kernels in black, pixels which are only well-defined in
one of the kernels in grey and pixels which are only interpolated in both kernels in white.
The actual point overlapping is the percentage of black in the whole grid, here 24 %.

4.2.2.1 Testing point-overlapping and grid resolution

Before the calculation of the cross-correlation between two kernels, they need to be grid-
ded from points of both datasets. The matching quality decreases necessarily if the
two kernels are not well defined by the points from which are they interpolated. To de-
scribe the quality of a match regarding this problem, the point-overlapping is computed,
which depends on the point distribution and grid resolution. The point-overlapping is
the number of pixels well defined in both kernels at the same location in relation to
all pixels of the kernel. “Well defined” means that the area of a pixel contains a point
from the original Lidar-point cloud. Figure 4.5 shows an example for the calculation of
the point-overlapping. As mentioned before, the point-overlapping depends not only
on the point-distribution, but also on the grid resolution. A higher resolution result
in a lower chance that pixels are well-defined in the same location in both kernels. In
order to test how the point-overlapping decreases with higher resolutions and if this has
an influence on the displacement detection quality, displacement by cross-correlation
is computed at 32 locations with known displacements from GPS-measurements (see
dataset A.5). 5 GPS-locations are outside the Lidar-coverage and not used. As the
GPS-dataset ends in 2006, the average annual velocity is used and multiplied by the
timespan between the Lidar-sets (2.4 years) to derive GPS-displacements comparable
to the displacements derived from the Lidar-sets. This assumes a constant movement of
the landslides. The influence on the resolution test here is certainly very low, because
the majority of the GPS-displacements is below the general Lidar-accuracy (≈10 cm).
The influence of the grid resolution on the point-overlapping and displacement error
is shown in Figure 4.6. The test reveals that the determination of the displacements
is better with higher resolutions, but is getting worse again with too high resolutions
below 0.4 m pixel size (Fig. 4.6a). Also the point-overlapping decreases rapidly at pixel
sizes below 0.8 m and becomes lower than 10 % at pixel size below 0.2 m (Fig. 4.6b).
Both figures suggest to choose a grid resolution around 0.5 m for best results.
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Figure 4.6: Test of the influence of grid resolution on the accuracy of displacements using
GPS-displacements as reference (see dataset A.5). 32 averaged GPS displacements inside
the Lidar-coverage are used. (a) Point overlap at the 32 GPS-locations with kernel sizes of
65x65 m. Up to a resolution of 0.8 m the majority of locations show a good point-overlapping
with more than 80 %. At a resolution of 0.4 m the overlap is still between 20 and 60 %. Higher
resolutions lead to point-overlapping below 10 %. (b) Average displacement error (relative
to the GPS-displacements) using cross-correlation with 64x64 m kernel, 6.4 m search radius
and 10 times subpixel precision. The displacement error decreases with resolutions up to
0.4 m and increases again when using finer resolutions.

4.2.2.2 Kernel size and maximum search distance

This test is supposed to clarify the choice of kernel size and maximum search distance.
The advantage of smaller kernel sizes are faster computation and better representation
of variabilities of the displacement vectors, but larger kernels are less prone to mis-
matches. Similarly short maximum search distances result in faster computation and
less mismatches, but the search distance need to cover the expected displacements of
the landslide. If the expected displacements are very high, a pyramidical approach with
higher search distances at lower resolutions in a first step and an iterative “focussing”
at higher resolution with shorter distances can help to avoid mismatches. Figure 4.7
shows the mismatching error for 32 locations as a function of kernel size and maximum
search distance. The displacement errors are obtained using the GPS-displacements at
these locations as reference, which is already described in the previous test.

As expected, larger kernels and shorter search distances lead to smaller mismatching
errors. On top of that it seems to exist a minimum kernel size per search distance above
which a further increase of the kernel size does not lead to higher matching quality,
e.g. 21 m kernel size for search distances of 5 and 10 m (no lower values to the right
of those values in the figure). As the figure only shows an average dependency, the
kernel size should be chosen a bit larger to be safe. The visual inspection of the shaded
DTMs from the Lidar-sets suggest that a search distance of 5 m should be enough for
the whole area. As a conclusion of this test the kernel size for this search distance
should be not smaller than 21 m. The test was done with grid resolutions of 0.5 m.
When using other resolutions, the kernel size should be scaled by the same factor, to
keep about the same grid-size (here 41x41 pixel).

4.2.2.3 Upscaling and subpixel precision

In order to derive displacements with a higher precision than the grid resolution (i.e.
0.5 m) the peak in the cross-correlation matrix need to be defined with sub-pixel pre-
cision. This is achieved by upscaling the cross-correlation matrix by the factor “usfac”
before obtaining the maximum peak for the best fit. For test purposes the correlation
was done using the same Lidar-set as reference and search target, which means the



4.2. LIDAR DTM COMPARISON 119

Figure 4.7: Average mismatch in meter of displacements using different kernel size and
maximum search distance with cross-correlation at 32 locations of GPS-points (Sec. A.5).
The grid resolution is 0.5 m. Small kernel sizes lead to higher mismatches especially in com-
bination with high search distances. For every maximum search distance exists a minimum
kernel size above which the quality does not further increase.

displacement should always be zero. If the difference between the computed peak-
position and the center (= no displacement) is more than 0.5 pixel, then the upscaling
has not gained any increase in precision. Figure 4.8 shows the horizontal displacement
mismatch using cubic- and spline-interpolation of the cross-correlation matrix with
different upscaling-factors. As there is almost no difference between the interpolation
methods (left column vs. right column), only one column is described here. 66 loca-
tions in an area of 1x2 km in the center part of the area covered by the Lidar-data are
used with kernel sizes of 10x10 pixel and search radii of 2 pixel. The matching starts
with no upscaling (usfac = 1) at a grid resolution of 0.5 m (first row). All obtained
displacements are zero. A mismatch would show up at 1 or even higher, as without
upscaling there is no subpixel precision. For the next higher upscaling-factor (usfac =
2, 2nd row) the used grid resolution is 1 m in order to look for the same absolute preci-
sion of 0.5 m as in the first case and not having the problem of insufficient point-cloud
densities when using higher grid resolutions. Almost all obtained displacements are
correct at zero, only in one case a false mismatch leads to an error of 0.5 pixel, which is
the limit of accuracy gain. For upscaling-factors of 5 and 10 the majority of results is
still below 0.5 pixel, meaning a gain of information. For higher upscaling-factors (last
row) in most cases the mismatch is higher than 0.5 pixel and there fore worse than
without upscaling and not useful. It should be mentioned that for the real case of
matching two different Lidar-sets the mis-match will be worse, so that a factor of 10
can be seen as the upper limit for useful upscaling.

The conclusion of this test is, that there is no use in upscaling factors higher than
10 and the interpolation method (bicubic or spline) has no influence.

4.2.2.4 Terrain type and classification classes

Another question for the correlation process is which classification classes of the point
cloud should be used. Table 4.2 shows the number of points per class for the two Lidar
sets. The main classes are ground and low, medium and high vegetation. The class
buildings plays a minor role looking at the counts, but could be important in villages
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Figure 4.8: Test of sub-pixel precision with the ideal case of two identical Lidar-sets at 66
locations with kernel sizes is of 10x10 pixel and search radii is 2 pixel. The grid resolution
varies with the upscaling factor usfac starting at 0.5 m. The histograms showing the number
of obtained displacements per mis-match distance. A mismatch of more than half a pixel
means no gain of precision against no upscaling. At usfac = 10 the majority of displace-
ments is still below 0.5 pixel, meaning a gain of precision. At usfac = 20 the accuracy of
displacements are mainly worse than 0.5 pixel, meaning no gain of precision.
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class las id 2006 2009

point sum 36.15M 26.21M
=100 % =100 %

unclassified 1 0.002 % 0.003 %
ground 2 58 % 67 %
low vegetation 3 23 % 11 %
medium vegetation 4 7 % 7 %
high vegetation 5 12 % 13 %
building 6 0.2 % 0.6 %
low point (noise) 7 0.6 % 0.6 %

Table 4.2: Overall number of points and percentage per class of the classified Lidar point
clouds from 2006 and 2009. “las id” is the class identification number of the standard file
format “LAS1.2”.

because they do not change as much as vegetation over time. The question of classes
depends on the terrain type. Four types should be considered:

T1 active landslide parts with rough terrain and minor vegetation (e.g. near the
headscarp of Harmalière),

T2 agricultural areas with smooth surfaces and minor vegetation (e.g. the upper
parts of Avignonet and the plateau),

T3 forested terrain (e.g. the low areas of Avignonet),

T4 villages (e.g. the Mas d’Avignonet in the S of the Avignonet landslide or the
camp-site in the northern part of Avignonet).

For each terrain type the displacement method is tested at 16 locations using different
sets of classes. The points are equally distributed in each terrain (Fig. 4.9a), but at
T4 the points are centered on houses. In general the advantage of using more classes
is a higher point-cloud density and more trackable terrain-features. The disadvantages
are vegetation changes over time and distortions due to changed scan-angles between
the two Lidar-sets. The following combinations of classes are tested (in brackets the
las ids of Table 4.2):

C1 [ 2 ] ground only to avoid distortions from vegetation,

C2 [ 2 3 ] ground and low vegetation in case the low vegetation class includes essential
parts of the ground,

C3 [ 2 5 ] ground and high vegetation to have larger trackable features without the
underlying noise of lower vegetation,

C4 [ 2 3 4 5 6 ] all classes including buildings,

C5 [ 2 6 ] ground and buildings only for the villages (T4) to have more stable trackable
objects without the noise of vegetation.

Figure 4.9a shows a map with the test-areas for each terrain type. As there are no
control displacements available at all terrain types, a different approach is used to an-
alyze the quality of the derived displacements. The locations at each terrain type are
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chosen close together assuming minimal displacement changes between them. Then the
standard deviation of the 16 derived displacements is computed for each terrain-class
combination. Feasible displacements would be more or less in one direction and there-
fore would result in a low standard deviation, whereas mismatch errors are expected
to be unidirectional and therefore would lead to higher standard deviations. The in-
clusion of a variable amount of classes influences the point density in both Lidar-sets
and therefore the point-overlap percentage for each displacement extraction. The link
between terrain type, class-set and point-overlap is shown in Figure 4.9b. Surprisingly
at T1 there is a big difference between the point-overlap using C1 or C2. That means
many points in this rough terrain are classified as “low vegetation”, either because of
real low vegetation or just because of the rough terrain causing the procedure to clas-
sify slightly elevated points from small scarps as vegetation. At T2 in smooth terrain
without much vegetation the differences between the class-sets are insignificant. In the
forest at T3 the overlapping without the high vegetation (trees) is quiet low, because
the canopy of the trees is hiding the ground from the laser. In the village at T4 the
increase of overlapping when including buildings is surprisingly low. This could be due
to miss-classification of buildings as medium or high vegetation, especially if there are
trees and houses close by.

Figure 4.9c shows the standard deviation of the derived displacements for each set
of 16 points. Some observations can be made from that graph: (1) The error in smooth
terrain is about one third higher than in the other terrain types. This is expected due
to the nature of correlation. (2) Except for the smooth terrain, the inclusion of the
low vegetation class increases the quality of displacements, certainly due to the point
density increase without heavily altering the morphology. (3) Using C3 (ground +
high vegetation) the quality is everywhere decreasing or equal compared to C1. (4)
Using all classes (C4) brings only some advantage in the village, probably due to the
fact, that many building-points are miss-classified as high vegetation. (5) The building
class (C5) should only have an effect in the village, as in all other terrains it should
be the same as using the ground class (C1) only. The forested terrain however shows
a major error when using C5. After looking into the details it took out this is due to
some building-points in one of the Lidar-sets resulting in a very high mismatch at one
location. So again, the problem seems to be the miss-classification between building
and high vegetation. Also the high error for C5 at T4 in the village supports this
assumption. Miss-classified building-points would highly alter the shape of buildings
when only using the remaining building-points. But also shadow effects due to the line
of sight during the laser-scan could have a major influence of the shape of buildings
after gridding.

In conclusion the best choice seems to be C2 (ground + low vegetation) in all but
the smooth terrain T2, where C1 (only ground) is slightly better.

4.2.3 Lidar-displacement results

4.2.3.1 Global shift

As conclusion from all previous tests the following parameters are chosen for the com-
putation of the displacements:

• grid resolution 0.5 m

• kernel-size 20.5x20.5 m = 41x41 pixel
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Figure 4.9: Test of influence of included point-cloud classes on the quality of extracted
displacements at different terrain types. The displacements are calculated at 16 points per
terrain type at resolution 0.5 m, kernel size 41 m and search distance 5 m. For a detailed
description of the terrain types and class-sets see the text. (a) Shaded relief map of the DEM
(using all classes) showing the tested locations at the different terrain types. (b) Average
point-overlap per terrain type and class-set. (c) Standard deviation of displacements per
terrain type and class-set.

• maximum search radius 5 m = 10 pixel

• upscaling factor of 10 for the cross-correlation matrix (bicubic interpolation)

• the resulting resolution for the derived displacements is therefore 0.05 m

• used point classes are ground + low vegetation

• point-overlapping is calculated at 2 m grid-resolution

In a first attempt, displacements are calculated at points in a regular grid with 10 m
spacing covering the whole Lidar-set in order to look for a global shift between the
two data-sets and identify problematic areas. The absolute horizontal displacements
are shown in Figure 4.10a. The yellow-red areas inside Harmalière seem to be plausi-
ble, also the S and E of Avignonet contain larger homogeneous areas. In the contrary
the upper parts and especially the plateau show major irregular patterns, most likely
due to erroneous displacements. In order to obtain a global shift, if there is any,
a two-dimensional histogram of the E-W (dx) and N-S (dy) directions is computed.
Displacements from mismatches are assumed to be random and real landslide displace-
ments are also multi-directional due to the different slope angles. In the case of no
global shift the most often displacement would be at dx= 0 m, dy= 0 m. The global
shift can be obtained by finding dx and dy at the highest peak in the 2D-histogram,
which is shown in Fig. 4.10b. It can be seen that the peak is near the center of the
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diagram. Figure 4.10c shows a zoomed 10-times upscaled spline-interpolated version of
that peak, revealing the presence of two close-by peaks. The highest is at dx= −0.07 m
and dy= −0.27 m which is assumed to be the global shift between the two Lidar-sets.
The accompanying vertical shift is obtained from the histogram of the vertical com-
ponents of all displacements within a radius of 0.05 m around that horizontal global
shift (Fig. 4.10d). The highest peak here is at -0.15 m. The sense of those values for
the global shift from the 2006 to the 2009 Lidar-set is towards SSW and downwards.
This shift is already incorporated in Figure 4.10a. All following results are corrected
by that shift.

Another interesting aspect of the displacement distribution in Figure 4.10b is the
presence of displacements covering the whole possible range of 5 m in all directions,
which is the maximum search distance. Those outliers are assumed to be the mis-
matches, mainly occurring on the plateau W of Avignonet. Furthermore, the shape
of the displacements-cloud has two condensed indentations, one elongated towards SE
(dx= 2, dy= −3) and another more indistinct one towards ENE. They can be explained
by the slope direction at the main moving blocks seen on the displacement map (Fig.
4.10a). The higher displacements towards SE would correlate with the SE facing slope
of the block in the NW of Harmalière and the higher displacements towards ENE would
correlate with slope direction at the moving parts in the SW of Harmalière and the S
of Avignonet.

4.2.3.2 Quality filtering of displacements

Even if all parameters chosen carefully taking into account the previous tests, the ob-
tained displacements will always include wrong displacements due to mismatching. For
example in Figure 4.10a it can be seen that the displacements on the (most probable
stable) plateau in the NW are very chaotic (not only in absolute displacements as seen
in the Figure, but also in direction). In order to detect possible mis-matches the fol-
lowing quality measurements are obtained in parallel to the displacement computation:

sharp
Describes the sharpness of the match, or rather the sharpness of the peak in
the correlation matrix (CCM). This is defined by the difference between the
correlation coefficient (CC) at the peak and the maximum CC on a circle with
radius 2 pixel around the peak divided by the radius of 2 pixel. This gives the
worst sharpness of the peak of all directions. If “sharp” is high, then the peak is
sharp and if it is low, the peak is blurred. In the regular case of using an upscaled
CCM , “sharp” is derived from the upscaled CCM using a radius of 2 times the
upscaling factor, so that the sharpness is comparable between the upscaled and
non-upscaled CCM.

stddz
Describes the change of morphology of the matched kernel. It is defined by
the standard deviation of the height differences between the matched kernels.
Because of subpixel precision, the reference kernel is re-gridded using the original
point cloud shifted by the computed horizontal displacement. This is the same
principle used for deriving the vertical component, which is the average height
difference between the matched kernels. If “stddz” is near zero, the morphology
of the kernel has not changed except for the overall displacement and if “stddz”
is high, the morphology has changed irregular.
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Figure 4.10: Global shift between the 2006 and 2009 Lidar-sets. (a) Map of absolute hori-
zontal displacements in [m] between the two Lidar-sets derived at every 10 m using 0.5 m grid
resolution, 41x41 m kernel-size, 5 m maximum search distance and cross-correlation matrix
upscaling by 10. The result includes a global shift of about -0.07 m in x, -0.27 m in y and -
0.15 m in z in the sense that the 2009-Lidar is shifted SSW and downwards. (b) 2D-histogram
of all displacements in x- and y-direction without the correction of the global shift showing
the most frequent combination at the red peak near 0, 0. (c) 10-times upsampled peak of (b)
revealing 2 close peaks. The highest is at dx=-0.07 and dy=-0.27. This is assumed to be the
global shift. (d) Histogram of the vertical component using only solutions within a horizontal
displacement of 0.05 m of the global shift. The peak is at dz=-0.15 m and is assumed to be
the vertical global shift. Coordinates are in meter in Lambert93.
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ccmax
is the maximum correlation-coefficient of the correlation-matrix indicating the
matching quality between the kernel. It is somehow the same as “stddz” but less
useful because of the normalization of the cross-correlation. It can be near one
(perfect match) even if the difference between the matched kernels is high.

ell
describes the ellipticity of the peak in the CCM. As “sharp” is the worst sharpness
of all directions, “ell” is the ratio between the best and worst sharpness using the
minimal CC of the circle around the peak as described for “sharp”. In case of a
perfectly circular peak, “ell” is one. For increased ellipticity, “ell” will be higher.

pol
is the point-overlapping as described in Section 4.2.2.1. It is the percentage
kernel-area covered by points from both Lidar-sets. Low values are due to low
point densities and/or uneven point distribution. High values stand for well
defined kernels by the underlying point-clouds.

In order to sort-out displacement measurements of bad quality using these quality
measures, the most common problems for mismatching need to be understood. The
following list describes each type of problem and how this problem can be identified
using the quality measures.

P1 A low density of points will lead to smooth interpolated kernels, which can show
good correlation without meaning. In this case “pol” will be low and all other
measures are insignificant.

P2 Even with an average high point density the points can be distributed very ir-
regular inside the kernel area and lead to dissimilar kernels. This will also show
off in a low “pol” and all other measures will be insignificant.

P3 An insignificant morphology inside the kernel. The extreme example would be a
flat kernel which perfectly matches everywhere in the equally flat search area, but
the result has no meaning. In this case “sharp” will be low as well as “stddz”.
The other measures are insignificant.

P4 An invariant morphology in one direction, like a linear scarp, can lead to mis-
match in that direction. In this case “sharp” must be low too (in the direction of
the linear). “stddz” should be slightly higher as there is some variable morphol-
ogy involved. “ell” must be high indicating the un-isotropic matching quality. If
the ellipticity is high enough, the displacement perpendicular to the linear could
still be significant, e.g. the scarp movement down the general slope could be
extracted even if the movements to the sides remain unknown.

P5 A chaotic change in morphology between the two Lidar-sets. This could ei-
ther be due to a too small search distance or because the morphology is heav-
ily altered (erosion, irregular mass-movement, vegetation change, earthworks or
new/removed buildings if the relevant classes are included). In both cases the
kernel would just match the most similar morphology even if it is very different.
In this case “stddz” will be high and “ccmax” will be lowered. The other measure
are insignificant. As this case has a relevant geomorphological meaning it should
be distinguished from the other more technical problems and identified in the
displacement results.
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Figure 4.11: Flow-chart of the filter-strategy to sort-out mis-matched displacements derived
from the Lidar-data. “pol” is the point-overlapping, “stddz” the standard deviation of height
difference after the matching the kernels and “sharp” is the sharpness of the peak of the
cross-correlation matrix. P1-5 are the different problematic cases which lead to mis-matched
displacements. See Section 4.2.3.2 for a detailed description.

Figure 4.11 shows the resulting strategy to filter the derived displacements by quality.
As there is no need to separate P1 from P2, those cases can be identified by a low
“pol”. After sorting those out, a high “stddz” can be used to identify P5, the areas of
chaotic change. And finally P3 and P4, i.e. the fuzzy matches, can be identified by a
low “sharp”. In this study the possibility of deriving one-directional displacements as
described for P4 will be neglected.

In order to find the exact thresholds for the quality-filtering, the preliminary results
(displacements at every 10 m over the whole area) are analyzed. The histogram of
“pol” in Figure 4.12b reveals the majority of displacements are well founded on well
distributed points (at the used resolution of 0.5 m). Furthermore the map of the point-
overlapping from all derived displacements in Figure 4.12a shows that those problematic
areas are at the borders of the Lidar-coverage and some smaller parts in Harmalière due
to the partially low point-cloud density of the Lidar-set from 2009 (Fig. 3.13). As it is
not easy to separate the problem of mis-matching due to a lack of point-overlapping a
relatively conservative threshold of 80 % is chosen in order to exclude the areas of low
point-cloud density at the borders without “loosing” larger areas in Harmalière.

To find the reasonable thresholds for “stddz” and “sharp”, four different groups
of displacements are chosen, which exhibit the different problematic cases. Then his-
tograms of the quality-measures are shown for each group in order to determine the
thresholds. The displacement groups are:

Q1 (slow) Rough terrain with small displacements near the headscarp of Harmalière,
assumed to be the best conditions for displacement detection. Only displacements
below 0.2 m are considered. (count: 371 displacements)

Q2 (fast) Rough terrain with larger displacements near the headscarp of Harmalière
inside a larger moving block.These are more problematic conditions as the move-
ment is not completely rigid, but should not be sorted out by the quality-filtering.
Only displacements larger than 1 m are considered.(count: 244 displacements)

Q3 (chaotic) Rough terrain with chaotic change of morphology near the headscarp of
Harmalière. This location is R2 from Figure 4.4 and there already described as an
irregular movement. Only displacements larger than 1 m are considered. These
displacements are meant to represent Problem P5. (count: 28 displacements)
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Figure 4.12: Threshold determination for quality filtering of point-overlapping. The dis-
placements are derived using 0.5 m grid-resolution, kernel size of 20.5x20.5 m (41x41 pixel)
and search distance of 5 m (10 pixel). Point-overlapping is defined in Section 4.2.2.1. (a) Map
of point-overlapping (“pol”) from displacement extraction draped on the shaded Lidar-DTM.
The color-axis is restricted to higher “pol”s for better visualization. (b) Histogram of “pol”
showing the whole range values. (c) Horizontal displacements (dxy) versus “pol” showing
the probability of mis-matching (overexposed large dxy) at decreased “pol”. Coordinates are
in meter in Lambert93.
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Figure 4.13: Histograms of stddz and sharp of example-displacements in order to determine
thresholds for the quality-filtering.

Q4 (flat) Smooth terrain at the plateau W of Avignonet. Only displacements larger
than 1 m are considered. These displacements are meant to represent Problem
P3 (and therefore also P4). (count: 469 displacements)

Figure 4.13a shows the “stddz”-histogram for each displacement group. According to
the flow-chart (Fig. 4.11) at this step P5 needs to be detected, therefore the threshold
for “stddz” should separate Q1 and Q2 from Q3. Because Q2 and Q3 are overlapping
between approx. 0.3 - 0.5 m, a perfect threshold is not possible. The threshold is set
in favorite of Q2 at 0.5 m, meaning all displacements of Q2 are kept, allowing some
displacements from Q3 to “slip through”. The two reasons for this decision are due to
the weak representation of the Problem P5 by the displacement-group Q3. First, the
quantity of displacements in Q3 are very low (28) compared to Q2 (244), and second,
the kernel size of the displacement detection is relatively large compared to the area of
chaotic movement and therefore always includes “rigid” parts from nearby leading to
lower “stddz”. So the true displacements representing P5 are assumed to be at higher
“stddz”s. Finally Figure 4.13b shows the “sharp”-histogram for each displacement
group. The next step is to sort-out mis-matches due to flat areas (P3, P4) which
are represented by displacement-group Q4. As Q3 is already sorted out, a threshold
need to be determined to separate Q1 and Q2 from Q4. The threshold is chosen quite
conservative at 1.2 · 10−5 in order to avoid more mis-matched displacement at the cost
of a few good results in fast moving areas.

The final result of horizontal displacements after the quality filtering is shown in
Figure 4.14. There are still problematic displacements on the plateau, but beside of
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that some active spots can be observed in Harmalière and at least one in Avignonet
(red spots). They will be assessed in more detail in the next section. Also some chaotic
deformations could be classified (blue spots), two in Harmalière, several ones along the
lake and some at the cliff of the alluvial layers E and SE of Avignonet.

The following two sections will focus in more detail on the spatial distribution
of horizontal displacement vectors and the vertical component along profiles at the
Harmalière and Avignonet landslides.

4.2.3.3 Displacement vectors at Harmalière

Figure 4.15 shows the vector-field of the final displacements at the Harmalière landslide.
For visual purposes the original spacing was reduced from 5 m to 20 m. The length of
the displacements are highly exaggerated as the displacements are very small in relation
to the map extend. The scale of the displacement vector is shown in the upper left
corner. This is the absolute displacement between the two dates f the Lidar-campaigns,
which is 2 years and 5 months. The annual value can therefore be calculated by division
with 2.4. The scale of the map can be seen from the Lambert93-coordinates at the
map-frame, which are in meters. Displacements exposing a high difference of the
matched kernels (stddz > 0.5 m) are shown as blue dots. Displacement results with a
too low point-overlapping (pol < 80 %) or insignificant morphology (sharp < 0.8 ·10−5)
are shown as red dots. The purpose of this distinction is that red indicates a lack
of extractable information, which is a technical problem, but blue shows regions with
chaotic displacements (e.g. superficial mass-transport), which is an information coming
from the terrain.

From 95 % of the whole Harmalière landslide area displacements could be extracted,
1 % was classified as chaotic displacements and 4 % were untreatable. About 34 % of
the area show minor displacements below 0.2 m, which is about the accuracy of the
method. 73 % are still below half a meter displacement and only 8 % are above 1 m.
These higher movements are distributed in five smaller blocks.

Block at Z1 The largest displacements are seen at Z1 in Figure 4.15. This block is
about 100 m away from the NW-headscarp of Harmalière and moved perpendicular to
the headscarp towards SE. Figure 4.19 gives a more detailed view of that block with
displacement-vectors at every 10 m. The dimension of that block is about 200x200 m
and seems to be a few degrees rotated counter-clockwise. The vertical components of
the movement can be seen in the cross-sections in Figure 4.20. The profile P1 parallel
to the slope is shown in (a). The uppermost diagram shows the non-exaggerated height
profile with the movement vectors in the cross-section plane. The profile was computed
every 2 m, but only a few vectors are shown for better visualization. Interestingly the
vectors of the upper half of the block pointing slightly downwards into the ground and
in the second part slightly upwards. This could indicate a rotational block. The second
diagram reveals the full resolution of the derived absolute horizontal displacements. It
can be subdivided in 4 parts. The first 10 m do not show any movement. The next
80 m are moved by about 0.5 - 1 m. Then the displacements going up 2.5 m with a
peak movement of 3 m for about 120 m. Then the fast movement stops abruptly and
decreases to a fairly constant level of about 0.25 m. The 3 diagrams below illustrate
the dependency of some quality measures on the displacement and terrain. The cross-
correlation coefficient of the best fit (ccmax) decreases at the positions of highest
change in displacements. The standard deviation of the height difference (stddz) is
very similar (in an inverse sense) to ccmax, but a better measure, because of the
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Figure 4.14: Map of horizontal displacements (at 10 m spacing) of the whole area after
quality-filtering, draped on the shaded Lidar-DTM. Chaotic deformation (in blue) describes
areas, where the morphology has changed too much for proper displacement extraction.
Areas with insufficient point distributions of the two Lidar-sets are marked as grey. Black
areas are data-holes in either one of the Lidar-sets. Coordinates are in meter in Lambert93.
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independency of the search area. ccmax is always near one, depend on the correlation-
coefficients in the whole search area, due to the normalization of the cross-correlation.
So in later examples only stddz will be shown. As narrower the transition between
different displacements as higher will be stddz, because the non-uniform distortion
inside the kernel window (40x40 m) will increase the height differences. So the two
peaks in the stddz-diagram are caused by the transition zone into (at 100 m) and
back from (at 240 m) the fast moving block. The second peak of stddz goes up to
0.5 m which is the threshold to classify the displacement as chaotic. As this is at the
border of the highest displacements of the whole Lidar-coverage, it can be assumed
the threshold will not accidentally overtopped anywhere and is well chosen. The last
diagram, the ellipticity (ell) of the cross-correlation matrix, is mainly related to the
scarps. At a scarp the similarity is higher in scarp-direction than parallel to the slope,
leading to an elongated cross-correlation matrix. The diagonally cross-section (level) in
(b) shows that the moving block is slightly elevated by 3-5 m. From the corresponding
displacement-diagram (dxy) it can be seen that the transition of displacements between
the moving block and the surroundings is more smooth.

Block at P5 Another large area of co-directional displacements is located in the SW
of Harmalière at the profile P5 in Figure 4.15. The extend is about 400x300 m and
the displacements are directed towards east. In opposite to Block 1, the displacements
are not as parallel, but pointing towards the outlet at P5B of a small sub-basin, fa-
voring the presence of superficial movements (like a mudflow) prior to a larger rigid
block. A look to the cross-section in Figure 4.18a supports this assumption, as the
displacement-vectors are just following the slope. For a rotational block they should
look more like at Block 1, pointing downwards in the upper part and upwards in the
lower part. A translational block would require parallel displacements independent
of the slope direction. The displacement diagram suggests a division in two parts, a
smaller upper part from 25 m to 75 m and a larger part from 150 m downwards with
smoothly decreasing displacements towards the bottom.

Block at P6 Just south of Block 2, along the profile P6 in Figure 4.15, seems to be
a similar formation as in the previous case but smaller. This 300x100 m small valley
directed towards E is separated from the main Harmalière landslide by the bulge in the
north and is therefore not even necessarily part of Harmalière. The joining directions
of the displacement-vectors pointing to the outlet of the small valley at P6B and the
elongated shape of the slide, suggest again a more superficial mudslide as displacement
mechanism. The cross-section in Figure 4.18 supports this by the parallel direction
of the displacement-vectors to the slope. In addition, at the toe, the vectors pointing
upwards, which could be related to a build-up of material. The dxy-diagram shows
fluctuating displacements at the first 100 m, which is reflected also by the increased
stddz. The next 100 m are characterized by an increase of displacements from 1 m to
2 m in 3 steps. After a fast transition towards displacements of 0.5 m the movement
nearly stops towards the very end.

Block at P7 This Block is the area of fastest movements on the E-side of Harmalière.
It is an area of about 200x200 m stretching from the headscarp to the main mudslide-
channel of Harmalière. The cross-section in Figure 4.16a reveals displacement vectors
facing mostly horizontal and parallel, suggesting the presence of translational blocks.
The dxy-diagram shows variable displacements, with 0.5 m at the head, about 1 m
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in the middle part and two peaks reaching almost 1.5 m. The fastest movements at
the toe are related to the highest slope angle and the increased stddz at this point
describes a quite turbulent movement before an almost complete stopping inside the
main mudslide.

Block at P8 This block at the NE-border of Harmalière is about 150x100 m large and
is with displacements of 0.5-1 m the slowest of all blocks described in Harmalière. The
displacement-vectors in the cross-section in Figure 4.16b show displacements parallel to
the slope in the upper half and almost horizontal displacements in the lower half. This
suggests superficial movements in the upper part and translational blocks in the lower
part. The upward pointing vectors at the very end are at displacements about 0.2 m
and are therefore not very reliably. The dxy-diagram shows almost no movement, even
about 50 m downward the headscarp. Then parallel to an increasing slope-angle the
displacement goes up to 0.6 m at 80 m and after a short decrease smoothly up to nearly
1 m at the steepest point. At the end at 250 m, inside the main mudslide-channel, the
displacement decreases fast down to 0.3 m.

Another interesting area is the chaotic movement at profile P2. It is already identi-
fied as an irregular “falling” block from the height difference profile (R2 in Fig. 4.4) and
used for the determination of the stddz threshold to classify displacements as chaotic.
Figure 4.17 gives a detailed view to the quality measures (ccmax, stddz, ell) as an
representative example for such locations of chaotic displacements. The cross-section
(level) shows the regular displacement vectors in black and in blue the ones which are
classified as chaotic displacement due to their overtopping of stddz above 0.5 m (red
line in the stddz-diagram). At those blue points, it was possible to find a best fit inside
the maximum search distance (5 m), as all horizontal displacements (dxy) are below
that search distance, but this best fit contains such a different morphology from the
origin, that it is not even likely to be the same. A further discussion about the advan-
tages and disadvantages of the displacement extraction method and the significance of
the quality measures can be found in Section 4.2.4.

Finally the cross-section P9 shows the displacements along the main mudslide-zone
of Harmalière from the headscarp (P9T) down to the lake (P9B). The vector-field
in Figure 4.15 does not show any movement inside these zone, which is surprising
and not expected when looking at the geomorphology map (Fig. 3.21). The more
detailed cross-section in Figure 4.16c shows displacements (dxy) between 0.2-0.4 m.
The displacement-vectors in the cross-section (level) pointing upwards in the upper
half of the profile, but due to the low displacements of about 0.2 m, this is not reliable.
An explanation could be, as we include the “low-vegetaion”-class, a growth of low
vegetation, which raises the elevation and not altering the morphology very much. The
peaks of horizontal displacement at 850 m, 1100 m and after 1300 m are occurring at the
points where the profile crosses the incised stream. Together with the displacements
there also going in irregular directions, it could be just erosion effects of the stream on
its banks, which is than “tracked” as displacement.

4.2.3.4 Displacement vectors at Avignonet

Figure 4.21 shows the vector-field of horizontal displacements at the Avignonet land-
slide. The displacements are displayed with a spacing of 30 m and it should be high-
lighted, that the length of the displacement vectors are about 4 times longer relative
to the ones on Harmalière (Fig. 4.15). This is due to the overall lesser activity of
Avignonet and the smaller scale of display. The Lambert93-coordinates at the border
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Figure 4.15: Map of horizontal displacements (at 20 m spacing) of the Harmalière landslide
after quality-filtering. The displacement vectors are draped on the shaded Lidar-DTM. Blue
dots are points with chaotic displacements (stddz > 0.5 m) and therefore no meaningful dis-
placement. Areas with insufficient point distributions (pol < 80 %) or to smooth morphology
(sharp < 0.8) are marked as red dots. The region Z1 is shown in higher detail in Figure 4.19.
The red-lines are Profiles, which are shown on the following figures. “P” for profile, “T” and
“B” for top and bottom, “L” and “R” for left and right when looking uphill. Coordinates
are in meter in Lambert93.
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Figure 4.16: Profiles P7 and P8 at the E border of the Harmalière landslide and P9 along
the main mudflow channel. Locations are shown in Figure 4.15 on the left page. Note the
different scales of the displacement vectors due to different ranges of dxy.
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Figure 4.17: Profile P2 at the headscarp of Harmalière showing the variability of quality
measures at a location with chaotic displacements. Locations are shown in Figure 4.15.
Profile is from top (P2 T) to bottom (P2 B) along the slope direction.
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Figure 4.18: Profiles P5 and P6 in the SW of Harmalière showing displacements at active
regions. Locations are shown in Figure 4.15. Profile are from top (P5,6 T) to bottom (P5,6
B) along the slope direction.
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Figure 4.19: Zoom on horizontal displacements at the most active part of the Harmalière
landslide near the N-headscarp. The location is shown as Z1 in Figure 4.15 The red lines
are the locations of the profiles on the right page (Fig. 4.20). Coordinates are in meter in
Lambert93.
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Figure 4.20: Profiles P1 (top-down) and D1 (diagonally). Locations are shown in Figure
4.19 on the left page. (a) Profile from top to bottom along the slope direction. (b) Profile
from left to right looking uphill.
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are meters. Due to the smaller displacements and therefore the more smooth morphol-
ogy, amplified by the smoothening due to farming, the quality of the displacements
at Avignonet are much less than in Harmalière. As seen in the displacement map,
the upper part of Avignonet is for the major part too smooth (red dots) to derive
reliable displacement-vectors. Therefore the analysis is concentrated in the lower and
more active part of Avignonet. In order to evaluate the displacement vectors, the
GPS-measurements (see data-set A.5) are plotted side-by-side in green, highlighted
with grey circles and annotated with the point-ID. Unfortunately the data-sets are not
directly comparable as the GPS-displacements are only available until 2006 and the
Lidar-sets are from 2006 and 2009, so the GPS-vectors are projected displacements
over the time between the Lidar-campaigns (averaged annual displacements multiplied
by 2.4 = 2 years and 5 months). However, the GPS-measurements indicate mainly con-
tinues displacements and are therefore suitable as reference. Besides the overall noise
of the displacement-vectors, three areas with continues patterns can be recognized and
will be described more detailed. These three active parts are grouped and directed
towards 3 channel like outlets towards the lake.

Active part in the south of Avignonet In the south of the Avignonet landslide,
along the profiles P4 and D4 in Figure 4.21, a block of about 300x200 m shows move-
ments towards NE, leading into a narrow outlet. The cross-section in Figure 4.22 two
minor scarps. At the upper scarp (50-80 m) the displacement vectors are unreliable
(red) due to a low point-overlapping (pol) as the other cause for red vectors of a high
stddz > 0.5 m does not apply here. The dxy-diagram reveals low displacements of
about 0.5 m after the first scarp (80-140 m) and displacements up to 2.3 m after the
second scarp at 170 m. From there until the end they are decreasing continuously down
to 0.5 m. Besides the unreliable peak at the beginning, the stddz shows two peaks at
the steepest flanks of dxy-change. The ellipticity (ell) images the two scarp at 60 and
120 m and shows an increase at the end, probably due to the channel morphology there,
leading to matching uncertainties in channel direction (the inverse case of scarps). The
diagonally cross-section in Figure 4.22 exhibit the concave shape of the active region
and the highest displacements at the lowest part.

Mas d’Avignonet Figure 4.23 shows the enlarged area indicated as Z2 in the
overview map of Avignonet (Fig. 4.21). The displacement-map seems to be quite
complex and erroneous. However, the northern half seems to be more active than
the southern part. The GPS-displacements are mostly comparable with the Lidar-
displacements. Some problems seem to exist at point 45 with highly varying displace-
ments in the vicinity.

Looking at the cross-section thru the village Mas d’Avignonet P10 in Figure 4.24, it
can be seen that from 100-320 m the vectors pointing into the ground with very low dis-
placements around 0.1-0.2 m and the last 50 m they pointing upwards the ground with
higher displacements at 0.5 m. This suggests a rotational slide, but is very unreliable
due to the low displacements. In the upper part of the profile at 60 m, where it crosses
the road, higher displacements directing southwards which seems very unlikely. The
elevated ellipticity at this point reveals the linearity of the road structure and could ex-
plain the derived displacements in that direction. However, if the sharpness (sharp) in
that direction would be too low, it would have been sorted out by the quality-filtering.
This indicates, that probably the sharp-threshold is to low in that case and other parts
at Avignonet which show equally erogenous displacements.
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The cross-section P11, also indicates a rotational block by displacement-vectors
pointing into the ground in the upper half and pointing more upwards in the lower
part. Also the decrease of displacement between this two zones could be explained
by the rotational center of the block. The maximum displacements goes up to nearly
0.7 m.

Gorge outlet N Avignonet Figure 4.25 gives the detailed vector-field of the active
area at the gorge outlet in the northern part of Avignonet indicated as Z3 in Fig-
ure 4.21. Besides some erroneous displacements in the NW corner, again associated
with the road, the map looks quite reasonable. The displacements pointing in gen-
eral towards the outlet at the gorge and show larger movements at steeper slopes. The
GPS-points 11, 12, 21 and 22 are in very good agreement with the Lidar-displacements.
Interestingly, only looking at the GPS-displacements would suggest a quite stable area
in the SW of the map, which is not the case when looking at the Lidar-displacements.
The displacements are increasing just a few meters away from the GPS-points. At
the GPS-points 1, 2 and 3 the agreement is quite bad. Point 1 is surrounded by non-
reliable Lidar-displacements, so the remaining Lidar-displacements are likely just below
the threshold contain also larger errors.

Near the top of profile P13 is a bundle of large displacements facing the opposite
direction than the surrounding displacements pointing upslope. Looking at the cross-
section in Figure 4.26a, the sharpness (sharp) is going down very near to the threshold
of 0.8·10−5. So the area is prone to mis-match due to a smooth terrain. Also this area is
a camping-site with variable structures which could have lead to the large mis-matches.

The profile P14 is going down a slope which is divided in three major steps.
Looking at the cross-section and dxy-diagram in Figure 4.26b, only the middle block
seems to have moved about 0.6 m, the upper and lower are relatively stable. But
the displacement-vectors in the overview-map just south of P14T do not approve this
impression from the profile as there are movements above 0.5 m.

Finally the profile P12 starts at erroneous displacements, crosses the road and
directly goes down a slope with increased displacements. Figure 4.27 shows the corre-
sponding cross-section and diagrams. The large erroneous displacements in the upper-
most part above the road before 80 m, does not show up in the cross-section as they
pointing perpendicular to the profile plane, but the displacements are seen in the dxy-
diagram. A hint for the mis-matching behavior of the displacement-extraction could
be the low sharpness (sharp), but other plausible looking parts of the profile show the
same low sharpness. It is not clear how to detect those mis-matching displacements
without loosing presumingly correct results. The road at 80 m seems to be fairly stable
showing only displacements below 0.1 m. But at the slope just below the road, the
displacements climb to 0.7 m until the end of the profile.
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Figure 4.21: Map of horizontal displacements (at 30 m spacing) of the Avignonet landslide
after quality-filtering. The displacement vectors are draped on the shaded Lidar-DTM. Blue
dots are points with chaotic displacements (stddz > 0.5 m) and therefore no meaningful dis-
placement. Areas with insufficient point distributions (pol < 80 %) or to smooth morphology
(sharp < 0.8) are marked as red dots. The regions Z2 and Z3 are shown in higher detail in the
Figures 4.23 and 4.25. The red-lines are Profiles, which are shown on the right page in Figure
2.26d. “T” and “B” for top and bottom. The grey highlighted green displacements are based
on GPS-measurements (see Appendix A.5). Coordinates are in meter in Lambert93.
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Figure 4.22: Profiles P4 and D4 thru the most active part of Avignonet in the S. Locations
are shown in Figure 4.21 on the left page.
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Figure 4.23: Zoom on horizontal displacements at the village Mas d’Avignonet. The
location is shown as Z2 in Figure 4.21 The red lines are the locations of the profiles on the
right page (Fig. 4.24). Coordinates are in meter in Lambert93.
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Figure 4.24: Profiles P10 and P11. Locations are shown in Figure 4.19 on the left page.
(a) Profile from top to bottom along the slope direction. (b) Profile from left to right looking
uphill.
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Figure 4.25: Zoom on horizontal displacements at the northern active region on the Avi-
gnonet landslide. The location is shown as Z3 in Figure 4.21 The red lines are the locations
of the profiles on the right page (Fig. 4.26) and on Figure 4.27. Coordinates are in meter in
Lambert93.
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Figure 4.26: Profiles P13 and P14. Locations are shown in Figure 4.25 on the left page.
(a) P13. (b) P14.
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Figure 4.27: Profile P12 at the headscarp of Harmalière showing the variability of quality
measures at a location with chaotic displacements. Locations are shown in Figure 4.25.
Profile is from top (P12 T) to bottom (P12 B) along the slope direction.
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4.2.4 Discussion

Displacements between two aerial Lidar-sets of the Avignonet and Harmalière land-
slide could be obtained. The derived accuracy is about 0.2 m at its best, but varies
with the complexity of the morphology and the point-cloud densities. Also the ver-
tical component could be extracted by using the height difference of the matched
kernels. The advantage to direct measurements on the ground like permanent or re-
peated GPS-measurements or extensiometers are the spatial distribution. However the
accuracy is not as high and the temporal resolution is also limited by the costs per
Lidar-campaign, but the accuracies will raise and the costs will decrease with future
technological progress. Also no direct access is needed for the monitoring, which could
be essential in tough terrain or fast moving landslides. Compared to the extraction
from aerial photos, the advantages are the ability of filtering vegetation and the direct
access to the coordinates of the point cloud. Aerial photos are always in need of an ex-
tra DEM for ortho-rectification and ground control points for a proper georeferencing.
On the other hand, the extraction is assumed to be much better at smooth terrain, be-
cause it will be based on intensities (or colors) instead of morphological features. This
means, aerial photos are a potential good replacement in areas where the Lidar-DTM
extraction does not work satisfactory due to insignificant morphologies. The potential
weaknesses of the Lidar-DTM extraction method are the loss of information at the
gridding step, the inability of detecting movements in smooth terrain and the evalua-
tion of the accuracy of the results. The loss of information during the gridding is due to
two facts, first the transformation from 3D to 2D will average vertical formations, and
second the resolution will be finite which can finally influence the extraction at sharp
edges. The lack of robustness in smooth terrain can not easily be solved, as only higher
point densities and higher resolutions could lead to significant morphologies at smaller
scale, but would decrease the signal/noise-ratio of the Lidar-measurements (accuracy
approx. 10 cm). Consequently, displacements of too low robustness should at least
effectively sorted-out by reasonable criteria. In order to find suitable thresholds for the
quality measures, a reference area should be included in the Lidar-coverage preferable
containing all different kinds of occurring terrain-types and no displacements or well
known displacements for the examined time-period. This is necessary for a proper sta-
tistical analysis to determine error-ranges and thresholds for recognizing mis-matches.

Another problem for the interpretation of vertical displacements could come from
erosion and accumulation of material. If this change is relatively small or the ero-
sion/accumulation is very regular throughout the kernel size, the match will be ro-
bust, but the vertical component, defined by the average difference between the kernel
heights, will be altered. This concerns especially the case when interpreting displace-
vectors in cross-sections as indicators for rotational blocks, because erosion at the top
of the slope would lower the vertical component resulting in vectors pointing into the
ground and accumulation at the bottom of the slope would raise the vertical compo-
nent and lead to vectors biased upwards. As an example the following calculation can
be made in profile P1 (Fig. 4.20a) for the fourth vector from the top, which points
into the ground. The horizontal component (dxy) is 0.74 m and the vertical component
(dz) is -0.48 m, resulting in a vector pointing downwards at 33◦. The slope angle is 19◦.
The difference is 14◦, which is the downward orientation of the vector relative to the
ground. How much regular erosion over the kernel area (20x20 m) would be needed to
explain this downward orientation? The vertical component would have needed to be
decreased by 0.23 m, which would be equivalent to an erosion rate of about 10 cm per
year. This can be seen as the lower limit of the problem, as in the most other cases the
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displacements are larger and/or the difference to the slope-direction is bigger. As ero-
sion usually increases with steeper slopes and accumulation appears at gentler slopes,
the said angle-difference would correlate with the slope-angle. Also, as erosion and
accumulation is mostly not spatially equal distributed especially in rough terrain, this
effect would show up in the stddz-value.

Finally some ideas can be given, how the extraction of displacements from Lidar
point clouds could be improved:

1. The Lidar point-clouds usually contain also the intensity, which could be included
in the cross-correlation to improve the quality of matches between kernels. To
improve the process, the already described quality-measure or new ones could
be used to weight the match based on the DTM and the match based on the
intensity in order to use the best combination of both depend on the terrain-
type. For example in smooth terrain the match could be more judged by the
intensity correlation and in rough terrain more by the DTM correlation.

2. The DTM cross-correlation could be extended to affine matches, allowing for scal-
ing, rotation and shearing. This would lead to lower stddz-values in transition
zones between stable and unstable blocks and give direct information about affine
deformations of blocks. However, the computation-time would be extremely in-
creased, without serious efforts in code-optimization.

3. The horizontal displacement extraction can be based, instead of the direct height-
values, on derivatives of the DTM, like the gradient or the shaded relief to be
independent of the absolute height.

4. During the development of the displacement extraction software, instead of the
normalized cross-correlation (NCC), also the discrete Fourier-transforms (DFT)
were used to obtain the correlation matrix in order to increase the speed of
the cross-correlation and to be able to derive subpixel displacements using the
whole kernels, not only the upsampled correlation peak. But as this approach is
highly sensitive to general slopes, which leads to correlation peaks at the highest
absolute elevations, the derived displacements were not satisfying. Also the use of
detrended kernels by removing linear or polynomal surfaces could not avoid those
mis-matches. This path of using the DFTs could be approached by either using
derivatives of the DTM as proposed in the previous point or by incorporating a
normalization in the cross-correlation of the DFTs.

5. Another approach is to extract the displacements directly from the 3D-point
clouds by finding a method describing the similarity between point-clouds and
using a kernel cube to find the best fit inside a search cube. Or simple geome-
tries (planes, cubes, lines, curved planes, corners etc.) could be fitted in both
point-clouds to calculate the deformation parameters between them. For example
Figure 4.28 shows a perspective view of the Lidar point-cloud at the village Mas
D’Avignonet and a fitted plane in one of the roofs. By doing so in both Lidar-sets
the displacement perpendicular to the plane could be extracted. By using nearby
planes with different orientations the displacements could be combined to a 3D
displacement. The used software for this example is LidarViewer2

2LidarViewer-2.5 developed by C. Bowles and O. Kreylos at the Computational Science and Engi-
neering division of the UC Davis (http://wiki.cse.ucdavis.edu/keckcaves:lidar_viewer)

http://wiki.cse.ucdavis.edu/keckcaves:lidar_viewer
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Figure 4.28: Perspective view of the 2006 Lidar point cloud showing the village of Mas
d’Avignonet. The point brightness represents the reflectivity of the Lidar points. At one
house a plane (yellow) is fitted into the roof using the green points.
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4.3 Insar

ERS1 and ERS2 SAR images between 1992 and 2000 are analysed using Persistent Scat-
terer Insar (PSI). The processing covers the whole chain from the raw satellite data to
landslide displacements. The steps from the raw data to the co-registered SLC images
is covered in Section 2.7.4 for the Grenoble study site, because the same images also
cover the Avignonet and Harmalière landslide (see Fig. 2.37). The same ”standard”
processing chain of the GAMMA3-software is applied to the SLC subset covering the
area of the two landslides and the differences and difficulties compared to the Grenoble
case are highlighted (Sec. 4.3.1). Due to the limited results of the Gamma-“standard”
solution and the difficulties to alter the processing inside of Gamma, the processing is
extended in Section 4.3.2 using Matlab. In Section 4.3.2.5 the results are interpreted
as displacements in slope direction and compared to GPS-displacements. Finally the
PSI-processing is critical discussed in Section 4.3.3.

Figure 4.29 shows the features seen in a multilook SAR-image of the Avignonet-
Harmalière study site, in order to provide a better orientation in multiple other figures
of this chapter, where this image is used as a background. The extent of this subsection
is shown on the topographical map in Figure 2.27 and on the whole original SAR image
in Figure 2.27.

3Gamma is a SAR processing software by Gamma Remote Sensing http://www.gamma-rs.ch/

N
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Figure 4.29: (a) Multilook SAR image (1:5) and (b) topographic map of the sub-frame for
the Avignonet/Harmalière study site, highlighting the headscarps of the Avignonet (Avi) and
Harmalière (Har) landslides (red), the villages Sinard (S), Monestier-de-Clermont (MdC),
Rouac (R) and the dam (D) (yellow), the Lake Monteynard (LM) (blue) and the Pinjallas-
Clermont-mountain range (green).

http://www.gamma-rs.ch/
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4.3.1 Standard solution at Avignonet and Harmalière

Starting point for the processing are the SLCs already computed from the raw data
in the Grenoble case. The master image is also the same (ERS2 from 15.3.1997),
but cropped to the region of Avignonet and Harmalière with an extent of 200 x 1600
pixel, which is about 4 x 6.4 km (see the extent on the map in Fig. 2.27 and on the
whole interferogram in Fig. 2.36). In Gamma the minimum size to perform the co-
registration is 512 pixel, therefore first the master image was cropped to 550 x 1600
pixel, then all images are co-registered and finally all images are cropped equally to
200 x 1600 pixel. At the co-registration step offsets are obtained like in the Grenoble
case at 1024 equally distributed points (32 x 32 grid). In average at half of the points
offsets could be obtained (389 to 826 of 1024) with mean accuracies of 0.07 - 0.12 pixel
in range and 0.17 - 0.65 pixel in azimuth direction. Compared to the Grenoble case,
these errors are about two times higher in range and up to 5 times higher in azimuth.
Also in azimuth it exceeds the suggested 0.2 pixel of the Gamma-user guide. The higher
errors are expected due to the highly mountainous terrain including areas of shadow,
overlay and water. These areas contain partly random information in the intensity
images, which leads to mismatches in the co-registration step. However, PSI-results
are limited to the non-problematic areas where the co-registration is expected to be
much better (like in the Grenoble case).

For the DEM a combination of the 50 m IGN-DEM (A.4) and the 2 m Lidar-DEM
is used to increase the accuracy of DEM-information in the landslide area. The area in
the IGN-DEM covered by Lidar is replaced with the Lidar-DEM and the whole DEM
is resampled with 10 m spacing.

From the co-registered SLCs PSI-point candidates are obtained using the same
criteria as in the Grenoble case leading altogether to 1329 point candidates, which
are about 0.42 % of all points. Not surprisingly this is about 3-4 times lower than
in Grenoble due to the low availability of good reflectors in the area. Figure 4.30
shows statistics of different properties of the co-registered SLCs together with the used
thresholds to illustrate the influence of thresholds on the obtained number of point
candidates. The number of point candidates is represented on a logarithmic scale,
which already illustrates that small changes of the threshold can lead to high changes
of the derived point candidates (in a) and c)). However, at this step it was tried
to increase the number of point candidates by lowering the thresholds, which lead to
more point candidates, but could not increase the number of final results (due to the
psigma-threshold of the regression analysis).

In next step is to chose a reference point of good quality. Therefore several single
regressions are calculated and illustrated using the Gamma-function “dis ipta”. Good
reference candidates are chosen by high average intensity values (white dots in the MLI)
and the quality of the linear regressions towards several target points is judged based on
the linear fit with respect to the baseline and linear deformation. The reference point
is at the coordinates 149, 816 (range, azimuth), which is inside the village Sinard.
Figure 4.31 shows the Gamma standard solution after the regression analysis within
the allowed limits of 30 m height correction and deformation rates of 2 cm/a in both
directions (towards and away from the satellite). The sigma threshold for solutions is
1.2, which finally lead to 106 points inside the whole image. Most of them are inside
the village Sinard. A few points (not distinguishable in the figure) are at the small
village inside the Avignonet landslide, one in the north of Avignonet and non inside
the Harmalière landslide. The obtained linear deformations are between -0.1 cm/a
and 1.2 cm/a. The result fits to the hypothesis of a stable plateau in the west (blue
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Figure 4.30: Properties of co-registered SLCs for the selection of point candidates of the
Gamma PSI processing. The figures show the potential derived point candidates in depen-
dence of chosen thresholds of different statistical properties of the co-registered SLC stacks.
a) and b) are based on the non-temporal properties. a) shows the average spectral corre-
lation and the finally chosen threshold of 0.35 in red leading to 1145 point candidates. b)
shows the mean-square-root (MSR) between spectral looks in black for the whole image and
in red for the subset of point candidates using the threshold in a). The final threshold of
1.0 here has no influence on the number of point candidates because all values are already
higher. c) and d) are based on the temporal properties of points. c) shows the MSR of the
point intensity over time with the finally chosen threshold of 1.4 in red leading to 328 point
candidates. d) shows the average intensity in black for the whole image and in red for the
subset of point candidates using the threshold in d). The threshold here (red vertical line)
is at 0.5, leading to finally 96 point candidates. In d) the absolute value of point candidates
does not reflect the Gamma-result, because it does not include the normalization of average
intensities between the images. With respect to that, Gamma leaves 252 point candidates.

dots) and unstable areas at the border of the plateau, here on the Avignonet landslide
(yellow dot) and some areas north of it (cyan dots indicating slightly negative values
> -0.1 cm/a). The height corrections shown in (b) are between -17 m and 18 m and are
less high on flat terrain (Sinard, plateau) and higher at areas of higher topographical
complexity (i.e. white areas indicating higher slopes due to layover). This is consistent
with the assumption that the 20 m-DEM, which is already included in the calculation,
is less accurate at more complex topography, so that corrections are higher. The
solutions for deformation rates and height corrections are all far away from the given
limits (0.2 cm/a, 30 m), which indicates that the limits are sufficiently high for this
area. In (c) the sigma value, which shows the error from the linear fit, does not vary
much with values near the given threshold of 1.2 (yellow dots) with an exception in the
Sinard village (magenta dot) of higher quality, probably due to the direct neighborhood
to the reference point. Because many points are near the given threshold, it could be
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(a) (b) (c)

Figure 4.31: Gamma standard solution at Avignonet and Harmalière area using 65 images
between 1992-2000 with allowed height correction of 30 m and linear deformation rate up
to 2 cm/a. The left and right values below the colorbar indicate the equivalent values for
the colors at the edges. The colorbar is circular, which means negative values starting with
the most right color as zero and going to the left with decreasing values. a) average linear
deformation rate, result values are between -0.1 cm/a and 1.2 cm/a towards the satellite. b)
height correction, result values are between -18 and 17 m. c) psigma, the error from the
linear fit, with values between 0 and 1.5.

assumed to derive more solution by setting the psigma-value higher.
However, the processing using Gamma is stopped at this point due to several rea-

sons:

1. The lack of control and quality assessment of the regression analysis.

2. The indirect access of the solutions for proper visualization and post-processing.

3. The limited possibilities of developing processing strategies adjusted to the special
properties of the area.

Instead the processing is recalculated and advanced using self-written code in Matlab
starting from the differential interferograms of the co-registered SLCs (usually called
“diff0” in the Gamma manuals).

4.3.2 Extended processing at Avignonet and Harmalière

4.3.2.1 Pre-requisite

Starting point for the extended processing are the differential interferograms. These
are the interferograms between all co-registered SLCs and the master SLC corrected by
the phase due to the topography and the orbits (perpendicular baselines). Due to the
unavoidable errors when simulating the topographic and orbital phase just from the
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external DEM and the orbital parameters, the differential interferograms still contain
significant errors depending on the topography and perpendicular baseline. The basic
idea of the PSI processing can be explained by looking at the different components of
the interferometric phase between two points:

φint = φ0 + φtopo + φdef + φres (4.1)

φint is the interferometric phase of the two differential phases of the points. φ0 is a
constant phase only depending on the reference image. φtopo is the phase depending on
the topography (and perpendicular baseline). φdef is the phase depending on a linear
deformation and φres summarizes all residual phases (i.e. atmospheric, decorrelation,
non-linear deformation etc.). The regression analysis is done by minimizing the residual
phase while modeling φ0, φtopo and φdef . The modeling is possible due to the linear
relations between the topographic phase and the perpendicular baseline on one hand
and between the linear deformation phase and time on the other hand. By using
the stack of interferometric phases from different images, the linear relation can be
revealed. Basically the modeled phase can be written as:

φmod = φ0 + a1 · db(i) + a2 · dt(i) (4.2)

The modeled phase φmod is composed of a constant phase φ0, a phase with a linear
dependency on the perpendicular baseline of the image a1 · db(i) and a phase with a
linear dependency on the date of the image a2 · dt(i) (i is an index into the images).
Figure 4.32 shows an overview of the perpendicular baselines of the ERS1/2-database.
The constant phase φ0 is in the limits of one circle (0 − 2π). a1 is connected with
the height correction of the DEM between the two points and can be calculated using
the factor f1 = 1/1525m−1. This factor is obtained from Gamma and depends on
the geometry of the orbits of the satellites. a2 is connected with the relative linear
deformation rate between two points in LOS (line of sight of the satellite) and can
be calculated using the factor f2 = 4π/λ. This factor depends only on the Radar-
wavelength of the satellite, which is 5.656 cm for the ERS satellites. These factors
are essential for the start of the calculation in order to convert the given limits for the
height correction in limits for a1 and the limits for the linear deformation in limits for a2.
And after the computing to convert the results back into usable values. These factors
are verified by comparing the solutions of Gamma with solutions of the self-developed
code.

The most essential measure of the quality of the fit is psigma, the RMS of the
residual phase:

psigma =

√
φ2
res (4.3)

If psigma is low, the interferometric phase can be good explained by the model. If
psigma is high, the phase contains other components, which could be due to atmo-
spheric distortions, vegetation change, non-linear displacements, precipitation condi-
tions, badly co-registered SLCs etc..

The Figures 4.33, 4.34 and 4.35 show 3 different examples of solutions from the
phase regression analysis. The figures are each composed of 4 subfigures showing
details of the solution. The location of the pairs shown on the MLI image in the lower
right by the yellow line with the two dots. The lower left figure shows the color-coded
psigma-values of all possible models tried in the initial step. The image shows only
the solution-plane at the a0-value of the final solution. The full solution matrix would
be a cube. The model parameters with the lowest psigma is then further optimized by
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Figure 4.32: Perpendicular baselines of ERS1 and ERS2 images from 1992-2000 relative to
the chosen master-image of 15.03.1997.

an iterative process in order to find the final solution at the minimum of psigma (the
center of the most blue valley in the image). The two plots at the top show the phase
plots with the best linear fit in red. The phase in the top left plot shows the variation
with time and is corrected from the topographic phase. And the phase in the top left
plot shows the variation relative to the perpendicular baselines and is corrected from
the phase due to the linear deformation.

Figure 4.33 shows the best solution of the whole image from two nearby stable points
in the village Monestier de Clermont. The psigma-matrix shows a clear minimum
leading to an unambiguous final fit at a deformation rate of about 0.4 mm/a. Figure
4.34 shows a solution between a stable point in the village Sinard and an unstable point
in the center of the Avignonet landslide. The values in the psigma-matrix are much
higher than in the previous solution, but still contain a relative unambiguous solution
(blue valley). The continues alignment of the red fit in the phase-time plot suggests
that the deformation is really linear without major changes thru time.

The last example in Figure 4.35 shows a very ambiguous solution. The phase-
matrix contains several psigma-depressions with similar values of about 1.4. The lowest
depression leads to a solution of a highly negative deformation rate and a high height
correction (blue valley in the upper left). But other solutions like the blue valley near
the matrix center would be equally sufficient. Also the two phase-plots at the top
confirm that impression as the red fitting line seems fairly random. This solution could
be considered as false.

4.3.2.2 processing strategy

The whole processing strategy is based only on a low psigma. No other criterias are
considered, which is different to the Gamma approach where point candidates are
preselected using other statistically properties. The easiest way would be to calculate
all possible pairs inside the image, which would be about 51 Gpairs (Giga-pairs = 51·109
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Figure 4.33: Example of the best solution from the whole image of the phase regression
analysis. psigma is 0.36. The linear deformation rate is 0.4 mm/a. The point distance is
about 41 m (2.8 pixel). TopLeft) phase versus time. TopRight) phase versus perpendicular
baseline. BottomLeft) psigma-matrix for initial regression-models at a0 of best model. The
model limits are 30 m height correction and 5 cm/a deformation rate. BottomRight) Location
of the pair in the MLI.



4.3. INSAR 159

p
d
h
 [
m

]

pdef [mm/a]

psigma at best a0 = 0.4488

 

 

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

−30

−20

−10

0

10

20

30

1

1.2

1.4

1.6

1.8

2

Jan94 Jan96 Jan98 Jan00

−3

−2

−1

0

1

2

3

p
h
a
s
e

ref 129  878 tar 91  731   pdef −0.011573  psigma 0.8219

−1000 −800 −600 −400 −200 0 200 400 600 800

−3

−2

−1

0

1

2

3

perp. baseline [m]

p
h
a
s
e

ref 129  878 tar 91  731   pdh −10.8428  psigma 0.8219

50100150200

200

400

600

800

1000

1200

1400

1600

Figure 4.34: Example of a high quality solution of the phase regression analysis with a
high linear deformation rate in Avignonet. psigma is 0.82. The linear deformation rate of
the point in Avignonet is 1 cm/a towards the satellite. The point distance is about 2944 m
(152 pixel). TopLeft) phase versus time. TopRight) phase versus perpendicular baseline.
BottomLeft) psigma-matrix for initial regression-models at a0 of best model. The model
limits are 30 m height correction and 5 cm/a deformation rate. BottomRight) Location of
the pair in the MLI.
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Figure 4.35: Example of a low quality solution of the phase regression analysis in Har-
malière. psigma is 1.32. The linear deformation rate would be 4.4 cm/a. The point distance
is about 1849 m (122 pixel). TopLeft) phase versus time. TopRight) phase versus perpendic-
ular baseline. BottomLeft) psigma-matrix for initial regression-models at a0 of best model.
The model limits are 30 m height correction and 2 cm/a deformation rate. BottomRight)
Location of the pair in the MLI.
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pairs). The non-optimized code is able to compute about 3 Mpairs/day using Gamma
on a normal office computer (Dual processor at 2GHz). This would result in about 50
years of processing time. The estimated potential for code-optimization is high, but is
not the aim of this work, so the number of pairs should be reduced. The final goal is
to obtain as much as possible solutions inside the landslide area (Pu) relative to stable
points outside of the landslide (Ps). The reason to have more than one solution for a
single point inside the landslide is to verify the robustness by analyzing the different
solutions towards a single point. Each step of the strategy is based on a condensation
of a set of solutions (pairs) into a set of points of higher quality, which consists of the
following operations:

1. Calculation of all pairs between a set of reference points and a set of target points.
Both sets can be overlapping or equal. Additionally a minimum and maximum
distance between the points can be defined, which means that only pairs within
this limits are considered. The minimum distance can avoid to consider pairs
of neighboring pixels which may depend on the same dominant reflector and
therefore are not independent. The minimum is always set to 2.5 pixel.

2. Reduction of the number of pairs by a soft psigma threshold to lower the pro-
cessing time for the next step.

3. If searching for stable points, filtering of solutions with deformation rates higher
than 1 mm/a.

4. Keeping the best individual pairs, which means to sort the solutions by psigma
and to remove pairs containing a point already present in a pair with a lower
psigma. This step is necessary to not be biased towards pairs containing the
same point with very good reflective properties.

5. Only keeping the top best individual pairs, either defined by a constant number
or a psigma threshold (probably a stronger than at step 2).

6. Using all points of the leftover pairs as a new set of reference or target points.

To find the stable points Ps the following strategy is implemented (see Figure 4.36
for illustration):

1. Defining regions of potential stable points P 0
s with higher quality (Fig. 4.36a).

These regions are the villages Sinard, Monestier de Clermont, la Morte and
Rouac, the dam of Lake Monteynard and a street along the cliff at the NE-side
of the lake.

2. Condensation of a subset of points P 2
s from solutions within the stable regions

(P 0
s → P 0

s ). For Sinard and Monestier a maximum distance of 5 pixel in range
and 15 pixel in azimuth is set and the resulting point-set P 1

s is again calculated
against P 0

s and condensed to P 2
s to lower processing time. For the other smaller

regions this intermediate step is not necessary.

3. Condensation of the solution P 2
s → P 0

¬u. P
0
¬u are all points outside the unstable

region. This point-set Ps includes stable points outside the predefined regions.
For this step only a subset of P 2

s is used in order to reduce processing time. The
final set of stable points Ps includes all points of P 2

s .

To find the unstable points Pu the following strategy is implemented:
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(a) P 0
s → P 0

s (b) P 2
s

(c) P 2
s → P 0

¬u (d) Ps

Figure 4.36: Reference and target points for PSI processing strategy of stable points. The
left images show the reference points (green) and target points (red) of the pair calculations.
If the reference points and target points are the same they are plotted in yellow. The right
images show the condensed points from the solutions of the corresponding pairs on the left.
(a) Stable regions with expected higher density of PS. (b) Condensed points from solution of
(a). (c) Pair calculation from predefined stable points to the whole area outside Avignonet
and Harmalière. (d) Condensed stable points from solution (c).
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(a) P 0
u → P 0

u (b) P 1
u

(c) P 1
u → P 0

u (d) Pu

Figure 4.37: Reference and target points for PSI processing strategy of unstable points. The
left images show the reference points (green) and target points (red) of the pair calculations.
If the reference points and target points are the same they are plotted in yellow. The right
images show the condensed points from the solutions of the corresponding pairs on the left.
(a) Landslide regions with potential unstable points. (b) Condensed points from solution of
(a) using a soft psigma-threshold. (c) Pair calculation from the subset of unstable points to
the whole area of Avignonet and Harmalière. (d) Condensed unstable points from solution
(c).
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1. Defining the region of interest P 0
u , i.e. the area of the Avignonet and Harmalière

landslide (Fig. 4.37a).

2. Condensation of a first subset of points P 1
u from solutions within the landslides

(P 0
u → P 0

u ) and a maximum distance of 5 pixel in range and 15 pixel azimuth. A
soft psigma-threshold is used in order to keep as most points as possible for the
next step.

3. Condensation of the solution P 1
u → P 0

u . This point-set Pu includes also individual
points of higher quality because there is no distance limitation.

The final solutions are calculated using the best 60 stable points (Ps) and the best
160 unstable points (Pu) resulting in 9600 solutions (pairs). The reference and target
points are shown in Figure 4.38a. In order to judge the quality of the results a second
calculation is done using the same points and parameters for the regression analysis but
with random interferometric phases. Figure 4.38b shows the linear deformation rate
and psigma for the real solutions (black) and the random solutions (red). The figure
shows for the random solutions a main psigma-band approximately between 1.25 and
1.4 with some psigmas as low as 1.1. The real solutions show the same band but
additionally some concentrations at distinct deformation rates between -12 mm/a and
+5 mm/a. Another slightly increasing number of psigma can be seen at a deformation
rate around 40 mm/a, but all psigmas there are still higher than the lowest psigma of
the random solutions. From that figure it can be concluded that a psigma-threshold
of 1.05 would be relatively safe in order to only keep real solutions. Any filtering
of the solutions by a higher psigma-threshold would also include random solutions
without any meaning and needs additional quality tests. Figure 4.38c and d show
maps of solutions after filtering by a strong psigma-threshold of 1.05 (120 pairs, 15
target points) and by a soft psigma-threshold of 1.25 (1033 pairs, 180 target points).
The target points of the certain solutions (c) are limited to the center and north of
the Avignonet landslide, most likely due to the buildings present in these areas. The
deformation rates (colors) seem to be similar for adjacent points. No point is situated
in the Harmalière landslide. The more uncertain solution map (d) (attention for the
different colorbar) does reveal at least two patches of points in Harmalière with similar
low deformation rates, which could be an indication of meaningful solutions. However,
the overall distribution of points seems highly random.

In order to extract useful deformation rates of the landslides the solutions are filtered
and condensed in Section 4.3.2.4. In Section 4.3.2.5 the extracted deformation rates
(in the direction of the LOS) are interpreted as landslide movements.

4.3.2.3 Detection of erroneous image dates

The residual phase of a pixel with a dominant reflector of a co-registered SLC can be
influenced by several factors. If the quality of a whole image is reduced, the psigma-
value for all solutions is generally raised and therefore more difficult to distinguish from
random noise (e.g. Fig. 4.38b). Therefore it can be helpful for the whole processing
to exclude the most erroneous image-dates from the calculations, which on the other
hand decreases the statistical robustness of the regression analysis. Some factors which
could explain an overall decrease of the reflective quality of an image are:

• the presence of snow or higher soil moisture due to snow-melting or rainfall,

• decreased quality of the SLC co-registration or
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Figure 4.38: Raw final solution of 2-dimensional phase-regression analysis between 60
stable reference points and 160 unstable target points in the area of the Avignonet and
Harmalière landslide. (a) Point overview on top of the average MLI. Stable reference points
in green. Unstable target points in red. (b) deformation and psigma of all solutions (black)
in comparison to a set of completely random solutions (red). (c) Solution map after filtering
with a strong psigma-threshold of 1.1. (d) Solution map after filtering with a soft psigma-
threshold of 1.25. The solution map is drawn on top of the average MLI. Each solution is
represented by a blue line from the reference point to the target point and a colored circle
at the target point. The diameter of the circle corresponds to psigma, so that solutions
with a low psigma are represented by a big circle (because they are more probably to be
true) and solutions with a high psigma are drawn with a smaller circle (less sure). The
color represents the linear deformation rate in m/a in LOS direction away from the satellite,
which would translate on a horizontal plane westwards for positive values and eastwards for
negative values.
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Figure 4.39: Phase quality per image-date with dependence on snow-fall and co-registration
quality. a) Solution map of the pairs used for the time analysis on top of the MLI. Each
line represents a solution between the connected points. The thickness of the line depends
on psigma and is thicker for a lower psigma. The color shows the linear deformation rate
indicated at the colorbar. b) Absolute residual phases per solution and image dates. The
solution quality increases from the top to the bottom. c) Average sigma over all solutions
and dates using a decreasing number of images. d) Sigma difference of (d)

• turbulent atmospheric conditions.

A good measure for the overall image quality is the RMS of the residual phase, but
not over all dates per solution (= psigma), but instead over all solutions per date (=
tsigma). In order to minimize the influence of spatial variance of the residual phase
(like decorrelation and non-linear displacements) only solutions from stable points and
below a strong psigma-threshold are used. Therefore the best individual pairs of the
solutions from the regression analysis from stable points to stable points (P 2

s → P 2
¬u,

Fig. 4.36c) with linear deformation rates below 2.5 mm/a are used. These 65 solutions
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are shown in Figure 4.39a. The pairs are distributed over the whole image and can be
assumed to be representative. Figure 4.39b shows the absolute residual phase per date
and solution. The RMS per row is psigma and the RMS per column is tsigma. The
variability of the residuals increases from the top to the bottom because the solutions
are sorted by psigma. More important is the observation that some columns contain
higher residuals than others (vertical lines). This is a direct indication that some
images are of lower quality and tsigma is a good measurement for it.

The overall quality of the regression analysis can probably increased by removing
the worst images. In order to test the increase of the overall regression quality, the
regression analysis for all solutions is repeated after removing the always next worse
image with the highest tsigma from the database. The black dots in Figure 4.40c
show the decrease of the overall sigma when removing the images. If too many images
are removed, the regression thru the leftover phase-values can result in lower psigmas,
but the robustness of the regression is also lowered. The extreme end would be the
removal of all but two images and the regression thru two points would lead always to
a psigma of zero. This means that there is a natural decrease of psigma just because
of a decreasing number of images. Therefore a second database of random values is
build-up and calculated in parallel. When removing the same dates of that random
database the sigma is also decreasing as seen by the red dots in Figure 4.40c. As the
goal of the whole regression analysis is to distinguish between random solutions and real
solutions by a psigma threshold, the difference between the sigmas from the random
and real database need to be maximized. Figure 4.40d shows this difference. The
main observation is that there is no clear optima of the difference, but about 10 images
can be removed without decreasing the sigma difference. In order to decide wether to
remove those images or not, the cause of the decreased image-quality is analyzed.

Figure 4.40a shows tsigma, the measure of the image-quality, versus the image-
dates. At least for the years from 1996 to 2000 tsigma seems to be elevated during
the winter seasons. This impression can be confirmed when looking at Figure 4.40c,
which shows the image quality dependent on the seasons (day of the year). In this plot
tsigma-values are only higher than 1.0 from the days 1 - 60 (Jan-Feb) and above day
330 (Dec), leads to the assumption that the image quality is decreased in the winter
season due to snow. Figure 4.40b shows the database of daily fresh snow for the same
time period derived from a nearby meteorological station4. Figure 4.40d shows the
relation between tsigma and the fresh snow of the same day as the image acquisition.
This plot does not reveal a clear relation between snowfall and image-quality. The
linear correlation coefficient R (after Pearson) is 0.18. The reason could be that only
fresh snow of the same day is taken in consideration, but snow-fall before the date of
image acquisition is expected to have a major influence as well. Data of absolute height
of snow was not available at this station. Therefore R is calculated between tsigma
and an accumulated snow taking 0 - 30 days before the image acquisition into account
(Fig. 4.40e). The maximum correlation (R = 0.75) is reached when considering 8 days
of fresh snow before the image-date. Figure 4.40f shows this accumulated snow versus
the image quality (tsigma). It confirms the dependency of the image quality on the
presence of snow. All images (except 1 out of 10) with tsigma > 1.0 are from dates with
at least 15 cm (black line) of accumulated snow in the 8 days before image acquisition.
These 10 images are finally removed from the database even if the overall increase of
quality could not be proved. The reason is that for the image-quality statistic only the

4Meteorological station no. 38242001 at Monestier de Clermont (village in the SE of the SLC, see
Fig. 4.36a). Daily fresh snow thickness (Hneigef, 24H). The station altitude is 800 m.
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best stable solutions of the whole image are used, but the influence of snow is maybe
stronger on solutions from pixels with less dominant scatterers. The final number of
images for the further processing is 55.

4.3.2.4 Quality filtering of the final solution

The final solution Ps → Pu is done using the best 60 stable points and the 160 best
unstable points, resulting in 9600 solutions of very different quality (Fig. 4.38). Each
target point in the landslide area (Pu) is part of 60 pairs, which need to be condensed
into one deformation rate per point. The variability of solutions per target point can
help to estimate the quality of that deformation rate. Figure 4.41 shows 4 representative
examples of different quality in order to highlight the problems of judging the quality
of a result. The plots show the regression error (psigma) versus the linear deformation
rate (pdef). The vertical lines indicate an extracted linear deformation rate using
different 3 different methods: (1) the average pdef of all solutions as dotted line, (2)
the pdef at the most frequent appearance in black and (3) the pdef with the lowest
psigma in red. The example (a) shows the solutions at a target point of higher quality
with a low deformation rate (2.9 mm/a). The average psigma is 1.13. The standard
deviation of pdef as a measure for the consistency between the solutions, is 0.014 m/a.
All solutions below a psigma of 1.25 show a similar pdef and just a few solutions with a
high psigma are widespread over the whole range of possible pdefs. All three methods
to extract the deformation rate for that target point are very close. However, the mean
pdef is influenced by the bad solutions with the higher psigmas and therefor too low.
In example (b) this problem is more obvious. There is a clear linear accumulation of
pdef-solutions near 0.036 m/a reaching psigmas down to 1.15, but the mean pdef is
about 0.01 m/a. The two other methods (black and red line) are more accurate here.
The standard deviation of pdef is with 0.030 m/a about twice as high as in example
(a) an reflects very well the inconsistency between the single solutions. Example (c)
reveal a high (negative) deformation rate of -1.3 cm/a with a high consistency (standard
deviation of pdef is 0.013. Example (d), a target point of very low quality, highlights
two problems: First, the peak-method and best-method can be very different. Second,
the standard deviation of pdef is with 0.025 lower than in example (b), but the plot
of solutions suggests that it is not possible to extract a meaningful deformation rate,
which seems still possible in example (b).

However, from the examples it is concluded that the most robust technique to
extract the deformation rate is to take the pdef at the most frequent appearance (peak-
method). In order to judge the quality of a target point, the average psigma and
standard deviation of pdef is used. Figure 4.42a gives an overview about these quality
values for all target points. The black dots represent all 160 targets and the red dots
show the same number of points from the random database. Two thresholds are chosen
in a way that all random results (red dots) are kept in quadrant D. All real results in
quadrant D are assumed to be random or not distinguishable from non-random results
and are therefore sorted out. The results from the other 3 quadrants are shown in the
maps 4.42d-f.

The results in quadrant A are expected to be relatively robust. The accompanying
map (4.42d) shows the positions of the target points and their deformation rates.
Quadrant B contains the results with psigmas equally high as random results. The
question is here, is a higher consistency (lower standard deviation of pdef) sufficient
to proof their robustness? The theoretical answer was yes, because the higher psigma
can be related to non-linear displacements, but would be consistent when looking from
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Figure 4.40: Dependency of overall phase quality on snowfall. a) Image quality (tsigma)
per image-date. b) Height of fresh snow per day. c) Image quality (tisgma) depending on the
season (day of the year). d) Fresh snow of the image acquisition date versus the image quality.
R = 0.18. e) Linear correlation (R) between accumulated snow and image quality (tsigma)
dependent on the days taken into account before the image-date. Best correlation (R =
0.75) is reached when summarizing the fresh snow of 8 days before the image acquisition. f)
Accumulated snow of 8 days before the image acquisition versus the image quality (tsigma).
The black line indicates the snow-threshold used to remove images of lower quality.
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Figure 4.41: Consistency of solutions from 60 stable points towards single points in the
landslide area. a) High quality point with low deformation rate. b) Medium quality point
with high deformation rate. c) High quality point with high (negative) deformation. d) Low
quality point with non-extractable deformation rate.

different reference points. The map of the results of Quadrant B (Fig. 4.42e) shows 16
points distributed over the Avignonet and Harmalière landslides. The distribution of
deformation rates gives no hint wether these are plausible results or not. Due to the
fact that also the standard deviation of pdef is higher than all results of quadrant A,
the results should be considered as relatively unreliable. Quadrant C contains only 3
points with very high displacement rates (> 2.5 cm/a) and high psigmas (> 1.28) near
the psigma threshold. These results are dismissed for the further analysis.

Figure 4.42b shows the standard deviation of the deformation rate (pdef) versus the
deformation rate itself. It can be observed that points with higher deformation rates
are only present at higher standard deviations. Above the threshold (red line) the
results contain all possible deformation rates. Figure 4.42c shows the psigmas versus
the deformation rate. All deformation rates below the threshold (red line) stay in a
relatively narrow band of deformation rates between -0.15 and +0.05 cm/a, except the
three (dismissed) values of quadrant C.

4.3.2.5 Interpretation of LOS displacements

The displacement rates shown in Figure 4.42d and c only contain the part of the dis-
placement in a 3D-space in the direction of LOS (line of sight of the satellite). For the
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Figure 4.42: Quality filtering of PSI-results

ERS satellites the horizontal component of this vector is perpendicular (right looking)
to the descending flight direction (8.55◦, NNE→SSW) of the satellite, which is 8.55◦

counterclockwise from W. The vertical component is inclined by 21.29◦ (± 0.1◦) for
the whole image. This value is obtained from the Gamma-software during the co-
registration of the SLCs. As seen in the GPS-data and Lidar results the direction of
landslide movements at the Avignonet and Harmalière landslides are usually along the
down-slope direction. In order to derive comparable displacement rates from the PSI
results, the LOS-displacement rates are translated in landslide movements assuming
they are along the slope. This leads to velocity vectors elongated by a factor greater
than 1 relative to the original velocity in the direction of the LOS. The slope direc-
tions are extracted from the same DEM used for the processing of the differential
interferometric phases described in Section 2.7.4.3.

In order to illustrate the problems arising from such an interpretation, Figure 4.43
shows the two essential geometrical factors for all SLC-pixel. Figure 4.43a shows the
slope angle in LOS-direction. This is the relevant angle for layover and shadowing
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effects and directly related to the intensity-values as seen in the averaged MLI (e.g.
Fig. 4.39a). Low angles (< -40◦, blue) show areas of shadowing. Theoretically full
shadows appear below angles of -68.71◦, but also higher angles already leading to very
low signal reflection. These parts of the images are usually badly co-registered and
therefore do not contain utilizable data. Because of that, also the DEM-coregistration
is there highly erroneous and leads to wrong altitudes and geographical coordinates
in general. That explains also the pixel-wise higher slope angles (red dots in (a)) at
the west-ward orientated slopes at the east shore of the lake. if these areas contain
results, they are likely to be of random nature and should not be considered. Figure
4.43b shows the exaggeration factor for each image pixel, if a LOS-displacement rate
would be interpreted as a landslide velocity along the slope. In the polar plot in Figure
(c) every dot represents the slope orientation, slope angle and exaggeration factor of
one pixel of (b). The slope orientation is given by the direction from the center and
the slope angle is the distance from the center. The solid circles are drawn for the
angles 10◦, 20◦ and 30◦. For example a flat surface would be represented by a dot in
the center and a north-dipped slope by 30◦ at the top center of the plot. The color
represents the exaggeration factor for the conversion from LOS displacement rates into
landslide velocities in slope direction. Slope vectors perpendicular to the LOS can not
be interpreted in that way because they would lead to an infinite exaggeration factor. In
other words a displacement rate in LOS can not be caused by a movement perpendicular
to it. The dotted circle shows all slopes matching that condition. Interpreted velocities
near that slope conditions should be used carefully because small errors will be seriously
exaggerated. And also, if displacement rates are partly due elevation or subsidence of
blocks (e.g. due to rotational landslides), the interpreted velocity would be highly
misleading especially near that critical slopes. As an example, a displacement rate
of 2 cm/a on a slope of 18◦ towards E would be interpreted as a landslide velocity of
40 cm/a (factor 20). If 1 cm/a of that displacement rate is due to an elevation of the
sliding block, the landslide velocity would be only 20 cm/a. Another problem arises for
flat areas in the center of the plot. On flat areas the orientation of slopes is less robust,
e.g. rotation of the surface by 1◦ can change the orientation from 0.5◦ towards E to
0.5◦ towards W. As the exaggeration factor highly varies around the plot center, small
changes in slope orientation will lead to very large changes of the interpreted landslide
velocity. As a conclusion of this short discourse it can be said, PSI results near the red
areas of Figure 4.43b and at gentle slopes should be interpreted with caution.

Finally the PSI displacement rates are interpreted as landslide velocities and are
shown in Figure 4.44. The map in (a) shows the velocities from the 16 high-quality
points of category A in blue and the 16 low-quality points of category B in red (see
Figure 4.42a for the definition of A and B). The interpreted velocities are between
0.6 cm/a and 35 cm/a. The blue results seem somehow consistent with a few exceptions
probably due to the interpretation step. The results of A are shown in the circular
plot (b). The color represents the slope angle in LOS direction would therefor indicate
problematic slope orientations with respect to layover and shadowing. All results are
not affected by layover (red) or serious shadowing (blue). For the interpretation step,
the slope orientations need to be not near the critical slopes indicated by the dotted
circle. Some of the slopes dipping nearly 20◦ eastwards and are prone to an ambiguous
interpretation. It should be highlighted that for the eastwards oriented slopes (almost
all in the Avignonet landslide) an upslope velocity (like the one in the very NE) could
also be a subsidence. The ambiguous interpretations will be addressed in the following
by comparing them with GPS-derived velocities along profiles. The low-quality results
(red lines) seem to be not plausible for the majority of points. But as no other results
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(a) (b)

(c)

Figure 4.43: Geometrical factors for the interpretation of LOS-displacement rates into
landslide velocities in slope direction. a) Slope angle in LOS-direction per pixel of the
SLC. It reflects the theoretical quality of the reflected Radar-signal from the satellite. The
discontinuity in the colorbar reflects the critical inclination angle of the satellite (21.29◦). b)
Exaggeration factor in each SLC pixel if the displacement rate is interpreted as a landslide
velocity in a general slope direction. c) Polar plot of the exaggeration factor from (b).
The distance from the center is the slope angle, the direction from the center is the slope
orientation and the color represent the exaggeration factor. The dotted circle indicates the
critical slopes where the factor would be infinite.
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are available in Harmalière some of them will be more carefully addressed if they are
reliable. The circular plot (c) reveals that no results are in a layover area (red), but
two results are more close to shadowing (blue) with slope angles in LOS direction as
low as -23◦ and -12◦ (44◦ and 33◦ with the LOS vector). Also some of them are highly
ambiguous for the interpretation along the slope (very near to the dotted circle).

In the following the PSI-results from category A will be discussed at four locations
(A1-A4) in greater detail. The positions of A1-A4 are shown in Figure 4.44a. The first
location A1 is at an ensemble of farm-houses in the center of the Avignonet landslide.
Figure 4.45a shows a 200x200 m close-up of the Lidar-derived shaded relief including
houses and trees. This location contains 7 PSI-landslide velocities between 9 and
31 cm/a which are shown in blue. The shaded relief reveals the shapes of houses near
the PSI results which are surely the origin of the permanent scatterers. However the PS-
positions differ from the positions of the houses by about 40 m, which are about 2 pixel
in azimuth in the SLC. This seems to be in a reasonable magnitude of error considering
that the coordinate transformation from SLC-geometry to geographical coordinates is
based on the co-registration of a DEM with 50 m resolution. The red velocity vector
is coming from biannual GPS-measurements(App. A.5). The distance to the houses,
the source of the PSI results, is less than 40 m and therefore feasible for a comparison.
The circular plot (b) shows the slope orientations of the PSI positions (blue). The PSI-
points closer to the critical slopes (dotted circle) correlate with the ones E of the road (7,
8, 9) because they are are on steeper slopes. The red GPS-point shows the direction of
the velocity (and not the slope orientation at the GPS position), which is on the critical
circle. That means the velocity-vector obtained by GPS is steeper than the slope. The
problem here is, the GPS-velocity can not explain the PSI-displacements or the other
way around, the PSI-results could not interpreted as velocities along the GPS-vector.
This is also illustrated in the profile view (c). The profile is obtained along the green
line in (a). The red GPS-vector is steeper than the slope. The LOS-displacements
in LOS direction are almost identical between 1.1 and 1.3 cm/a (barely visible small
black lines at the blue PSI vectors). But the interpreted PSI-velocities (blue vectors)
increase rapidly with increasing slope angles from W to E. An interpretation of the
PSI-displacements along the slope is here misleading, but the discrepancy between
the GPS- and PSI-results remains. The only interpretation of the PSI-displacements
resulting in more feasible absolute velocities (near the GPS-velocity) would be in an
upwards direction (relative to the slope). Figure (d) addresses the question if the
PSI-results contain information about the non-linearity of displacements. This is done
by comparing the GPS-displacements in LOS-direction (red) with the residuals of the
PSI-solutions (black and blue). As the GPS-measurements started in 1996 and the
PSI-results end in 2000, only the relatively short overlapping is shown. The black lines
are the residuals of the 7 PSI-solutions and the blue line is the average of them. Two
negative peaks of the GPS-displacements at Autumn 1997 and Autumn 1998 seem to
correlate with positive peaks of the PSI-residuals, but considering the whole timeline
it remains highly speculative.

The location A2 is situated in the small village in the southern part of the Avignonet
landslide. Figure 4.46a shows a 200x200 m close-up of the shaded unfiltered Lidar DEM
showing the shapes of several houses near the two PSI-results (blue). Considering the
positional uncertainty at A1, it can not be said which house exactly is the source for the
PSI. The next available GPS displacements (red) are within 100 m. The circular plot
(b) shows slope-directions at the PSI positions of about 10◦ and not near the critical
slopes (dotted circle). An interpretation of LOS-directions in velocities along slope
direction is therefore more robust. The exaggeration factors for that interpretation
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Figure 4.44: Landslide velocities interpreted from PSI displacement rates. a) Map of
Avignonet and Harmalière landslide with landslide velocities from results of quadrant A
(blue, higher quality) and quadrant B (red, lower quality). See Figure 4.42 for the distinction
between A and B. b+c) Circular plots of slope orientation. The color represents the slope
angle in LOS direction and indicates slopes prone to layover (red) and shadowing (blue).
The dotted circle marks slopes perpendicular to the LOS.
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Figure 4.45: PSI results at A1 (overview in Fig. 4.44) a) unfiltered Lidar DEM with in-
terpreted LOS-displacements (blue), GPS-displacement (red) and profile location (green) b)
circular plot of PSI- and GPS-displacement orientation c) DEM cross-section with PSI- and
GPS-displacements, the displacements are plotted below the terrain-surface for better visu-
alisation, the shorter black lines at the PSI-displacements indicate the LOS-displacements.
d) time-series of the portion in LOS-direction from the GPS-displacement (red), the PSI-
residual phases per point (black) and the average PSI-residuals (blue)
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are 6.1 and 6.6. The velocities shown in the profile (c) from the PSI (3 cm/a) and
the GPS (4 cm/a) are comparable. Even the increased velocity down-slope follows the
general trend of that area. The comparison of GPS-displacements in LOS-direction
with PSI-residuals in (d) does not reveal any relationship.

The location A3 is situated at a small ensemble of houses about 300 m north of A1.
The shaded relief 4.47a shows 3 PSI-results (blue) about 50 m NE of their probably
source, the two bigger houses together with the paved road in front of them, which form
a right-angled structure more or less towards the LOS (SE). Also a GPS-point (red) is
available within 50 m. The circular plot shows that an interpretation of the PSI-results
(blue) along the slope direction is robust (not near the dotted circle). However, a
interpretation in the direction of the GPS-vector would be difficult (red dot is near the
dotted circle). The profile (c) shows an increased slope angle (18◦) eastwards of the
road and a well aligned GPS-vector along that slope. The PSI-results are at a more
gentle slope (10◦). The LOS-displacements are between 0.3 and 0.5 cm/a exaggerated
to in-slope velocities of 1.3-2.3 cm/a. The GPS-velocity is 2.9 cm/a. The timeline of
GPS-displacements and PSI-residuals (d) does not show any relation.

The location A4 is at the north limits of the Avignonet landslide. The 200x200 m
shaded relief map 4.48a shows this single PSI-results and about 40 m SE its probable
source, a single house at the paved main road. Less likely the two houses in the NE,
100 m away from the PSI-result could be the source too. (b) reveals a general slope
towards SE with angle of 13◦ (blue dot). As seen in the profile (c) the PSI-deformation
rate of 0.3 cm/a is, unlike in the cases A1-A3, away from the satellite (black line at blue
dot). Strictly interpreted in slope direction the resulting velocity would be 3 cm/a up-
slope (blue vector). As this is not feasible at all, the swarm of black lines shows possible
interpretations of the LOS-displacement in other directions. For example a down-slope
direction combined with subsidence would be a much more feasible interpretation.

From the analysis of the locations A1-A4, it can be concluded that a detailed
analysis of PSI-results is only possible if (1) the PSI-results are reliable in itself (low
psigma and low stdpdef), (2) the PSI-results are spatially reliable (a cluster of PSI-
results with similar displacements) and (3) movement directions are available from
other sources like GPS. Even if all these conditions are met, the interpretation remains
highly speculative. For an analysis of single PSI-results from the lower quality points
of category B, all three conditions are worse. (1) The PSI-results in itself are less
reliable (higher psigma and stdpdef), (2) the PSI-results can not be proven for its
spatially reliability because they are not clustered (see Fig. 4.44a) and (3) especially
for the more interesting results of Harmalière no other measurements are available. The
Lidar-displacements can not be used for that, because (1) they are obtained more than
6 years after the SAR images and (2) at slow movements (< 10 cm/a) as observable
by PSI-techniques they are quite vague. The weak points of the PSI-technique used in
this work are reviewed in the next section together with suggestions for improvements.

4.3.3 Discussion

Several aspects of the used PSI technique and its applicability to slow moving landslides
needs to be addressed, (1) the conditions of the ground for permanent scatterers, (2) the
geometry of the slopes, (3) non-linear displacements and (4) the quality control (or error
analysis). The ideal conditions are right-angles of big concrete structures like a paved
road with adjacent houses with orientation towards the look direction of the satellite.
Together with perfectly linear displacement rate, the sigma would be near zero. More
interesting is the lower end of the conditions. In order to analyze this properly it
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Figure 4.46: PSI results at A2 (overview in Fig. 4.44) a) unfiltered Lidar DEM with in-
terpreted LOS-displacements (blue), GPS-displacement (red) and profile location (green) b)
circular plot of PSI- and GPS-displacement orientation c) DEM cross-section with PSI- and
GPS-displacements, the displacements are plotted below the terrain-surface for better visu-
alisation, the shorter black lines at the PSI-displacements indicate the LOS-displacements.
d) time-series of the portion in LOS-direction from the GPS-displacement (red), the PSI-
residual phases per point (black) and the average PSI-residuals (blue)
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Figure 4.47: PSI results at A3 (overview in Fig. 4.44) a) unfiltered Lidar DEM with in-
terpreted LOS-displacements (blue), GPS-displacement (red) and profile location (green) b)
circular plot of PSI- and GPS-displacement orientation c) DEM cross-section with PSI- and
GPS-displacements, the displacements are plotted below the terrain-surface for better visu-
alisation, the shorter black lines at the PSI-displacements indicate the LOS-displacements.
d) time-series of the portion in LOS-direction from the GPS-displacement (red), the PSI-
residual phases per point (black) and the average PSI-residuals (blue)
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Figure 4.48: PSI results at A1 (overview in Fig. 4.44) a) unfiltered Lidar DEM with in-
terpreted LOS-displacement (blue), GPS-displacement (red) and profile location (green) b)
circular plot of PSI- and GPS-displacement orientation c) DEM cross-section with PSI- and
GPS-displacements, the displacements are plotted below the terrain-surface for better visu-
alisation, the shorter black lines at the PSI-displacements indicate the LOS-displacements.
The fan of black lines represent the ambiguity of interpretations of the LOS-displacement in
other directions than the terrain slope.
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could be helpful to test the detection of PS in a test area as free as possible from
influences leading to residual phases, like ground movements, atmospheric turbulences
and mountainous areas. A parallel geometric analysis of a Lidar-derived DSM from that
area in comparison with the derived PS-points could clarify the minimum preconditions
necessary for the detection of PS-points.

The next problem is the ambiguity of the derived LOS-displacement. In cases like
the subsidence of Grenoble this is less a problem, because the direction vector of the
phenomena is relatively clear. For landslides the direction of the movement is usually
more complex. One solution could be the analysis of ascending and descending SLCs in
order to derive to displacement vectors along two different LOS. Starting from a surface
point at a landslide the knowledge of one LOS-displacement leads to the ambiguity of
the moved point on a planar in the 3d-space. With the knowledge of a second LOS-
displacement from that same surface point the ambiguity is limited to a linear in the
3d-space. In order to derive an unambiguous solution towards a single point it can be
assumed that the movement takes place along a vertical planar in slope direction. The
point of intersection between the linear and the planar would give the final displacement
direction in the 3d-space. The necessity of a ascending and descending PS-point for the
same location would likely decrease the amount of derived displacements, because (1)
the geometrical orientation of the slope would have to meet the restrictions for both
orbits (layover, shadowing) and (2) the derived PS-points from both orbits need to be
at the same geographical location. The narrow passage at the Avignonet landslide is
probably the second restriction, because many of the PS-points are maybe related to
an eastwards oriented right-angle between a road and a house (see examples A1-A4).
Looking from an ascending orbit (approximately from W) it can be expected that for
the most of those locations no accompanying PS-points will be found.

As the detection of PS is based on a low sigma of a linear regression depending
on a linear deformation rate, any non-linearity in the movement of the landslide de-
creases the chance of finding a PS. Figure 4.49 illustrates on the left four examples of
displacements using the classical approach of one linear regression using all images, (1)
a linear displacement which leads to a low sigma and would be successfully detected
(green), (2) a non-linear displacement for example due to a larger movement on a spe-
cific date, (3) a discontinued displacement due to the loss of a PS for example due to
a grown tree in front of a building and (4) a seasonal movement for example because
of a geometrical change of the permanent scatterer due to temperatures. A seasonal
accelerating of a landslide would still fit in the first linear case, because an acceleration
would not lead to movements back and forth, but all soil and structural movements
due to changes in temperature, groundwater level or even air moisture could lead to
seasonal effects. An approach to still find permanent scatterers affected by non-linear
displacements could be to search for linear regressions using shorter time-windows. An
idea about the minimum image-number used per sub-set gives Figure 4.39c. The sigma
value of the random dataset (red) decreases more rapidly when removing more than
40-50 images from the whole dataset of 65 images. This means that using time-windows
with less than 15 images could more easily lead to false detected linear regression at
random points without any meaning. The average time-span for the ERS-dataset is
45 days, so the time windows should not be shorter than about 2 years, but could
be realized by a moving window e.g. with an offset of 45 days. In order to find PS
affected by seasonal movements, the linear regression could be made using sub-sets of
image-dates depending on the season. The seasonal behavior of the GPS displacement
at A1 (Fig. 4.45d, red curve) could be a hint that such effects actual exists at the
study site. All Figures 4.45d, 4.46d and 4.47d of the locations A1-A3 could not show
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Figure 4.49: Effect of non-linear displacements on sigma in the PSI approach. Each point
represents a phase (or displacement) of a permanent scatterer at one date. The lines show
the best linear fit. Red lines are bad fits with a high sigma and green lines are good fits with
a low sigma. The left examples using all dates for one fit, the examples on the right using
multiple fits on sub-sets of dates.

a good correlation between GPS-displacements and PSI-residuals. On the one hand
the overlapping time is too short for a statistical evidence, on the other hand the bian-
nual sample-resolution of the GPS is too low to redraw the peaks of the PSI-residuals.
In theory, if the PSI-residuals are exclusively due to non-linearity of displacements,
downward peaks in the GPS-displacement timeline would lead to positive peaks in the
residuals. This is maybe the case at the already mentioned location A1, but remains
highly speculative. A longer and displacement time-line of higher resolution, e.g. from
a permanent GPS, near a permanent scatterer would be needed for a proper analysis
of such a relation.

Another important issue is the quality control of the PSI-results. Figure 4.42a on
page 171 shows that the stdpdef-value of the category B solutions is relatively high,
but below the solutions from the random dataset. It means that the majority of pairs
towards one of those target points leading to a similar deformation rate pdef. The
question is why are many other pairs leading to wrong solutions. Looking at the
sigma-matrix of a single solution of lower quality like the one in Figure 4.35 on 160, it
can be seen that there are several minima. The lowest minima is used to determine the
best model. But for example the model at the second lowest sigma could be the right
one. The idea is to correct the network of reference points to a single height and φ0

before doing the regression towards a target point. By doing that the sigma-matrices
of all solutions towards a target could be stacked and if their is a non-random minima
it should become visible. Sigma minima at random pdefs would be insignificant in the
stack even if they are dominant in a single solution.
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4.4 Discussion

In the previous sections it was shown that the aerial photos, Insar technique and most of
all the Lidar displacements provide some new information on the landslide kinematics.
In this section those results will be first compared to the previous acquired GPS data
and the derived displacement zonation on which have relied some of the recent risk
management decision in Avignonet (Requillart and Moulin, 2004). Then conclusions
are made about the present geometry and kinematics by connecting new insights with
previous results from literature. Finally, the present state is compared to the long-
term evolution of the basin in order to shape a coherent explanation for the spatial
and temporal development of the two landslides since the last ice-age and what that
could mean for the future.

Figure 4.50 shows a topographic map of the populated part of the Avignonet land-
slide containing three major settlements, the camp site in the north, le Cros in the
middle and le Mas in the south, which was newly built starting in 1970 (Requillart and
Moulin, 2004). After the main event of the Harmalière landslide in 1981 and increasing
damages (cracks, deformation) at houses and infrastructures in Avignonet, drainage
systems were established between 1984-1991 (blue lines and dots) in order to decrease
the pore-pressure and the sliding possibilities at the shallow rupture surfaces. It turned
out to be not sufficient. From 1995, biannual GPS-measurements have been performed
in order to quantify and monitor the landslide velocities. The GPS-velocities together
with borehole inclinometer measurements were used to define four zones with different
levels of deformation rate (Fig. 4.50). West of Zone 1 the displacements are insignif-
icant (<1 cm/a) (green), Zone 1 moves with 1-3 cm/a (yellow), Zone 2 with 3-9 cm/a
(orange), Zone 3 with 9-16 cm/a (red) and Zone 4 does not significantly move (green).
To explain the downward increase of velocity, an interpretation is that there are im-
bricated surface ruptures at different depths (Fig. 4.51b). There are evidences of such
localised shear zones from observation of the inclinometric tubes. Shallow slip surfaces
are coexisting with deeper slip surfaces so that their cumulative displacements produce
a downhill increase of surface displacement from zone 1 to zone 3. Zone 4 would not
show significant displacement because of the disappearance of the clay, uncovering the
compact alluvial layer.

These zones are compared to the recent Lidar displacements and GPS-velocities
using the same timespan from Oct-Nov 2006 until April 2009. The colours of the circles
of the GPS-measurements represent the zones to which they would belong using the
categories mentioned above. The same four colours are used for the Lidar displacements
in the background. As the Lidar displacements reveal also higher velocities than Zone
3 (>16 cm/a), such areas are coloured in magenta. Requillart and Moulin (2004)
mentioned an acceleration of the Zone 3 up to 20 cm/a starting in 1999. The recent
GPS-measurements instead show that there is no velocity which would fall into Zone
3, suggesting a slow-down. Furthermore all GPS-measurements in Zone 2 are in 2006-
2009 below 3 cm/a (yellow) which would relate to Zone 1. In Zone 1 the velocities
match with one exception in the west of le Mas. Following the logic of Figure 4.51 it
would mean the movement along the rupture surface between Zone 1 and Zone 2 has
stopped or nearly stopped moving.

Coming to the Lidar displacements it should be mentioned that the reliability
is 0.2 m as its best (see Sec. 4.2.4) which is equivalent to about 10 cm/a. Conse-
quently, Zones 1-3 are indistinguishable using the Lidar-results and only velocities
above 16 cm/a (magenta) can carefully be considered to be significant. At first glance,
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velocities seem to be much higher than those provided by GPS. But looking closely at
the GPS-positions, almost everywhere the velocity from the Lidar-displacements are
similar in the direct vicinity. While the lidar displacements are not robust enough to
improve the zonation, they can help to understand the mechanisms on a broader view.

Figure 4.51a shows a typical section across a slope in laminated clays based on obser-
vations of various landslides in the Trièves (Giraud et al., 1991). It consists mainly of
three types of movements: (A) surface movements, slow to more-or-less rapid mudflows
with a lobate shape wherein the original laminated clay structure has been completely
destroyed, (B) planar sliding with rupture surface parallel to the slope, controlled by
seasonal changes of the pore-pressure with rainfall and melt-water infiltration along
fissures, which opened up in dry periods, (C) deep rotational slides, usually with con-
tinuous slow movements along slip surfaces deeper than 20 m (Giraud et al., 1991).
It is tried to identify these movements along the cross-section of the Avignonet land-
slide (Fig. 4.51b) using scarps, GPS-velocities, slip surfaces in inclinometer data and
Lidar surface displacement vectors. The scarps F1-8 were identified on the shaded
Lidar-DEM (Fig. 3.19) and on the slope-map (Fig. 3.16). Because of their spatial
extend they need to be related to the deeper movements of type B or C. Displacement
rates are calculated for scarps F1-8 by subtracting the velocities of GPS-measurements
(G40-G48) of the adjacent blocks. If several GPS-stations are on one block the average
value of those GPS-stations is taken. The main clay body west of F1 is assumed to
be stable. Because the block between F2 and F3 contains no GPS-station, the dif-
ference between the GPS-velocities of G46/47 and G48 can not be clearly assign to
F2 or F3. The slip-surface appearing at F4 can be assumed to be dormant, because
the adjacent blocks contain similar velocities and the scarp height is not as significant
as the others. T0-T2 represent boreholes with slip-surfaces identified in inclinometer
measurements. The compacted alluvial layers (CAL) which outcrops in the east are
found at the bottom of T1 and T2. Finally slip-surfaces are interpreted from all sig-
nificant scarps F1-8 (> 1cm/a) so that they match with the slip-surfaces found in the
boreholes. The resulting geometry suggests a slow deep seated rotational sliding along
F1 which outcrops near the top of the alluvial layers. The maximum depth is 43 m
at T0. The second intermediate slip-surface F2 seems to be of type B, resulting in
intersected blocks sliding along the planar slip-surface. The lowest distinctive block
below F5 is affecting le Mas. Below F6 the movements are dominated by shallow, fast
and more irregular movements indicated by the higher variability of velocities from the
GPS-measurements (G41, G42) and the Lidar displacements (Zone 3, Fig. 4.50). The
Lidar displacement vectors (taken from Fig. 4.23 and 4.24) shown above the toe of
the landslide indicate small rotational movements of higher velocity (up to 20 cm/a).
Before coming to possible scenarios for the future of the Avignonet landslide, some
aspects about the general evolution of the landslide since the last ice-age needs to be
addressed.

Figure 4.51c shows a cross-section of the Avignonet landslide in a larger context.
The whole valley is 3-4 km wide based on jurassic bedrock. As shown in chapter 3, the
valley is divided by a paleo-topographic bulge. The compacted alluvial layers on top
and east of that bulge are from the former Drac de Cros deposited until the end of the
Riss glacial period (Monjuvent, 1973). They will be called CAL1 in the following. The
compacted alluvial layers west of the bulge, deposited during the Würm glacial period
from the Drac de Sinard and were later covered by the laminated clays of the Lake
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Figure 4.50: Displacement rate zones at Avignonet by landslide velocities as defined in
Requillart and Moulin (2004): Zone 1: 1-3 cm/a (yellow), Zone 2: 3-9 cm/a (orange), Zone
3: 9-16 cm/a (red), Zone 4: non significant (green). The 4 black lines show these zones
from (Requillart and Moulin, 2004), which are based on GPS-measurements between 1995-
2001. The round circles show the locations of the GPS-measurements colored after the same
velocities, but using the GPS-data of the timespan between the Lidar campaigns (2006-
2009). The GPS-points are labeled with the GPS-velocities in cm/a. The partially colored
background shows the zonation obtained from the Lidar displacements. Lidar displacements
show that same color scheme than GPS except for those higher than 16 cm/a are colored in
magenta. Note that only the magenta Lidar measurement are really significative according
to the incertainty level reported in section 4.2. Areas without Lidar-results are left out and
reveal the underlying topographic map with contour lines and streets. The blue lines and
dots represent drainage measures installed between 1984 and 1992.
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Figure 4.51: a) Idealised section across a slope in laminated clays to show potential and
actual slip surfaces.(Giraud et al., 1991) b) Interpreted cross-section of the Avignonet land-
slide. G40-48 show the average GPS-velocities from 1995 - 2009 in cm/a. F1-6 are scarps
identified on the shaded Lidar-DEM. In brackets an average displacement rate calculated
from the difference of GPS-velocities of the accompanying blocks. T0-T2 are boreholes with
inclinometric measurements and slip surfaces marked as small horizontal lines. c) Extended
cross-section after (Monjuvent, 1973; Bièvre, 2010). D1: contact bedrock/CAL, D2: contact
CAL/clays, D3: upper landslide limit, E1-3: accompanying elevation levels before incision.
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Trièves due to the impoundment of the Drac by the Isère glacier. They will be called
CAL2. Finally during the retreat of the glacier some morainic deposits remained on
the top (Monjuvent, 1973, 1978; Brocard et al., 2003). The retreat of the Isère glacier
started between 23 000 BP and 14 000 BP (Brocard et al., 2003) generating the incision
of the Drac into the morainic deposits and laminated clays. After Brocard et al. (2003)
the incision rate into the clays is at least 6 cm/a. That means that the Drac has incised
the 200 m from E3 to E2 (Fig. 4.51) in about 3300 years. Assuming that the compacted
alluvial layers filled the whole valley up to E2, the Drac incised the CAL down to the
bedrock, whose top is probably more irregular, but is approximately near the today
shore of the lake Monteynard at the E1 level. After Brocard et al. (2003) the incision
rate into the CAL is about 0.8 cm/a to 1.1 cm/a, which leads to a incision time for the
120 m from E2 to E1 of about 11-15 ka. The further incision in the bedrock can be
assumed to be much slower due to the high resistivity of the bedrock.

The Drac incision can be correlated with the retreat of the headscarp of Avignonet,
assuming that the general slope angle of the sliding clay was constant. The slope
angle of the Avignonet landslide is about 13◦. During the incision from E3 to E2 the
headscarp retreated 900 m from the Drac within 3300 years, which gives a retreat rate
of about 30 cm/a. Afterward, the incision and therefore the retreat of the headscarp
slowed down. Assuming the CAL-slope (D2-D1) was approximately the same at that
time as today (17◦), the retreat would be 500 m in 11-15 ka, which gives a retreat rate
of 3-5 cm/a. But the problem here is, that the CAL-slope can not be assumed to
be constant due to the rigid character of the cliffs. It is more likely that the slope
was much higher until the Drac reaches the bedrock at E1. Then the incision rate
dramatically decreased even further and the CAL slope decreased due to erosion from
the valley sides, preferably at the exposed cliff at the top of the CAL. That means that
the (long-term) evolution of the Avignonet landslide today is controlled by the retreat
of the CAL-top (D2), which in itself is not controlled anymore by the incision of the
Drac river. But how fast is the retreat of that cliff at the CAL-top and with that the
retreat of the Avignonet headscarp? The maximum can be assumed to be the 3-5 cm/a
calculated above.

Another approach is to extrapolate the recent movements of Avignonet. The major
scarps at Avignonet (F1-6 in Fig. 4.51) are separated by about 100 m with an offset
by about 15 m. The displacement rate for the uppermost block is 1.3 cm/a (G48) with
approx. 0.25 cm/a in the vertical direction. This would mean the block needs about
6000 years for the 15 m and a new headscarp 100 m further is created only every 6000 a,
which would reflect a retreat rate of 1-2 cm/a. But this would mean that the Avignonet
landslide had only time to develop 2-3 scarps, which is not the case. Therefore this
suggests that the landslide velocities do not reflect the long-term behaviour, which
leads to assumption that the Avignonet landslide has seen and probably will see times
of higher activity. These accelerations are likely to be linked with typical triggering
factors of landslides like extreme rainfall, snow-melting or earthquakes.

The present-day morphology and spatial distribution of landslide velocities seems
to support the thesis that the Avignonet landslide is controlled by the retreat of the
CAL-top. Figure 4.52 shows both landslides with the Lidar-derived recent landslide
velocities, shown a different colour-scale in order to highlight the areas where the
velocities are significantly above the uncertainty. The figure also contains the contour
line at 600 m asl (blue dotted line), which matches the top of the compacted alluvial
layers (CAL) at three locations (blue solid line on the contour line) and therefore would
indicate the top limit of the alluvial layers if it would be a continues horizontal plane.
The blue-green alternating line at the west-shore of the lake indicates the outcropping
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geological formation (blue = CAL, green = bedrock) as interpreted from the IGN-aerial
photos of 2010 (via Google maps, maps.googe.com) and field-visits. On these images
the level of the artificial Monteynard lake is exceptional low and therefore reveals a
wide stripe of exposed rock along the lake which would be usually under water. The
arrows OC1 to OC4 indicate the view of the photos in Figure 4.53, which show the
appearance of the top of the alluvial layers in the landscape as a continuous sharp cliff.

Three areas of higher velocity can be observed in the Avignonet landslide (A, B,
C). These locations are concentrated where the 600 m contour line exhibits a concave
shape. On the other hand velocities are relatively low at the convex shapes, between
A and B, B and C and south of C. This suggests that the relatively compact alluvial
layers are a controlling factor of the Avignonet landslide: Where the CAL-cliffs stick
out eastwards the landslide is blocked or at least slowed down; where the alluvial layers
are retreated westwards the landslide is more active. The same pattern can be seen
with the alluvial layers and bedrock at the lake-shore. The bedrock crops out at the
convex shapes of the shore-line as it is more resistant.

The development of the Harmalière landslide during the incision of the Drac river
into the clays can be assumed to be similar to the Avignonet landslide with an East-
West orientation perpendicular to the Drac river, retreating westwards. But the Drac
de Sinard has eroded the CAL1 from the Drac de Cros, flew westwards of the bulge
and deposited its CAL2 at a lower elevation up to approx. 500 m (Fig. 4.51c). This
means that the Drac of today incised SE of the Harmalière landslide into clays and
tap the landslide from the SE through the former channel of the Drac de Sinard. This
presumedly lead to a rotation of the Harmalière landslide towards the SE in the time
after the Drac started incising into the CAL1. The question is what is the driving
force today for the Harmalière landslide and has it changed with the filling of the
Monteynard lake? At the Avignonet landslide it was suggested that the erosion of
the CAL1-top is the triggering factor from the toe of the landslide. For Harmalière
this could similarly be the erosion of the CAL2-top (before the filling of the lake),
which is unlikely due to the following observations: (1) There is no evidence that the
CAL2-top was already reached by the incision of the Drac river of today, due to the
lack of outcrops mainly because of the filling of the lake and the filling of the outlet
channel from the Harmalière landslide with the mudflow from the main event of 1981
and subsequent ones. (2) Even if the CAL2-top was reached, it can be assumed to
have been levelled immediately, because the height relative to the level of the Drac
river could not be higher than 50 m, the distance from the Drac river to the toe of
surface rupture is with about 800 m relative long (see the geomorphological map in
Fig. 3.21) and the whole watershed, which is almost as big as the one of the Avignonet
landslide, is draining through the one narrow outlet channel (see the drainage map
in Fig. 3.22). (3) Dissimilar to the Avignonet landslide, the recent activity of the
Harmalière landslide is distributed over the whole landslide (Fig. 4.52). Also the aerial
photos before the main event of 1981 (Fig. A.1-A.4 in the Appendix) show cracks,
suggesting that the landslide is not only triggered by removing material at the bottom,
but also by gravitational push from the head. Although the cracks showed up even
before the creation of the lake in the 1960s, the filling of the lake itself could have been
a triggering factor for the main event in 1981, because as seen on the aerial photos
of 1970 (Fig. A.3), the lake sticks far out into the channel and could have raised the
groundwater level, increasing the chance of failure at intense rainfall events. Another
influence could have made the clearing of the forrest for a powerline at the eastern
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Figure 4.52: Landslide velocities derived from Lidar displacements on top of the shaded
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border of the later failed main section of the event in 1981.
The recent activity, seen in the Lidar displacements of Figure 4.52, show that the

main middle part of the Harmalière landslide, which collapsed in 1981 and subsequent
events, is less active than the flanks east and west from it. This could be due to the
two main natural drainages at both sides of that section. In the mudslide at the lower
end, these drainage paths join and incised already several meters into the debris since
the last event in 2001. The moving block near the headscarp in the NW and the
opening cracks behind it suggest further retreat of the headscarp in the NW direction
towards the village Sinard. A very rough estimation of the retreat-rate can be assumed
from the average retreat of the Harmalière landslide since the start of the tapping
from the SE mentioned above at the time the Drac river reached the CAL1-top about
20 000-11 000 BP. The distance is about 1500 m which leads to an average retreat-rate
of about 7-14 cm/a. However, the events since 1981 proofed that the average retreat
of the headscarp can be as fast as 30 m/a over two decades.





CHAPTER 5
Conclusions

Three remote sensing techniques, aerial photogrammetry, Lidar and PS-Insar, were
applied to the Trièves area in order to analyse the spatial-temporal behaviour of the
two clayey landslides Avignonet and Harmalière. DEMs and ortho-photos have been
produced from aerial photos of 1948 to 2003. Denuded areas have been mapped on the
ortho-photos as an indicator for shallow landslide activity. In all photos the percentage
of denuded surface is much larger in Harmalière than in Avignonet with 13 - 20% versus
3 - 5%, indicating a higher activity over the last 60 years. Although the DEMs from
the most recent photos (2001, 2003) show elevation accuracies below 0.5 m, DEMs and
ortho-photos from older photos reveal major inaccuracies of up to 20 m and therefore
are not suitable for proper mass balance calculations or direct displacement extraction
for such slow moving landslides.

The application of helicopter based Lidar on the landslides provides a high resolu-
tion bare earth DEM (approx. 0.5 m resolution), which is used for the morphological
characterisation of the landslides. In opposite to optical imagery, the main advantage
is the high absolute accuracy (15 cm) and the automatic filtering of vegetation. The
HR-DEM and its derivatives (slope, aspect, shaded relief, drainage system) allowed a
geomorphological interpretation with higher detail than it was possible before, reveal-
ing also structures in forested areas. The surface roughness, as defined by the RMS-
deviation, is calculated at different scales (2 m and 20 m) along two directions - in slope
direction and perpendicular to the slope - on small profiles (20 m and 200 m) over the
whole HR-DEM. Directional roughness appears to be a good indicator for landslide ac-
tivity, which is evidenced by down-slope roughness (created by perpendicular-to-slope
scarps), while erosion, generating drainage downslope paths, is shown by roughness
along contour lines. Several parts of the Harmalière landslide, as well as some regions
along the lake, exhibit unpronounced directional roughness and are not easily classified.

Displacement-vectors were derived from two DEMs of 2006 and 2009, using cross-
correlation techniques and developing a filter-strategy in order to detect erroneous
displacements. Three main factors could be identified as the main reasons for mis-
matches at the correlation step and are sorted-out using different quality-measures: (1)
Insufficient data-density in one or both DEMs, detected by a low point-overlapping,
which takes into account the variability of the point-cloud densities on which the DEMs
are based. (2) Irregular change, caused for example by chaotic movements or manmade
earthworks. It can be detected by a high standard deviation of the difference between
the matched DEM-kernels. (3) Insignificant morphology (e.g. flat terrain), detectable
by a indistinct peak in the cross-correlation matrix. The final displacements show
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accuracies up to 0.2 m depending on the complexity of morphology and the point-cloud
densities. The displacement field reveals distinct areas in the Harmalière landslide,
which moved up to 3 m with or without rotational component, or which exhibited
relative low activity (<0.4 m) like in the main sliding channel caused by the events
from 1981-2001. In the Avignonet landslide, the highest activity is obtained in a non-
rotational sliding area in the south with displacements up to 2.5 m. On the whole rest
of the landslide the displacements increase towards the toe with rotational and non-
rotational components. The highest values are concentrated near the main drainage
outlets with displacements up to 1 m.

The PS-Insar technique was applied, using 65 SAR-images from the ERS-satellites
of the years 1992-2000. The decreased quality of 10 images shows significant correla-
tion with the accumulated snowfall of 8 days before the acquisition of the image and
are not used for further processing. The remaining 55 images were processed using a
two-dimensional phase regression analysis, in order to determine stable points outside
the two landslides and potential unstable points of high reflective quality inside the
landslides. Finally, 16 reliable displacement-rates in the line of sight away from the
satellites could be obtained inside the Avignonet landslide, ranging from -3 to 13 mm/a.
In Harmalière no reliable results were obtained. Among the 16 points, 12 points are
concentrated in three groups near the center of the Avignonet landslide and 4 are sit-
uated in the middle and northern part. All points can be related to buildings acting
as reflector. The vectors in line of sight of the satellite are further interpreted as dis-
placements along the slope direction, but this interpretation remains highly ambiguous
due to the orientation of the slope nearly perpendicular to the incidence angle of the
satellite.

Interpretation of all the remote sensing data and previous works has led to the
following conclusions:

• The Harmalière landslide is and has been more active than the Avignonet land-
slide at least since 1950. The major cause seems to be the N-S ridge of hard
sediments (Jurassic bedrock and/or compact alluvial layers) on the eastern side
of the Avignonet landslide, which prevents the Avignonet landslide to develop
new deeper sliding surfaces.

• This ridge disappears at the outlet of the Harmalière landslide and makes place
to what can be interpreted as a NW-SE oriented paleovalley of the river Drac.

• The Avignonet landslide seems to be controlled by the slow retreat of the top
of the compact alluvial layers, resulting in increasing velocities at the toe of
the landslide near the drainage paths, where the top of the alluvial layers is
eroded further towards the west. The landslide is moving along slip surfaces with
increasing depths (superficial to 45 m) from the toe to the head and exhibiting
decreasing velocities (50 cm/a to 1 cm/a).

• The Harmalière landslide shows higher activity distributed over the whole area,
with the development of cracks behind the headscarp before the main events. At
present, the main channel, which played a major role in the 1981 and subsequent
events, is less active due to the filling of the outlet channel towards the lake by
the mudslide deposits and probably by the natural drainage paths developed at
the side of this body.
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• Concerning the long-term evolution of the landslides since the retreat of the Isère
glacier, it can be assumed that both landslides were similarly controlled by the
incision of the Drac river into the clays and were oriented both perpendicular to
it. After the Drac reached the top of the compacted alluvial layers of the former
Drac de Crôs after about 3300 years, the incision slowed down, along with the
regression of the landslide headscarp. At that time the Drac started to erode
the channel of the former Drac de Sinard, leading finally to a rotation of the
Harmalière landslide towards the SE. Since the Drac reached the bedrock after
another 11-15 ka, the incision slowed down again stopping to directly controlling
the landslide evolutions.

• From recent activity, the average retreat rate of the Avignonet headscarp is es-
timated to 1-5 cm/a. This value would also hold for the long-term past activity.
For Harmalière, the long-term retreat rate is estimated to be 7-14 cm/a, but the
events from 1981-2001 showed temporally a regression as high as 30 m/a for the
northern part of the headscarp.

This work has highlighted several issues that could be further investigated. In aerial
photogrammetry an integrated model refinement at the image registration process of
photos from different dates and the extraction of displacements directly from the source
images without calculating separate ortho-photos (Ayoub et al., 2009) should be tested.
However, displacements derived from old aerial photos will much likely not reach ac-
curacies better than one meter and only in non-vegetated areas.

The extraction of displacement-vectors from multi-temporal Lidar campaigns by
cross-correlation techniques is also of high potential for further development and is
easily adaptable to different landslide velocities and spatial extents. In this study
only the lower end of detectable displacements are explored. Landslides with higher
displacements should also be investigated in order to develop a pyramidical processing
strategy, which dynamically adapts the kernel size, search distance and grid resolution
with the local conditions. Other suitable Lidar data-sets were started to investigate
but could not be treated in time, two plane-based Lidar campaigns from the Trièves
covering a larger spatial extent and aerial laser-scans from two other study-sites within
the Mountain Risks project: the Super Sauze landslide (French Alps) and the Valoria
landslide (Appennines, Italy) with Lidar-sets from 3 different years each. Also, the
integration of the intensity of the Lidar-data could help to increase the reliability,
especially in flat terrain. Another approach could be the extraction of 3D-displacements
based on geometrical patterns matched into the non-filtered point-clouds.

The Insar method using permanent scatterers should be further investigated for
its potential to show non-linear behaviour of slow movements and the combination of
ascending and descending orbits to solve the ambiguity when interpreting the LOS-
displacements. The method is generally better suited for landslides which contain
structures with high reflectivity properties (e.g. buildings, hard-rocks), but results can
maybe significantly improved using new processing strategies by combing small-baseline
and permanent-scatterer approaches (Hooper, 2008; Ferretti et al., 2011) and/or using
data from recently launched satellites (TerraSarX, CosmoSkymed) with higher resolu-
tion (1 m), low return times (4 days) and steerable SAR-instruments (variable incidence
angle and left/right looking capabilities).
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P., and Neuville, J. M. (2000). Cityshark: A user-friendly instrument dedicated
to ambient noise (microtremor) recording for site and building response studies.
Seismological Research Letters, 71:698–703.

Chen, R., Chang, K., Angelier, J., Chan, Y., Deffontaines, B., Lee, C., and Lin, M.
(2006). Topographical changes revealed by high-resolution airborne lidar data: The
1999 tsaoling landslide induced by the chi-chi earthquake. Engineering geology, 88(3-
4):160–172.

Cheng, K. S., Wei, C., and Chang, S. C. (2004). Locating landslides using multi-
temporal satellite images. Advances in Space Research, 33(3):296–301. TY - JOUR.

Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B.,
Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M. (2009). The last glacial
maximum. Science, 325(5941):710–714.

Colesanti, C. and Wasowski, J. (2006). Investigating landslides with space-borne syn-
thetic aperture radar (sar) interferometry. Engineering geology, 88(3-4):173–199.

Corsini, A., Borgatti, L., Coren, F., and Vellico, M. (2007). Use of multitemporal
airborne LiDAR surveys to analyse postfailure behaviour of earthslides. Canadian
Journal of Remote Sensing, 33(2):116–120.

Corsini, A., Cervi, F., Daehne, A., Ronchetti, F., and Borgatti, L. (2008). Coupling
geomorphic field observation and lidar derivatives to map complex landslides. In
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Jongmans, D., Bièvre, G., Schwartz, S., Renalier, F., and Beaurez, N. (2009). Geo-
physical investigation of the large Avignonet landslide in glaciolacustrine clays in the
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M., Bard, P.-Y., Barnichon, E., and Gaboriaud, J.-M. (1995). Franchissement
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APPENDIX A
Used Datasets

A.1 IGN aerial photos

• Description: Aerial photos with stereo overlapping
• Dates: 1948, 1956, 1970, 1978, 1985, 2001, 2003
• Source: Institut Geographique National (IGN - www.ign.fr)
• Format: Digitised film-positives
• Metadata: see Table A.1
• Spatial extent: N 6428041-6432620 E 908821-912705 Z 483-1168 (RGF93, ellip-

soid heights)

year mission No mission name scale available col/bw
2003 FD	  38 department	  Isere 1/25.000 col
2001 FD	  26 department	  drome 1/25.000 col+bw
1998 FD	  38 department	  Isere 1/25.000 col
1997 F	  3336 la	  mure 1/30.000 bw
1995 F	  3235-‐3240 Grenoble-‐Sederon 1/30.000 bw
1993 FD	  38 department	  Isere 1/20.000 col+bw
1989 F	  3236-‐3336 la	  chapelle	  -‐	  la	  mure 1/30.000 bw
1985 F	  3136-‐3236 le	  Charpey	  -‐	  la	  chapelle 1/30.000 bw
1981 IFN	  38 Trieves 1/15.000 bw
1978 F	  3136-‐3236 le	  Charpey	  -‐	  la	  Chapelle 1/30.000 bw
1970 1959/150	  P-‐IR 1/15.000 bw(pancr.	  +	  IR)
1969 F	  3236 la	  Chapelle 1/25.000 bw
1956 F	  3234-‐3237 Grenoble	  -‐	  Mens 1/25.000 bw
1948 F	  3234-‐3237 Grenoble	  -‐	  Mens 1/28.000 bw

Table A.1: Database of Aerial photos available from IGN for the Avignonet-Harmalière
study site.
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Figure A.1: 1948
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Figure A.2: 1956
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Figure A.3: 1970
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Figure A.4: 1978
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Figure A.5: 1985
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Figure A.6: 2001
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Figure A.7: 2003
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A.2 Lidar 2006

• Description: Handheld aerial laser scan from helicopter, see Figure 3.13 for an
overview
• Date: Nov 2006
• Source: Helimap - helimap.ch
• Format: Point-cloud (xyzi)
• Metadata: number of points 36 154 656, last pulse only, average point density

5 pts/m2

• Spatial extent: N 6428041-6432620 E 908821-912705 Z 483-1168 (RGF93, ellip-
soid heights)

A.3 Lidar 2009

• Description: Handheld aerial laser scan from helicopter, see Figure 3.13 for an
overview
• Date: Apr 2009
• Source: Sintegra - www.sintegra.fr
• Format: Point-cloud (xyzi)
• Metadata: number of points 26 214 244, last pulse only, average point density

5 pts/m2

• Spatial extent: N 6432415-6428074 E 909516-912326 Z 461-1185 (RGF93, ellip-
soid heights)

A.4 IGN 50m DEM

• Description: Elevation data of the Departement Isère
• Source: Institut Geographique National (IGN - www.ign.fr)
• Format: DEM (grd and xyz)
• Metadata: resolution 50 m, elevation reference NGF, projection Lambert2/3
• Spatial extent: Departement Isère

A.5 Sintegra GPS points

• Description: GPS campaign points
• Dates: biannual since 1994
• Source: Sintegra - http://sintegra.fr)
• Format: Microsoft Excel sheets
• Metadata: local coordinate system, average velocities 1-13 cm/y (see Figure A.9)
• Spatial extent: 30 points at the Avignonet landslide (see Figure A.8)

helimap.ch
www.sintegra.fr
www.ign.fr
http://sintegra.fr
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Figure A.8: Sintegra GPS points on the Avignonet landslide
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Figure A.9: Displacements horizontal displacements in meter of the Sintegra GPS points
on the Avignonet landslide. One line shows the displacement in half a year. Orientation is
approx. X = East, Y=North.





APPENDIX B
Coordinate systems and projections

B.1 Geodetic datums

To determine quantitatively a position on earth a referential is needed. One way to do
it, is to use a geodetic datum in which geographical coordinates (latitude, longitude)
are well defined. A geodetic datum is defined by a set of geodetic points on the earth
surface associated with a set of parameters including a reference ellipsoid. Table B.1
lists some geodetic systems commonly used in France with their associated ellipsoids
defined by their semi-major axis and semi-minor axis. The reference ellipsoid is a
mathematical model aiming to describe the geoid as best as possible as the shape of
an oblate spheroid. Because the best fit of this ellipsoid varies if the geoid of the
whole earth is taken into account or only a region limited to a country or continent, it
exists many different reference ellipsoids that should always be mentioned when using
geographical coordinates. The most commonly used is the WGS84-ellipsoid natively
used by the Global Positioning System (GPS). Longitudes are usually given relative
to the Greenwich meridian, but in older french systems the Paris meridian may be
used, which is 2◦ 20′ 14.025′′ E of the Greenwich one. Every geographical coordinates
of the form latitude, longitude and height can be expressed as cartesian coordinates
with its origin in the earth center (the center of the corresponding ellipsoid). Using a
seven-parameter-coordinate transformation (Helmert-transformation), coordinates can
be switched from one system to another but may contain errors up to several meters. By
using local grids of transformation parameters, higher accuracy can be reached. Such
transformation grid can be derived from the geodetic points which build up the datums
and whose coordinates are known in both systems. According to the software Circé
from IGN (Institut Geographique National, France) the accuracy of the transformation
from the old NTF system to the new RGF93 system using the grid-transformation is
below 5 cm in horizontal and vertical direction.

The elevation can be measured relatively to the reference ellipsoid or to the mean
sea-level. Usually coordinates in the NTF system are given in sea-level altitude (which
are defined for France in the altimetric system IGN69). In the new RGF93 system
elevations are sometimes given as ellipsoid heights (which would be the GRS1980 el-
lipsoid) and not in sea-level altitude (which is the same in NTF and RGF93). The
ellipsoid height lies in average 51.76 m above the altitude in the study area, but is not
constant due to dependency of the IGN69 system on the geoid. As seen in Figure B.1
the maximum gradient at the study area is about 5 cm over a distance of 1 km down-
wards in NW direction. Therefore the difference between the two elevations varies
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geodetic system associated reference ellipsoid a b f

NTF Clarke 1880 IGN 6378249.2 6356515.0 293.466021
ED50 Hayford 1909 6378388.0 6356911.9 297.000000

WGS84 IAG GRS 1980 6378137.0 6356752.3 298.257222
RGF93 IAG GRS 1980 6378137.0 6356752.3 298.257222

Table B.1: Typical geodetic systems used in France with their associated reference ellipsoids
and parameters. a is the semi-major axis, b the semi-minor axis and f the flattening defined
by a−b

a . NTF: Nouvelle Triangulation Française, ED50: European Datum 1950, WGS84:
World Geodetic System 1984, RGF93: Réferentiel Géodésique Français 1993. (data from
IGN (2007))

Figure B.1: Difference between ellipsoid height (GRS1980) and sea-level altitude (IGN69)
in the study area draped on the shaded relief of the 50 m IGN DEM. The altitude in the
study area is 52.76m ± 6 cm below the ellipsoid height. Colorbar is in meter. Coordinates
are in meter, in Lambert93 map projection.

between 51.82 m in the South of Harmalière and 51.70 m in the North of Avignonet,
which is 12 cm and not always negligible.

B.2 Projections

A map projection defines how the bended earth surface is represented on a 2D-map.
Table B.2 lists the main projections used in France. Today Lambert-93 (based on the
RGF93 datum) is the official one for national use. It is a single projection valid for the
whole of France (without oversea departments).

To project the spherical geographical coordinates on a 2D-plane or map a math-
ematical transformation is needed that is a map-projection. All projections distort
the mapped surface. The “best” projection depends on the region to display and the
purpose of the map. Some projections preserve distances, some preserve angles and
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projection system X0 Y0 ref. meridian ref. parallel(s)

Lambert I NTF 600 000 m 200 000 m 0◦ Paris 49◦ 30′ N
Lambert II NTF 600 000 m 200 000 m 0◦ Paris 46◦ 48′ N
Lambert III NTF 600 000 m 200 000 m 0◦ Paris 44◦ 06′ N
Lambert IV NTF 234 358 m 185 861.369 m 0◦ Paris 42◦ 09′ 54′′ N
Lambert II ext NTF 600 000 m 2 200 000 m 0◦ Paris 46◦ 48′ N
UTM 30/31/32 ED50 500 000 m 0 m -3◦/3◦/9◦ E 0◦

UTM 30/31/32 WGS84 500 000 m 0 m -3◦/3◦/9◦ E 0◦

Lambert-93 RGF93 700 000 m 6 600 000 m 3◦ E 44◦/49◦ N

Table B.2: Typical map-projections used in France with their usually associated geodetic
systems and parameters. X0 and Y0 are the false easting and northing and the reference
median 0◦ Paris is at 2◦ 20′ 14.025′′ E. Note that the UTM projection is worldwide typically
used in WGS84 but can be used with other geodetic systems as well, like ED50 in France.
(data from IGN (2007))

(a) (b)

Figure B.2: Lambert conformal conic projection as used for all french Lambert map-
projection. (a) shows the tangential version used in Lambert I-IV and Lambert II extended
and (b) the secant version used in Lambert-93. (Figure after IGN (2007))

some both. In France, the most commonly used is the Lambert conformal conic (LCC)
projection.

As seen in figure B.2 the projection superimposes a cone over the sphere of the
Earth. The cone touches the earth only at one reference parallel in the tangent case
(a) and intersecting it at two reference parallels in the secant case (b). Along the
standard parallels there is no distortion, but it increases further from the parallels.
Other usual projections are the cylindrical Universal Transverse Mercator (UTM) pro-
jections. It is a system of projections covering systematically the whole globe. France
falls into three of them. The Trièves can be covered by either UTM 31 and UTM
32. An overview about the projections used in France is given in table B.2. The of-
ficial geodetic system in France today is the RGF93 with the linked map-projection
Lambert-93. All the different french systems and projections are included in PROJ.41

since version 4.4.6.1. PROJ.4 is an open-source software library for geodetic trans-
formations used in several GIS-applications. Also some specialised software utilities
for coordinate transformations including CIRCE have been developed by (IGN) (IGN

1PROJ.4 - http://trac.osgeo.org/proj/

http://trac.osgeo.org/proj/
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Institut Geographique National, 2006) and are available on their website2.
For this thesis, all datasets have been transformed into Lambert-93 to be compara-

ble. The projections of the former NTF system covering the Trièves area are ”Lambert
III” or ”Lambert II ext”.

2lambert93.ign.fr

lambert93.ign.fr


APPENDIX C
Abstracts of communications

C.1 Subsidence in Grenoble - B. Fruneau 2010

Fruneau, B., Michel, S., Kniess, U., Pathier, E., Cornou, C., Ménard, G., Casagli, N.,
and Bard, P.-Y. (2010). Subsidence of the grenoble urban area (french alps) from insar
and its relationship to basin sedimentary deposits. In ESA Living Planet Symposium

We use InSAR time series analysis from ERS1-2 (1993-2000) and ENVISAT (2002-
2008) data to estimate subsidence rate of the Grenoble city and its suburbs (more than
400,000 inhabitants) located in the French Alps. About 80 ERS dates and 45 ENVISAT
dates have been used applying both Permanent Scatterers and StaMPS approaches.
The number of available images and the urbanized land cover allow good quality re-
sults. The two approaches gives comparable results. The mean velocity maps are also
in agreement with leveling data. Area of maximum of subsidence (2-3mm/year) is
located in the middle of the valley. There is no clear correlation with the documented
lateral variations of the subsurface deposits (gravel, sand, silt or clays). In contrast,
there is a clear correlation between subsidence rate and thickness (that can reach 1 km)
of the young sedimentary fill of the Grenoble basin. As, in numerous basins, sediment
thickness maps are not well known, this observed correlation opens interesting perspec-
tives to use subsidence rate map as a proxy for thickness map, where conditions are
favorable.
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C.2 Subsidence in Grenoble - S. Michel 2010

Michel, S., Cornou, C., Pathier, E., Ménard, G., Collombet, M., Knieß, U., and Bard,
P.-Y. (21–23 April 2010). May subsidence rate serve as proxy for site effects? In Seis-
mological Society of America annual meeting

There is a growing interest to incorporate site effects in seismic hazard estimates (e.g.
shaking maps, earthquake scenario, insurance models). The current practice is to use
for site classification the average shear-wave velocity in the upper 30 meters (Vs30). As
site conditions are usually not known with the appropriate spatial coverage, a grow-
ing attention is paid to proxies. Recently, Wald and Allen (2007) proposed to use
as a proxy for Vs30 the surface topography: a large slope is related to rock or stiff
soil, while a small slope testify of soft soils. Cadet et al. (2008) proposed the use of
resonance frequencies with or without information on the shallow shear-wave veloc-
ity as an alternative for site classification. Recent studies have shown the ability of
INSAR Permanent Scatterer approach to densely map present-day ground motion in
urban area with a millimetric precision for relative average annual displacement rate.
Except anthropogenic causes (pumping, underground infrastructure), the subsidence
is caused by compaction of sediments due to increasing overburden. Since both res-
onance periods and subsidence rate increase with thickness and softness of soil, both
data should be correlated. We test this simple idea on Grenoble city which is located
in a valley filled with thick late quaternary deposits and for which all necessary data
are available: SAR images, resonance frequencies, bedrock depth, shear-wave veloci-
ties, geotechnical and geological drillings, levelling data. Results show that subsidence
rates (d), ranging from 0 to -6 mm/year, are linearly correlated with the resonance
periods (T) through the following regression law: d (mm/an) = -0.36 T (s) -1. The
linear correlation between subsidence rate and bedrock depth together with analysis of
geotechnical drillings indicate that subsidence is mostly caused by compaction of the
entire sedimentary column.





Abstract
Three remote sensing techniques, Lidar, satellite radar interferometry and aerial pho-

togrammetry are applied to quantify the spatial and temporal evolution of two clayey land-
slides (Avignonet and Harmalière, located in the Trièves area, French Alps) in complement to
in-situ instrumentations. A geomorphological analysis based on Lidar-derived filtered DEM,
coupled to analysis of ortho-photos dating back to 1948 and geophysical investigations, shows
that the different evolution of the neighbouring landslides could be partly controlled by the
paleotopography of the bedrock underlying the clay layer. Directional roughness is shown to
help distinguishing between landsliding and gully erosion patterns. Cross-correlation tech-
nique adapted to DEMs has been developed to derive 3D-displacement-vectors between two
Lidar acquisitions (2006 and 2009), paying attention on measure quality assessment. The
displacement map reveals that, at the Harmalière landslide, the main sliding channel, very
active from 1981 - 2001, is now relatively slow (< 0.4 m over 3 years), in contrast with four
surrounding distinct areas of large movements (up to 3 m) partly with rotational components.
At the Avignonet landslide, displacements generally increase towards the toe (up to 1 m near
the drainage outlets). Persistent Scatterers Interferometry technique allows to derive new
reliable displacement-rates (1992 - 2000) at 16 points of the Avignonet landslide, consistent
with GPS time-series. The long-term average headscarp retreat rates are estimated to 1 - 5
cm/y at Avignonet and 7 - 14cm/y at Harmalière. The retreat of the Avignonet landslide
seems to be controlled by the erosion of the top of the underlying compacted alluvial lay-
ers. The presence of a paleovalley (Drac river) below the Harmalière toe could explain the
difference of kinematics between the two landslides.

Résumé

Trois méthodes de télédétection (Lidar, interférométrie radar satellitaire et photogram-
métrie aérienne) ont été appliquées pour quantifier les évolutions spatiales et temporelles de
deux glissements argileux (Harmalière et Avignonet, situés dans la région du Trièves, Alpes
françaises) en complément d’instrumentation in-situ. Une analyse géomorphologique a été
réalisée à partir d’ortho-photos (depuis 1948) et du MNT Lidar filtré. Couplée à des recon-
naissances géophysiques, elle a montré que la cinématique différente des deux glissements
contigus était partiellement contrôlée par la paléotopographie sur laquelle s’est déposée la
couche d’argile. La rugosité directionnelle a permis de distinguer les processus d’érosion
résultant de mouvements gravitaires et de ravinement. Une technique de corrélation d’images
adaptée aux MNT a été développée pour obtenir les vecteurs de déplacement 3D entre deux
acquisitions Lidar (2006 - 2009), avec une attention particulière portée à l’évaluation de la
qualité des mesures. La carte des déplacements obtenue montre que la zone la plus active du
glissement de Harmalière entre 1981 et 2001 est maintenant relativement lente (déplacement
< 0.4 m en 3 ans), contrairement à d’autres zones proches montrant des mouvements im-
portants atteignant 3m avec une composante rotationnelle. Pour le glissement d’Avignonet,
les déplacements déduits augmentent généralement vers le pied du glissement et peuvent
atteindre 1 m. La technique des réflecteurs permanents en interférométrie radar a permis de
déterminer de nouvelles valeurs de taux de déplacements (entre 1992 et 2000) en 16 points
du glissement, qui sont cohérentes avec les données GPS existantes. Le taux moyen de recul
à long terme de l’escarpement principal a été estimé à 1-5 cm/an à Avignonet et entre 7
et 14 cm/an à l’Harmalière. La régression du glissement d’Avignonet semble contrôlée par
l’érosion du sommet de la couche d’alluvions compactes reposant sur le substratum. La
présence d’une paleovallée du Drac sous le pied du glissement de l’Harmalière pourrait ex-
pliquer cette différence de cinématique entre les deux glissements.
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